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Complement activation in the injured central
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Abstract

The complement system, a major component of the innate immune system, is becoming increasingly recognised
as a key participant in physiology and disease. The awareness that immunological mediators support various
aspects of both normal central nervous system (CNS) function and pathology has led to a renaissance of
complement research in neuroscience. Various studies have revealed particularly novel findings on the wide-
ranging involvement of complement in neural development, synapse elimination and maturation of neural
networks, as well as the progression of pathology in a range of chronic neurodegenerative disorders, and more
recently, neurotraumatic events, where rapid disruption of neuronal homeostasis potently triggers complement
activation. The purpose of this review is to summarise recent findings on complement activation and acquired
brain or spinal cord injury, i.e. ischaemic-reperfusion injury or stroke, traumatic brain injury (TBI) and spinal cord
injury (SCI), highlighting the potential for complement-targeted therapeutics to alleviate the devastating
consequences of these neurological conditions.

Introduction
Injury to the central nervous system (CNS) elicits a com-
plex series of pathophysiological events, including ischae-
mia, excitotoxicity and inflammation. All of these factors
adversely affect the integrity of spared neurons and thus
accentuate tissue damage beyond the initial site of trauma.
The cellular immune response in particular has received
much attention as a key mediator of secondary injury, and
strategies to manipulate the activation and recruitment of
neutrophils [1-5], monocytes and macrophages [6-9], and
lymphocytes [10-12] after trauma have all been investi-
gated, with the ultimate goal being to improve functional
outcomes (reviewed in [13]).
Several recent studies have, however, put activation of

the innate immune complement system into the spot-
light as a perhaps sometimes-overlooked but potent me-
diator of secondary pathology [14-16]. The particular
aim of this review is to summarise current knowledge
and understanding of complement activation in the
injured CNS, specifically in relation to post-traumatic

neuroinflammatory events and associated secondary
damage. Several other recent reviews have already pro-
vided a comprehensive overview of the role of comple-
ment in CNS development and chronic neurodegenerative
disorders [17-19].

The complement system: an introduction and effector
mechanisms
The predominant site of peripheral complement protein
synthesis is the liver, where hepatocytes constantly pro-
duce and replenish circulating complement factors [20].
Activation of these circulating complement proteins in
response to an injurious or infectious challenge results
in a self-amplifying cascade of proteolytic reactions
through any one of four major identified pathways
(Figure 1).
The classical pathway for complement activation is

initiated by the binding of the recognition molecule C1q
to pathogen antigens, C-reactive protein bound to bac-
terial polysaccharides or antigen-antibody complexes
[21]. It is of interest to note in this context that patho-
gen opsonisation and antibody ligation by C1q also pro-
vide a bridge to activation of the adaptive immune
system, which includes an enhancement of antigen re-
tention in lymphoid tissues, a decrease in the B cell acti-
vation threshold and increased memory B cell survival
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[22-24]. T cell proliferation, differentiation, activation
and antigen-presenting cell (APC) function can also be
significantly influenced by complement [25,26]. The lectin
pathway for complement activation involves the recogni-
tion of pathogen carbohydrate antigens by mannose-
binding lectin-associated serine proteins (MASP-1 and
MASP-2) [27] and the ficolins [28]. The alternative
pathway of complement activation is initiated by spon-
taneous hydrolysis of complement component C3 in
plasma, and the binding of factor B and D to C3(H2O)
[29]. All of the three aforementioned activation routes
lead to the formation of C3 convertases and thus con-
verge at this level.
C3 convertases cleave the parental C3 molecule into

two fragments, the larger C3b molecule and the smaller
anaphylatoxin C3a. The C3b fragment opsonises
pathogen-associated molecular patterns (PAMPs), which
are small, conserved molecular motifs that are shared by

classes of microbes and recognised by host cell pattern
recognition receptors (PRRs), such as Toll-like receptors
(TLRs) [30]. C3b opsonises altered-self ligands, immune
complexes and/or dead cells as well, which ultimately
enhances their recognition and rapid phagocytosis by
scavenging leukocytes that bear C3b receptors. The C3b
fragment can also bind the C3 convertase, which leads
to the formation of a C5 convertase and the subsequent
cleavage of the parental C5 protein into C5b and the
anaphylatoxin C5a. The amplification cascade then cul-
minates in the association of C5b with C6, C7 and C8,
which induces the polymerisation of 10–16 C9 mole-
cules in order to assemble a transmembrane pore called
the terminal ‘membrane attack complex’ (MAC), with
subsequent lysis of the targeted pathogens or abnormal
host cells as a result [31]. Importantly, components of
the blood clotting and fibrinolysis pathways, as well as
other cell-derived serine proteases, can also directly

