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Abstract

Background: Human immunodeficiency virus type 1 (HIV-1) induces neuronal dysfunction through host cellular
factors and viral proteins including viral protein R (Vpr) released from infected macrophages/microglia. Vpr is
important for infection of terminally differentiated cells such as macrophages. The objective of this study was to
assess the effect of Vpr in the context of infectious virus particles on neuronal death through proinflammatory
cytokines released from macrophages.

Methods: Monocyte-derived macrophages (MDM) were infected with either HIV-1 wild type (HIV-1"), Vpr deleted
mutant (HIV-1AVpr) or mock. Cell lysates and culture supernatants from MDMs were analyzed for the expression
and release of proinflammatory cytokines by quantitative reverse transcription-PCR and enzyme-linked
immunosorbent assay respectively. Mitogen-activated protein kinases (MAPK) were analyzed in activated MDMs by
western blots. Further, the effect of Vpr on neuronal apoptosis was examined using primary neurons exposed to
culture supernatants from HIV-1"", HIV-1AVpr or mock-infected MDMs by Annexin-V staining, MTT and

Caspase - Glo® 3/7 assays. The role of interleukin (IL)-1{3, IL-8 and tumor necrosis factor (TNF)-a on neuronal
apoptosis was also evaluated in the presence or absence of neutralizing antibodies against these cytokines.

Results: HIV-1AVpr-infected MDMs exhibited reduced infection over time and specifically a significant
downregulation of IL-1B, IL-8 and TNF-a at the transcriptional and/or protein levels compared to HIV-1"-infected
cultures. This downregulation was due to impaired activation of p38 and stress-activated protein kinase
(SAPK)/c-Jun N-terminal kinase (JNK) in HIV-1AVpr-infected MDMs. The association of SAPK/JNK and p38 to IL-1(3
and IL-8 production was confirmed by blocking MAPKs that prevented the elevation of IL-13 and IL-8 in HIV-1""
more than in HIV-1AVpr-infected cultures. Supernatants from HIV-1AVpr-infected MDMs containing lower
concentrations of IL-1(3, IL-8 and TNF-a as well as viral proteins showed a reduced neurotoxicity compared to
HIV-1""infected MDM supernatants. Reduction of neuronal death in the presence of anti-IL-13 and anti-IL-8
antibodies only in HIV-1""infected culture implies that the effect of Vpr on neuronal death is in part mediated
through released proinflammatory factors.

Conclusion: Collectively, these results demonstrate the ability of HIV-1AVpr to restrict neuronal apoptosis through
dysregulation of multiple proinflammatory cytokines in the infected target cells either directly or indirectly by
suppressing viral replication.
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Background

HIV-1 invades the central nervous system (CNS) during
early infection via infiltrating monocytes and lympho-
cytes that are infected in the periphery [1-4]. Studies in-
dicate that 40-50% of HIV-1 positive patients develop
some form of HIV-1 associated neurocognitive disorders
(HAND) [5-8]. Although productive HIV-1 infection of
primary neurons has not been demonstrated, it is well
accepted that neurons are affected by HIV-1 through in-
direct mechanisms. These include the release of proin-
flammatory cytokines/chemokines and viral proteins
from HIV-1-infected target cells. The proinflammatory
cytokines/chemokines and neurotoxins are released from
infected and/or exposed monocytes/macrophages [9-11].
Thus, activation of macrophages appears to be crucial
for the development of HAND.