Figure 1 Common pathways for complement activation. Recognition of antigen-antibody complexes by C1q initiates the ‘classical pathway’.
Binding of carbohydrate antigens by mannose-binding lectin (MBL) or MBL-associated serine proteases (MASPs) initiates the ‘lectin pathway’. Both
pathways lead to the formation of the C3 convertase, C4b2a. Complement activation through the ‘alternative pathway’ involves the spontaneous
hydrolysis of plasma C3, generating a second C3 convertase, C3(H2O)Bb. Proteolysis of C3 then leads to production of the C3b fragment, which
binds to C3 convertases to generate C5 convertases. After the cleavage of C5, the C5b fragment binds C6-C9 to generate the membrane attack
complex (MAC). The coagulation cascade leads to complement activation via the ‘extrinsic pathway’; this route does not depend on the presence
of C3 convertases. Anaphylatoxins C5a, C3a and C4a are generated through cleavage of C5, C3 and C4, respectively. Soluble and membrane-
bound negative regulators of complement and their site of action are indicated in green. The functional significance of certain activation steps is
shown in red.
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cleave and activate C3 and C5 proteins, and thus initiate
the formation of complement end products, independent
of the C3 and C5 convertases, a process that is now re-
ferred to as the extrinsic pathway [32-34].
As indicated above, the cleavage of C3 and C5 also

leads to the generation of two smaller activation frag-
ments that do not directly contribute to MAC forma-
tion, the so-called anaphylatoxins. The small cleavage
product of the parental C3 protein, the anaphylatoxin
C3a, is a local mediator of inflammation that signals
through its G-protein coupled receptor, C3aR [35]. The
anaphylatoxin C5a, generated from C5, is one of the
most potent pro-inflammatory peptides known. It can
act as a phagocyte chemoattractant, and promote vascu-
lar permeability, platelet and leukocyte activation
through, for example, upregulation of the leukocyte ad-
hesion molecules necessary for transendothelial extrava-
sation to sites of infection or injury. It also induces
production of proinflammatory cytokines, chemokines,
leukotrienes, prostaglandins, oxidative burst and de-
granulation (reviewed in [31,36]). Similar to C3a, the
C5a molecule signals through a G-protein coupled re-
ceptor, which is known as C5aR or CD88 [37]. A second
receptor for C5a, known as C5L2, has been reported
[38], but its functional significance still remains contro-
versial; indeed, it could have multiple roles in different
species, organs and pathophysiological states [39-42].

Physiological functions for complement in the CNS
Although circulating complement proteins in blood
plasma do not normally have access to the CNS because
of the blood–brain and blood-spinal cord barriers (BBB
and BSB, respectively), several studies have demonstrated
that virtually all of the components of complement can be
synthesized within the CNS [18,19,43]. Accordingly, vari-
ous non-immune physiological roles for complement have
been identified, including synaptic remodelling during de-
velopment, cell survival and neurogenesis.
A seminal study by Stevens and colleagues [44]

showed that components of the classical complement
pathway are key mediators of synapse elimination in the
developing retinogeniculate pathway in mice. Early in
development, retinal ganglion cells (RGCs) from both
eyes extend excessive, overlapping projections into the
dorsal lateral geniculate nucleus (dLGN) of the thal-
amus. Weaker synaptic arborisations are then eliminated
and more active connections strengthened, resulting in
the adult pattern of segregated eye layers by postnatal
day 20 [45]. This process is coordinated by astrocyte-
driven deposition of C1q and C3 on immature or weaker
RGC synapses, which then tags them for removal, most
likely by activated microglia. RGC axons in C1q−/− and
C3−/− mice have indeed a higher degree of overlap dur-
ing and after the remodelling process, resulting in the

persistent retention of excessive retinal innervations of
lateral geniculate neurons [44]. The supernumerary
inputs retained in C1q−/− and C3−/− neurons were
shown to be immature or dysfunctional as judged by the
weak magnitude of the glutamate-mediated currents car-
ried by their AMPA receptors [44]. Interestingly, the fail-
ure to prune excessive excitatory synapses during
development has been positively correlated to enhanced
synaptic connectivity and epileptogenesis in C1q−/− mice
compared to wild-type (WT) controls [46]. Our groups
have also previously shown localized expression of
CD88, the C5a anaphylatoxin receptor, on presynaptic
terminals of mossy fibres within the CA3 region of the
adult rat hippocampus [47]; it remains to be determined
whether physiological C5a signalling here could also be
involved in synaptic plasticity or whether it serves differ-
ent and yet unknown functions in this structure.
In addition to a role in synaptic plasticity, complement

proteins may play an important role in neuroprotection
in the CNS. In the absence of other complement compo-
nents, C1q has been shown to increase neuronal survival
and arborisation [48]. These effects are mediated via the
upregulation of genes associated with cytoskeleton func-
tion (syntaxin-3), cholesterol/lipid metabolism (CH25H,
INSIG2) and neurotrophic factors (NGF, NT-3, NTN1)
[49].
A functional role for the MAC has also been demon-

strated. At sublytic concentrations, the MAC can be
endocytosed by oligodendrocytes and cause them to re-
enter the cell cycle [50]. Sublytic MAC can also reduce
apoptotic cell death by increasing synthesis of Bcl-2 and
inhibition of caspase-3 activation and caspase-8 proces-
sing and upregulating FLIP [51,52].
Lastly, a physiological role for the anaphylatoxins C3a

and C5a within the adult murine CNS has emerged, spe-
cifically an involvement in cell survival and neurogenesis.
In mixed cultures of neurons and astrocytes, C3a pro-
tected neurons against NMDA-induced excitotoxicity in a
dose- and astrocyte-dependent manner [53]. The neuro-
protective action of C3a signalling could be mediated
through the induction of nerve growth factor (NGF) ex-
pression in microglia [54,55] as well as astrocytes [55].
C5a exposure also causes an upregulation of NGF mRNA
expression in astrocytes [55], with similar neuroprotective
effects against glutamate-mediated neuronal excitotoxicity.
The neuroprotective effects of anaphylatoxins against
glutamate-induced excitotoxicity were shown to be
mediated via MAPK-dependent inhibition of caspase-3
[56,57], regulation of glutamate receptor subunit 2
(GluR2) expression [58], and increased glial expression of
the glutamate transporter GLT-1, which enhances the re-
moval of extracellular glutamate [59]. Administration of
C5a in vivo was also reported to protect against kainic
acid-induced neuronal apoptosis [56]. With regards to a
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role for anaphylatoxins in neurogenesis, the respective
receptors for C3a and C5a, C3aR and CD88 were shown
to be expressed on neural progenitor cells as well as im-
mature neurons [60]. Mice treated with a non-specific
C3aR antagonist (SB290157) displayed decreased forma-
tion of new neurons in areas of adult neurogenesis [60].
The cellular or humoral source of C3a and the mechanism
via which C3aR activation influences the creation and/or
survival of new neurons remain to be elucidated. However,
in the post-natal developing cerebellum, C3aR and CD88
expressions are known to increase during granular cell
maturation [61]. Subdural injection of a non-specific
CD88 agonist (MAP-C5a) into the cerebellum of young
rats increased the proliferation of immature granule neu-
rons, resulting in an enlarged external granule cell layer
[62,63]. This effect could be reversed through concurrent
administration of PMX53, a specific CD88 antagonist
[63,64]. A C3a agonist (MAP-C3a), on the other hand,
decreased the thickness of the EGL whilst increasing the
thickness of the internal granule cell layer. Video micros-
copy revealed that C3a accelerated the migration process
of granule cells from the EGL to the internal granule cell
layer [63].

Complement and CNS disorders
Various regulators normally finely tune the complement
activation repertoire so that healthy host tissue is discri-
minated and self-harm is avoided. However, a disturbed
balance between activation and regulation can induce
self-attack, and excessive or inappropriate complement
activation has been implicated in the pathogenesis of nu-
merous autoimmune, ischaemic and vascular diseases
[31,65]. Complement deregulation has also been pro-
posed in a myriad of CNS inflammatory pathologies and,
as a result, complement-targeted therapeutics are in-
creasingly emerging into the spotlight of drug discovery
endeavours for various chronic neurodegenerative dis-
eases, including multiple sclerosis [66-74], Alzheimer’s
disease [75-78], Huntington's disease [79,80], Parkinson’s
disease [81,82] and motor neuron disease [83-86]. Al-
though breakdown of the BBB and BSB does not occur
until very late in most neurodegenerative pathologies, a
prominent role for complement is perhaps not surpris-
ing when one considers again that the CNS can en-
dogenously synthesise virtually all components of the
complement system under appropriate stimuli [87]. Fur-
thermore, neurons and oligodendrocytes express only
low levels of the surface complement regulatory protein
decay activating factor (DAF/CD55) and membrane co-
factor protein (MCP/CD46), which renders them par-
ticularly vulnerable to complement-associated death
[88,89].
In contrast to the aforementioned chronic neurological

disorders, CNS trauma is unique in that it involves a

rapid and dramatic breakdown of the BBB/BSB. As a re-
sult, the immune-privileged CNS parenchyma, with rela-
tively low endogenous expression of complement and
associated negative regulators, is exposed to the full
force of both innate and adaptive components of the im-
mune system, which includes a massive influx of serum
complement as well as the invasion of circulating and
activated leukocytes. Epitopes exposed by cellular injury,
including phosphatidylserine, DNA and myelin, are
highly vulnerable to complement recognition, opsonisa-
tion and MAC deposition [90] (Figure 2). Although this
process is important for the clearance of cellular and
myelin debris as well as other molecules that may be in-
hibitory to wound healing and repair, over-activation of
complement can compromise the integrity of neurons
and oligodendrocytes in neighbouring tissue that was
originally spared at the time of impact, thus exacerbating
and widening neuropathology [91,92]. Lastly, since
micro-haemorrhaging is a hallmark of most neurotrau-
matic events, prominent complement activation through
the extrinsic pathway can also be expected as a result of
protease activity in the blood clotting and fibrinolysis
pathways [32,33]. The following sections of this review
will now examine the multifarious roles that comple-
ment plays in stroke (i.e. ischaemia-reperfusion injuries),
traumatic brain injury (TBI) and spinal cord injury
(SCI).