Neuroinflammation is characterized by several proin-
flammatory events including the release of proinflamma-
tory cytokines such as IL-1p, -6, TNF-«, and chemokines
that drive this process [12]. IL-1p leads to NF-kB-
dependent transcription of proinflammatory cytokines
including TNF-q, IL-6 and interferon (IFN) [13]. TNF-a
which functions through caspase-dependent cascade, is
an important factor in various acute and chronic neuro-
degenerative disorders [14]. In the context of HIV-1-
induced neuropathogenesis, higher levels of TNF-q, IL-
1B, IL-6, IL-8, monocyte chemoattractant protein-1,
macrophage inflammatory protein-1 and CXCL10 are
observed in vivo and also in in vitro model systems
[15-17]. In subjects with HAND, levels of these neuroin-
flammatory factors are associated with higher viral load
in cerebrospinal fluid (CSF) [17-19]. In addition, HIV-1
gene products are also known to modulate the levels of
these cytokines in macrophages. In in vitro systems util-
izing macrophages as target cells, HIV-1 envelope pro-
tein gp120 has been shown to induce proinflammatory
cytokines production through p38, MAPK and phospha-
tidylinositol 3-kinase (PI3K) pathways [16,20]. Tat also
participates in HAND by stimulating cytokine/chemo-
kine networks in monocytes and macrophages [21].
HIV-1-encoded viral protein R (Vpr) has recently been
documented as having a substantial role in the develop-
ment of neuropathogenesis [22-25]. Recombinant Vpr
(rVpr) has been shown to modulate several chemokines at
the transcriptional level by regulating NF-kB-mediated
transcription [26,27]. It is important to note that several
of these studies have been carried out using recombinant
proteins at non-physiological concentrations. This has
prompted us to consider studies utilizing relevant infec-
tious HIV-1.

In this study, our goal was to evaluate whether Vpr dele-
tion can reduce neuronal death in the presence of other
neurotoxic viral proteins including gp120 and Tat. This
also documents indirectly a role for Vpr on neuronal
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apoptosis in the presence of those viral proteins. Results
indicate that absence of Vpr decreased MDM infection
over time and that reduced the expression of selective
proinflammatory cytokines IL-1B, IL-8 and TNF-a in
MDMs at the transcript and/or protein levels. This reduc-
tion of proinflammatory cytokine production from MDMs
makes the Vpr deleted virus less neurotoxic compared to
its HIV-1 wild type (HIV-1"" counterpart.

Materials and methods

Reagents

HIV-1 YU2*" and YU2AVpr plasmids were obtained from
Dr. Serge Benichou, France. Neural progenitor (NP) cells
were obtained from Millipore (Temecula, CA, USA), and
human recombinant IL-1{, IL-8 and TNF-a as well as neu-
tralizing antibodies against IL-1p, IL-8 and TNF-a were
purchased from R&D Systems (Minneapolis, MN, USA).
Extracellular signal-regulated kinase (ERK)1/2, p38 and
JNK inhibitors (PD98059, SB203580 and SP600125, re-
spectively) were purchased from Calbiochem (San Diego,
CA, USA).

Isolation and culture of MDMs

MDMs were generated from normal peripheral blood
mononuclear cells (PBMC). Heparinized blood samples
were purchased from Pittsburgh Blood Bank using appro-
priate Institutional Review Board approvals from University
of Pittsburgh. PBMCs were isolated by Ficoll-Hypaque gra-
dient centrifugation. CD14" monocytes were purified by
positive selection using anti-CD14 monoclonal antibody-
coated magnetic microbeads (Miltenyi Biotech, Auburn,
CA, USA) and cultured as described previously [28]. To ob-
tain MDMs, CD14" cells (0.5 x 10° cells/ml) were cultured
in DMEM (GIBCO, Gaithersburg, MD, USA) containing
10% fetal bovine serum 2 mM L-glutamine (Cambrex,
Charles City, IA, USA) 1% penicillin-streptomycin (GIBCO,
Gaithersburg, MD), 1x10° IU/ml GM-CSF and 1 pg/
ml M-CSF (R&D Systems, Minneapolis, MN, USA). Half
the volume of media was replaced every third day with
fresh media containing GM-CSF and M-CSF for 7-8 days
to differentiate them into MDMs.

Culture and differentiation of NP cells

NP cells at passage 2 to 6 were maintained in 35 mm
plates coated with 20 pg/ml poly-L-ornithine and recoated
with 5 pg/ml mouse laminin in ENStem-A neural expan-
sion media (Millipore, Temecula, CA, USA) along with
0.5% penicillin-streptomycin, 2 mM freshly added L-
glutamine and 20 ng/ml FGF-2. For neuronal differenti-
ation NP cells were centrifuged at 1000 rpm for 3 minutes
and the pellet was resuspended in ENStem-A neuronal
differentiation media (Millipore, Temecula, CA, USA).
The cell suspension was maintained in differentiation
media in 8-well chamber slides for up to 2—3 weeks.
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Virus preparation and characterization