Complement and cerebral ischaemic-reperfusion (IR)
injury
Macroscopically, cerebral IR injury is described as an ar-
terial occlusion preceded by a thromboembolic event.
Dynamic changes in cerebral blood flow produce a se-
vere ischaemic core in the territory that is normally sup-
plied by the affected artery, surrounded by a poorly
perfused ‘penumbra’ region [95]. Recanalization of the
occluded artery leads to reperfusion of blood and the in-
duction of a series of excitotoxic and inflammatory
events, which results in microvascular failure and neural
cell death [95]. Analysis of blood from human patients
with ischaemic stroke showed significant alterations in
complement levels, including elevation of the anaphyla-
toxins C3a and C5a, and depression of the MAC [96].
Moreover, immunohistochemical staining of human
brains revealed expression of C1q, C-reactive protein C3
and C4d (classical pathway), while MASP-2 and factor B
(lectin pathway) and C9 (terminal pathway) were also
present in ischaemic lesions [97]. Staining for CD59 and
CD55 was identified in normal brains, but these comple-
ment regulators were absent from lesioned brains, sup-
porting that deregulation of complement contributes to
IR pathology [97].
To address whether complement activation products

are simply a by-product of injury or directly contribute
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to pathology in human stroke patients, one study ana-
lysed the influence of genetic polymorphisms in the
mannose-binding lectin (MBL) -2 and MASP-2 genes,
which render the lectin pathway dysfunctional, on injury
outcome. A logistic regression adjusted for age, gender
and initial stroke severity determined that an unfavour-
able outcome at 3 months post-injury was more likely
associated with a normally functioning lectin pathway
[98]. This finding was further substantiated in a mouse
model of middle cerebral artery occlusion (MCAO) in
which MBL-deficient mice displayed smaller infarctions
around the penumbra of the striatum, cortex and hippo-
campus, and better behavioural outcomes as well as less
C3 deposition and leukocyte infiltration compared to
WT mice [98]. Reconstitution of MBL−/− mice with re-
combinant human protein annulled the beneficial effects
of MBL deficiency [98]. A detrimental role for the lectin
pathway in IR injury was, however, not fully reproduced

in an independent study where MBL-deficient mice sub-
jected to cerebral IR reportedly showed no difference in
systemic neutrophil activation, C3 deposits and only
modest tissue sparing in a sub-cortical brain region
compared to their WT counterparts [99]. It must be
noted, however, that occlusion of the middle cerebral ar-
tery in the latter study lasted only for 60 min [99] as
opposed to 2 h as in the earlier mentioned investigation
[98]. Injury severity and the resulting degree of comple-
ment activation may thus have been an influencing fac-
tor in the outcome that could explain the seeming
discrepancy between these two studies. The contribution
of the lectin pathway to secondary pathology was further
studied in a human recombinant C1 inhibitor (rhC1-
INH), which binds MBL with high affinity [100]. RhC1-
INH reduced cerebral damage when given up to 18 h
after transient ischaemia and up to 6 h after permanent
ischaemia, demonstrating a relatively wide therapeutic

Figure 2 Schematic diagram showing the current understanding of the role of complement activation in the pathophysiology
associated with traumatic spinal cord injury (SCI). Mechanical damage to the spinal cord causes neuronal cell death and disruption of the
blood-spinal cord barrier (BSB). This primary damage triggers a potent inflammatory response and initiates complement activation. Although
complement activation may aid the clearance of cellular debris through opsonisation, it is also known to potentiate injury beyond the site of
trauma through e.g. the opsonins C1q, C3b and MAC, which can promote clearance of only mildly compromised cells and thus contribute to
secondary demyelination and apoptosis. Known functions of complement in the pathology of SCI are shown in italics; a green font colour
indicates a putative reparative role, whereas a red font points towards an injurious role, 1[93], 2[12], 3[14], 4[91], 5[16], 6[94], 7[4,94].
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window for this treatment [100]. It must be noted, how-
ever, that this inhibitor also influences activity of the
classical pathway (vide infra).
The significance of classical pathway activation has