HEK?293T cells (2 x 10°) were maintained in D-10 media
and transfected with 5 pg of HIV-1 proviral constructs
YU2™ and YU2AVpr using polyjet reagent (SignaGen
Laboratories, Gaithersburg, MD, USA) as per manufac-
turer’s instructions. Supernatants were collected 72
hours post-transfection, spun at 3000 rpm for 10 min-
utes and filtered through a 0.4 um filter to remove cellu-
lar debris. All virus stocks were further concentrated by
ultracentrifugation at 22,000 rpm for 1 hour at 4°C and
were characterized for the presence of appropriate viral
proteins by western blot using anti-Gag and anti-Vpr
antibody (NIH, Germantown, MD, USA). Virus titer was
measured by p24 enzyme-linked immunosorbent assay
(ELISA) and the infectivity of the viruses was calculated
by standard TZM-bl assay.

Treatment of MDMs

Differentiated (7-8 day old) MDMs (2 x 10° cells/well)
were either infected with HIV-1"" or Vpr deleted mutant
(HIV-1AVpr) at a multiplicity of infection (MOI) of 0.1
for long-term infection or left untreated as a negative
control. Infected and control MDMs were maintained
for 21 days. Cell pellets and supernatants were collected
every 24 hours up to day 4 and every 4 days from day 8
to day 20 to monitor virus replication and cytokine pro-
duction. For assessment of MAPK signaling events,
infected MDMs were activated on respective days with
1 pg/ml of lipopolysaccharide (LPS) for 4 hours. For
analyzing cytokines in presence of MAPK inhibitors,
MDMs were pretreated with 10 pM of SB203580 (p38
inhibitor), or SP600125 (JNK inhibitor) or PD98059
(ERK1/2 inhibitor) for 2 hours followed by infection
with HIV-1"* or HIV-1AVpr at an MOI of 0.1 or mock.
Virus and mock-infected cultures treated with (dimethyl
sulfoxide) were used as controls.

Proinflammatory cytokine array profiling by quantitative
reverse transcription-PCR

Post exposure or infection time points, MDMs were
washed with cold phosphate-buffered saline (PBS) and
total RNA was extracted using the RNeasy mini kit
(Qiagen, Valencia CA, USA) according to the manufac-
turer’s protocol, with additional on-column DNasel di-
gestion (RNase-free DNase kit, Qiagen, CA, USA). RNA
concentration was determined by spectrophotometry.
The integrity of RNA was assessed by 260/280 ratio and
analyzed by agarose gel electrophoresis. The RT? Profiler
PCR Array (SABiosciences, Valencia, CA, USA) was
used for mRNA profiling studies and the assay was per-
formed according to the manufacturer’s protocol. Briefly,
1 pg of total RNA extracted from mock, HIV-1"* or
HIV-1AVpr virus-infected MDMs was converted to
c¢DNA using a RNA first strand synthesis kit. The cDNA
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product was used to perform the gene expression array
using a Tagman 7900HT machine. The data were nor-
malized for endogenous controls (included in the array)
and differential regulation of proinflammatory cytokines
(fold change) was analyzed from the Ct values from day
0 to day 20 using SABiosciences web-based tools. Genes
that are differentially regulated (+/- 2-fold) in infected
cultures were determined.

Measurement of cytokines by ELISA

Supernatants were collected at specific time points from
MDMs exposed/infected with HIV-1** or HIV-1AVpr
viruses and kept at —80°C. The concentration of TNF-a
(BD Biosciences San Diego, CA, USA), IL-1$ and IL-8
(R&D Systems, Minneapolis, MN, USA) were analyzed
in supernatants by ELISA following the manufacturer’s
protocol. The optical density (O.D) was determined for
each well using ELISA plate reader and the concentra-
tion of the cytokines were calculated from the standard
curve.