also been investigated in rodent models of IR injury.
One of the subunits of the C1 protease, C1q, accumu-
lates on neuronal cell bodies as well as necrotic cellular
debris during the period of greatest infarct evolution
[101,102]. Interestingly, C1q deficiency was shown to be
neuroprotective in neonatal (p7) mouse hypoxic-
ischemic brain injury [103], predominantly by attenuat-
ing oxidative damage [103]. However, no beneficial
effects of C1q deficiency on stroke outcomes were
observed when adult C1q−/− mice were compared with
their WT counterparts [104], suggesting that the pres-
ence of C1q during the acute phase does not directly
mediate neuronal injury. While it could be argued that a
possible detrimental role for C1q in secondary immuno-
pathology following hypoxic-ischaemic brain injury may
only become more apparent during the post-acute phase
when CNS autoantibodies are likely to be present, this
does not explain the discordance between acute neonatal
and adult studies. Although speculative at present, an al-
ternative explanation for this apparent discrepancy may
lie in age-related differences in complement protein ex-
pression and the general maturity of the complement
system in neonatal versus adult mice. Known age-related
increases in the expression of factor B, C3, C4 and C5
[105] may have masked or overshadowed any neuropro-
tective effects of C1q deficiency in adult mice through
non-classical routes of complement activation.
The therapeutic potential of a C1 inhibitor (C1-INH)

that binds and inactivates C1r, C1s, MASP1 and MASP2,
thus blocking both the classical and lectin pathways, has
also been assessed [106]. These investigators reported a re-
duction in ischaemic volume (to as low as 10.8% of that of
vehicle-treated mice), alongside ameliorated neurological
impairments, neuronal degeneration and reduced infiltra-
tion of CD45+ leukocytes [106]. Similar effects were
observed in Wistar rats following a 60-min occlusion of
the middle cerebral artery, after which animals that were
treated with this C1 inhibitor had smaller infarct volumes
and less granulocyte accumulation [107]. This neuropro-
tective effect was later shown to be mediated by upregula-
tion of the anti-inflammatory cytokine IL-10 as well as
IL-6, which is known to be able to exert both pro- and
anti-inflammatory effects [108,109], in addition to a down-
regulation of pro-inflammatory P-selectin and ICAM-1,
and known inducers of apoptosis like TNF, IL-18 and
pro-caspase-3 [110]. When C1q−/− mice were treated
with C1-INH, the ischaemic volume was reduced to
31.4% of that of saline-treated mice [106], indicating the
protective effects of C1-INH are indeed independent of
C1q. Together, these findings indicate that the lectin

pathway and subcomponents of the C1 complex, but not
C1q, contribute to IR pathology.
An inhibitor of both the classical and alternative path-

ways, soluble complement receptor-1 (sCR1), led to a
significant reduction in neutrophil and platelet aggrega-
tion and improved neurological function in mouse
MCAO [111,112]. This finding was, however, not repro-
duced in a non-human primate model of stroke [113]. It
would be of interest to more specifically pinpoint the
contribution of the alternative pathway to cerebral IR in-
jury as targeted inhibitors of this pathway have shown
therapeutic benefits in both cardiac [114] and intestinal
[112] IR injury. This could be achieved using factor B
null mice or the targeted inhibitor of the alternative
pathway, CR2-fH [112].
As illustrated in Figure 1, the classical, alternative and

lectin activation pathways of complement converge at
the level of C3 convertase, making this cascade
centrepiece an ideal target to assess the overall impact of
complement activation in IR injury. In line with the
above-mentioned studies, which largely indicate a detri-
mental role for complement activation following injury,
C3−/− mice have significantly smaller infarct volumes,
improved neurological deficit scores, and reduced gran-
ulocyte infiltration and oxidative stress in a mouse
model of transient focal cerebral ischaemia. These effects
were reversed by reconstitution with C3 protein [104].
The precise role of C5, the next downstream intersec-

tion in the cascade, is still uncertain. C5 deficiency
reduced the neurological deficit and lesion size in the
MCAO model in mice [115], while C5 inhibition with a
monoclonal antibody yielded similarly positive results in
rats [116]. A more recent in vitro study showed that
oxygen-glucose deprivation can induce the proteolytic
cleavage of neuronally expressed C5, which in turn
increased apoptotic cell death through a C5a-dependent
mechanism [117]. The benefits of C5 deficiency on
stroke outcome in mice were, however, not observed in
an independent study by Mocco et al. [104]. Although
we cannot fully reconcile these differences, it was noted
that a later study from the same laboratory did report
improved recovery when blocking C5a signalling (vide
infra). Further research is therefore warranted to better
characterise the role of C5 and its activated cleavage
products, C5a and C5b, in the context of IR injury.
Interestingly, C6−/− mice have a similar degree of

hypoxic-ischaemic pathology compared to WT mice
[118], which appears to suggest that inhibiting MAC for-
mation may not necessarily yield beneficial effects. How-
ever, a pathological role of excessive MAC deposition has
been supported by studies of CD59a−/− mice. Deficiency
in CD59a was associated with increased infarct volume,
worse neurological deficits and brain swelling following
a 30-min MCAO and 72-h reperfusion as compared to
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normal C57BL/6 mice [119]. Importantly, however, there
was no difference in these outcome measures when these
mice were subjected to 1 h of MCAO with 48 h reperfu-
sion, although increased apoptosis was detected in
CD59a−/− mice [119]. This highlights that the detrimental
effects of excessive MAC formation relative to secondary
pathology are probably concentration- and model-
specific, and thus most amenable to therapeutic interven-
tion in mild ischaemic-reperfusion injury.
Investigation of the complement system following cere-

bral IR would not be complete without having determined
the role of the anaphylatoxins C3a and C5a. Although
these proteins do not lead to MAC formation, as
described earlier, they potently mediate inflammation [31].
Expression of both C3aR and CD88 is increased in mouse
models of cerebral ischaemia [115,120,121]. Pharmaco-
logical antagonism of C3aR produced smaller stroke
volumes, less ICAM-1 protein on endothelial cells and less
upregulation of C3aR-positive granulocytes, but no differ-
ence in other inflammatory cell populations in mice sub-
jected to a transient (60 min), but not permanent, MCAO
[122]. It should be taken into account, however, when
interpreting these findings that the compound used in this
study, SB290157, reportedly has off-target effects, includ-
ing neutropenia in vivo [123], and full agonist activity in a
variety of cell systems in vitro [124,125]. In comparison,
mice administered a specific CD88 antagonist 30 min
prior to ischaemia (PMX53, 5 mg/kg i.v.) exhibited only a
moderately improved outcome when subjected to 60 min
MCAO [115]. Others have reported, however, that CD88
inhibition in the same model 45 min prior to ischaemia
with the same compound but at a lower dose (1 mg/kg i.v.)
yielded dramatically beneficial effects, both in terms of
neurological deficits and infarct volume [126]. These find-
ings suggest that anaphylatoxin signalling may be more
complex than previously thought, with concentration-
specific, time-dependent and model-specific effects.

Complement activation in traumatic brain injury (TBI)
A substantial body of evidence points towards a similarly
prominent role for complement activation in the sec-
ondary post-injury sequelae following brain injury. In
human TBI patients that underwent frontal or temporal
lobe resection for intractable intracranial hypertension
(2–82 h post-injury), resected tissue was analysed for
complement factors [127]. Immunoreactivity against
C1q, C3, C4 C3b, C3d and C5b-9 was detected on neu-
rons in the penumbra region of the contused brain area
[127]. In the CSF of TBI patients, C3 as well as classical
(C1q, C4) [128] and alternative pathway components
(factor B) [129] were also elevated, and thus likely to
contribute to secondary injury [129]. Furthermore, the
concentration of MAC in CSF of TBI patients is up to
1,800-fold higher than in control CSF, and there is a

significant correlation between intrathecal MAC levels
and post-traumatic BBB dysfunction [130].
In animal models, immunoreactivity for C3 was found

around the lesion but not in the uninjured contralateral
hemisphere, while deposition of C9, a key component of
the membrane attack complex, was also observed on
damaged neurons after an experimental cerebral contu-
sion [131]. Collectively, these findings indicate that all
four complement pathways are activated in response to
TBI, and it is the widely held view that complement de-
regulation contributes to nerve cell death.
A number of studies have attempted to address the

relative contribution of specific complement activation
pathways to secondary injury following TBI. Factor B
null (fB−/−) mice, which lack a functional alternative
pathway, show significantly attenuated complement acti-
vation and neuronal death in addition to upregulation of
Fas receptor and Bcl-2 in response to TBI compared to
brain homogenates of fB+/+ (i.e. WT) littermates [132].
In a follow-up study, administration of monoclonal anti-
factor B antibody (mab1379), which strongly inhibits
alternative pathway activation, 1 and 24 h post-injury,
significantly attenuated C5a levels in serum, in addition
to general inflammation and neuronal apoptosis, whilst
also yielding a neuroprotective pattern of intracerebral
gene expression [133]. Importantly, however, no differ-
ence was detected in neurological grade relative to con-
trols. This was attributed to a combination of the short
half-life of mab1379, compensatory inflammatory effects
(i.e. release of tumour necrosis factor (TNF) and inter-
leukins (IL) -1β, -8, -12, -18), and the need to apply
more sensitive neurological testing systems [133]. Fur-
ther experiments are therefore required to determine
the optimal dosage, injection route and time points of
mab1379 to fully determine the feasibility and thera-
peutic merit of targeting the alternative pathway. One
option may also be to use alternative pathway-targeted
therapies in combination with those targeting other
complement activation routes.
Another study evaluated the combined influence of the