Immunofluorescence staining

Neurons were differentiated on poly L-ornithine and
mouse laminin coated 8-well chamber slides, fixed in 4%
paraformaldehyde for 15 minutes, permeabilized with
0.1% Triton-X-PBS for 15 minutes. The cells were rehy-
drated by 3 washes of PBS and 5 washes of 0.5% bovine
serum albumin (BSA). After blocking with 2% BSA for 1
hour the neurons were incubated with primary anti-
bodies against microtubule-associated protein 2 (MAP2)
(1:250), B-III tubulin (1:300) and glial fibrillary acidic
protein (GFAP) (1: 500) overnight at 4°C. The cells were
washed 5 times with 0.5% BSA and were further incu-
bated with Alexa Flour 488 goat anti-mouse-IgG, anti-
rabbit-Cy3. After 5 washes with 0.5% BSA and 5 times
with PBS the nuclei were stained with Hoechst 33342
(1 pg/ml) for 30 seconds. The slides were mounted and
staining was checked under microscope.

Treatment of neurons with specific neutralizing
antibodies against proinflammatory cytokines

Primary neurons (3 x 0* cells/well) were exposed to
supernatants from HIV-1"', HIV-1AVpr and mock-
infected MDMs (10% of the volume of the total media)
collected on day 8 or day 12 as well as recombinant IL-
1B (10 ng/ml), IL-8 (10 ng/ml) and TNF-a (100 ng/ml).
The cells were replenished with media containing
neutralizing antibodies against IL-1f (5 pg/ml), IL-8
(5 pg/ml) and TNF-a (10 pg/ml) (R&D Systems, Minne-
apolis, MN, USA). The neuronal apoptosis was mea-
sured 24—48 hours after infection.
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Annexin-V FITC staining

Analysis of apoptosis was carried out using the apoptosis
detection kit (BD Biosciences, San Diego, CA, USA) as
per the manufacturer’s instructions. Briefly, neurons
were exposed to HIV-1"', HIV-1AVpr, mock-infected
MDM supernatants (10%v/v) and recombinant cyto-
kines for 24-48 hours. To detect apoptosis, infected
media were removed, the cells were washed twice with
1X PBS and then once with 1X Annexin V binding buf-
fer. Neurons were stained with Annexin V-FITC diluted
(1:10) in 1X binding buffer for 15 minutes at room
temperature in the dark, then washed once with 1X
binding buffer. The apoptotic neurons (%) were quanti-
fied by nuclei staining with Hoechst 33342 and analyzed
by microscopy. Neuronal apoptosis was calculated from
the percentage of cells stained with Annexin-V.

MTT assay

The effect of HIV-1Vpr-mediated proinflammatory fac-
tors on inducing neuronal death was also assessed using
MTT assay. Briefly, 1 x 10° primary neurons in each well
of a 96-well plate (in triplicate) were exposed with the
supernatants from mock, HIV-1"* and HIV-1AVpr-
infected MDMs (10% v/v) as well as recombinant cyto-
kines and incubated at 37°C in 5% CO, for 24 hours.
The neurons were incubated with 1.2 mM of MTT solu-
tion for 4 hours at 37°C_ The formazan crystals were
solubilized in 100 pl DMSO and by shaking the plate for
10 minutes. The absorbance was measured at 540 nm.
Mock-infected cells produced the highest O.D reflecting
the highest cell survival and cells treated with DMSO
were used as a negative control.

Caspase - Glo® 3/7 assay

Caspase-3/7 activities were measured using Caspase-
Glo® 3/7 Assay kit (Promega, Madison, WI, USA)
according to manufacturer’s instructions. Briefly, 5 x 10*
primary neurons differentiated in each well of a 96-well
plate were exposed to supernatants of mock, HIV-1"*
and HIV-1AVpr-infected MDMs (10%v/v) for 24-48
hours. The cells were incubated for 1 hour at 37°C with
equal volume of Caspase-Glo® 3/7 reagent to the vol-
ume of culture medium. The luminescence that is pro-
portional to caspase 3/7 activities was determined by
luminometer. A negative control consisting of cells with-
out MDM supernatant treatment was also included in
each assay.