classical and lectin pathways on the outcome from TBI by
administering C1-INH to mice that underwent controlled
cortical impact [134]. The investigation revealed attenu-
ation in motor deficits and cognitive dysfunction as well
as reduced contusion volumes in the group given C1-INH
at 10 min post-injury. When C1-INH treatment was
delayed to 60 min post-injury, improvements were only
seen in recovery of motor function compared to the
saline-treated group [134]. Although a more potent re-
combinant C1 inhibitor has been developed [100], as of
yet, there are no reports detailing the efficacy of this com-
pound in TBI or SCI models.
Unequivocal evidence that complement activation

contributes to secondary damage in TBI has come from
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C3−/− mice, which showed less brain oedema, lower
hemeoxygenase-1 levels, and reduced microglia activa-
tion and neutrophil infiltration around the clot following
intracerebral haemorrhage; usage of the affected fore-
limb was improved as compared to WT controls [135].
In a cryoinjury model, C3−/− mice again showed fewer
infiltrating immune cells, less haemorrhage and better
preservation of cytoplasm compared to injured WT
brains [136]. Targeted overexpression in the CNS of
complement receptor type 1-related protein y (Crry), a
functional homologue of the human complement-
regulatory proteins CD55 and CD46 that inhibits
complement activation at the C3 convertase level, also
significantly improved neurological outcome for up to
4 weeks after trauma compared to WT mice [137]. Al-
though this model is perhaps less clinically relevant, its
findings led to a follow-up study that used systemic ad-
ministration of the recombinant Crry molecule (Crry-Ig)
in a standardised mouse model of closed head injury
[138]. When given 1 and 24 h after trauma, significant
neurological improvements and tissue preservation were
observed, and this phenotype was associated with upre-
gulation of neuroprotective genes (Bcl-2, C1-Inh, CD55,
CD59) in the injured hemisphere compared to the
vehicle-treated control group [138].
The role of the MAC in focal closed head injury was

investigated using CD59−/− mice, which have over-
exuberant MAC deposition because of a lack of this
negative complement regulator [139]. As anticipated,
CD59−/− mice had significantly exacerbated ‘neurological
severity scores’ and displayed increased neuronal cell
death. Interestingly, there was no difference in Fas, FasL,
Bax or Bcl-2 expression between CD59−/− mice and WT
littermates [139].
The role of the anaphylatoxins in the pathophysiology

of TBI has also been explored in recent years. A reduc-
tion in secondary damage after traumatic brain cyroin-
jury was observed in C5−/− mice or in mice treated with
a CD88 antagonist [136]. Similarly, treatment with a
C5aR antagonist [hexapeptide-derived macrocycle AcF
(OPdChaWR)] in a mouse model of intracerebral haem-
orrhage significantly improved neurological function as
assessed by spatial memory retention in the Morris
water-maze test, corner turn test and a 28-point neuro-
logical scale at 24, 48 and 72 h post-injury, and
decreased oedema and granulocyte infiltration relative to
vehicle-treated animals [140]. These effects were more
marked when combined with a C3aR antagonist, al-
though this result should again be interpreted with some
caution as the compound SB290157 can display full
agonist activity in certain cell types, as mentioned earlier
[124,125]. Thus, anaphylatoxin signalling also appears to
negatively influence TBI outcomes, at least acutely. It is,
however, necessary to determine whether the beneficial

effects of anaphylatoxin antagonism are dependent on
timing of the treatment and if they can be sustained
long-term without producing deleterious side effects to
the host, as observed in other models of neurotrauma
(vide infra [4]).
In summary, the above-mentioned studies demon-

strate that complement is potently activated following
TBI and that targeted interventions can rescue neigh-
bouring intact tissue after head injury with the potential
to improve functional outcomes.

Dual roles for complement activation in spinal cord
injury?
Following traumatic spinal cord injury (SCI), a robust
and complex inflammatory response is initiated through
the recruitment and activation of infiltrating leukocytes
and resident microglia. It is the widely held view that
this inflammatory cascade again exacerbates the primary
injury by damaging neighbouring neurons that were ori-
ginally spared [141,142]. A prominent role for comple-
ment activation in post-SCI inflammation and associated
secondary damage is becoming increasingly clear.
Early studies on complement activation in a rat

weight-drop model of SCI established that the classical
(C1q and C4), alternative (Factor B) and terminal (C5b-9)
pathways are strongly activated within 1 day post-injury,
and that activation fragments remain on neurons and
oligodendrocytes for up to 6 weeks as far as 20 mm
rostral to the site of injury [14]. Complement inhibitor
proteins such as factor H and clusterin are also report-
edly expressed at elevated levels on both neurons and
oligodendrocytes after SCI in rats, perhaps in an en-
dogenous attempt to constrain inflammation to the pri-
mary injury area [14,93]. These findings led to several
studies in which the therapeutic potential of comple-
ment pathway inhibition was tested via pharmacological
agents.
The effect of inhibiting the classical/alternative path-

way [143] and C3b/C4b activity [144] was investigated in
Sprague–Dawley rats subjected to moderate weight-drop
SCI. In these studies, treated animals had decreased
complement deposition and leukocyte infiltration, which
was paralleled by increased tissue sparing and improved
locomotor recovery compared to vehicle-treated animals
subjected to SCI.
In mouse models of contusive SCI, genetic deficiency

of factor B [16], C1q [91] C3 [93,94] resulted in
improved sensory and locomotor outcomes as well as
increased tissue sparing in comparison to WT mice.
Blocking the alternative pathway with the CR2 inhibitor,
Crry [93] or a factor B neutralising antibody [16] simi-
larly improved histological and functional parameters as
compared to untreated mice. It has also been shown that
SCI potently activates B cells, resulting in the production
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of pathogenic autoantibodies that bind CNS antigens
[12]. Such immune complexes serve as a substrate for
ligation by C1q and phagocytic/cytolytic cells bearing
IgG receptors (Fc receptors). Indeed, injection of puri-
fied antibodies into uninjured spinal cord produced con-
sistent paralysis and pathology, involving the activation
of C1q and cells bearing Fc receptors. Conversely, in B
cell-deficient mice, which lack antibody production and
thus cannot form immune complexes, minimal C1q de-
position was observed at and near the lesion site, which
in turn was associated with improved recovery of loco-
motor function [12].
Although the above-detailed studies point to a prom-

inent role for complement-mediated pathology after SCI,
particularly via the MAC, the precise role of other acti-
vation fragments such as the anaphylatoxins is yet to be
conclusively determined. A recent study illustrated these
complexities in a rat model of contusive SCI where an-
tagonism of the high-affinity C5a receptor CD88 at
14 days post-SCI worsened locomotor recovery, demye-
lination and altered macrophage/microglia recruitment
[4]. We have now independently confirmed these results
in CD88−/− mice, while a similarly novel anti-
inflammatory role for C3aR in SCI was also determined
in our laboratory. These intriguing findings suggest that
activation of these receptors, at least during certain
phases post-injury, serve a regulating and perhaps posi-
tive role in repair processes, which may be by aiding in
the elimination of toxic proteins and debris [4]. With
other studies having demonstrated clearly detrimental
roles for general complement activation following CNS
injury, most likely through formation of the MAC, it is
at present difficult to judge the true importance of ana-
phylatoxin signalling following neurotraumatic events,
and whether or not the above detailed findings are spe-
cific to SCI. It would therefore be of interest to further
study the role of C3a and C5a under conditions where
MAC assembly is prevented but anaphylatoxins can still
be generated, e.g. through the use of C6-deficient mice
[145].

Conclusion and future outlook
Although complement activation is a necessary part of
normal wound healing in the body, its deregulation or ex-
cessive activation following neurotraumatic events has
emerged as a major contributor to secondary tissue dam-
age. All available lines of evidence suggest that targeting
complement may represent a novel and effective strategy
for attenuating or ameliorating acute CNS trauma. How-
ever, because of the multifarious roles of complement in
the normal CNS, non-selective and chronic anti-
complement therapies may be a less favourable option
when aiming to translate complement-directed therapeu-
tics into the clinic. Detrimental outcomes have already

been observed in SCI following long-term interference
with anaphylatoxin receptor signalling and similar effects
could perhaps be anticipated with other approaches, par-
ticularly when one considers that, similar to development,
complement activation may play vital roles in post-injury
plasticity; specifically the rewiring of local neural circuits
that is thought to underpin functional recovery following
SCI [146]. As such, it will be critical to elucidate the pre-
cise spatiotemporal function of specific complement acti-
vation fragments in future years. This will allow the design
of novel and optimally effective therapeutic strategies that
can harness ameliorative factors and neutralise or regulate
toxic components in an appropriate and timely fashion.
As progress is being made towards the translation of

complement-based therapeutics into the clinic, consider-
ation should also be given to the fact that there are
known functional differences in complement system ac-
tivity between species that could influence the efficacy of
the intervention and thus trial outcomes. Although stud-
ies in genetically modified mice have greatly advanced
our understanding of complement activation in neuro-
trauma, unlocking a number of promising avenues for
therapeutic intervention, certain strains of mice are also
known to have lower complement activity compared to
other mammals such as rats, rabbits, guinea pigs and
humans [147-151]. These observations highlight the im-
portance of understanding the limitations of experimen-
tal models and, where appropriate, the need to use
intermediate animal models between mice and humans
in translational complement research.
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