Western blot

MDMs were washed twice with cold PBS and lysed in
RIPA buffer containing 50 mM Tris (pH 7.5), 150 mM
NaCl, 1% Triton-X100, 1 mM sodium orthovanadate,
10 mM sodium fluoride, 1.0 mM phenylmethyl-sulfonyl-
fluoride, 0.05% deoxycholate, 10% sodium dodecyl sulfate
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(SDS), 0.07 trypsin inhibitor units/ml aprotinin, and prote-
ase inhibitors Leupeptin, Chymostatin, and Pepstatin
(1 pg/ml; Sigma). Cell lysates were clarified by centrifuga-
tion and total cell lysates (50 pg) were separated on a
SDS-PAGE gel, transferred, and the expression of proteins
were detected with anti-ERK1/2, anti-p-38 (total and ac-
tive; Cell Signaling Technology, Beverly, CA, USA), anti-
SAPK/INK (Cell Signaling Technology, Beverly, CA,
USA), and anti-poly ADP-ribose polymerases (PARP; total
and cleaved; Cell Signaling, Beverly, CA, USA). Anti-
tubulin (NeoMarkers, Fremont, CA, USA) was used as
loading control. Blots were developed using ECL kit
(Pierce, Richmond, Illinois, USA). The results were ana-
lyzed and densitometric measurements were normalized
against total proteins or a-tubulin expression levels.

Statistical analysis

Results were expressed as mean + SEM for three experi-
ments. The data were analyzed using student’s ¢-test for
normally distributed data with equal variances and
P<0.05 was considered significant. The immunoblotting
images were quantified using Image ] software. For qRT-
PCR data analysis SABiosciences web-based software
was used. Promoter analysis was performed using Gen-
ome TraFac software (http://genometrafac.cchmc.org/
genome-trafac) as described [29].

Results

Characterization of viruses and replication kinetics of HIV-
1"* and HIV-1Avpr in MDMs

HIV-1 YU2"* and YU2AVpr were produced through
transfection of respective proviral DNAs into HEK293T
cells. Supernatants were collected and virus particles in
the culture supernatants were characterized for the pres-
ence of p24 and Vpr by western blot using specific anti-
bodies (Figure 1A). Comparable expression level of Gag-
p24 was found in both HIV-1** and HIV-1AVpr viruses,
whereas, presence of Vpr was observed only in HIV-1"*
as expected.

For virus replication studies, MDMs from multiple
normal healthy donors (N=6) were infected with an
equal amount of HIV-1** or HIV-1AVpr according to
standard protocols described in Methods. To assess virus
replication kinetics, supernatants at different time points
were collected and virus titer was measured by p24
ELISA (Figure 1B). Results indicate that viral infection
increased with time in all donors. Interestingly, removal
of Vpr suppressed but not completely abolished HIV-1
replication in MDMs over time and this pattern is con-
sistent in all tested donors suggesting that HIV-1 Vpr
plays a significant role in MDM infection although it is
not absolutely essential for infection.
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Figure 1 Characterization and kinetics of HIV-1"* and HIV-1AVpr virus particles. (a) HEK 293 T cells were transfected with 5 pg of HIV-1
YU2*" and HIV-1 YU2AVpr plasmids. Viruses collected after 72 hours were filtered, concentrated by ultracentrifugation and western blot analysis
was performed for Gag and Vpr. (b) Productive infection of MDMs by viruses. MDMs were infected with HIV-1"" and HIV-1AVpr viruses at an MO
of 0.1 or left untreated as negative control (NT). The release of virus particles from infected MDM culture was monitored by p24 ELISA using the
supernatants on days as indicated. The data are representatives of one of six independent experiments.

Differential regulation of proinflammatory factors in HIV-
1™, HIV-1Avpr and mock-infected MDMs

It has been suggested that HIV-1-infected macrophages/
microglia-mediated neuronal dysfunction are in part via
proinflammatory factors/neurotoxins released by these
cells [30]. Several viral proteins including Env, Nef, Tat
and Vpr have been implicated in inducing proinflamma-
tory responses in macrophages [31]. To better under-
stand whether absence of Vpr causes any significant
difference in proinflammatory cytokine expression in
MDMs, we used normal donor derived MDMs infected
with HIV-1** or HIV-1AVpr or mock for focused qRT-
PCR array. Compared to mock/control MDMs, HIV-1**-
infected cells showed an enhanced expression of a num-
ber of cytokines and proinflammatory genes at different
time points (Table 1). Among the upregulated genes, IL-

1B and IL-8 exhibited a higher fold increase over mock
treated, whereas, TNF-a, IL-22, IL-10 and C3 showed a
modest increase in multiple donors (Table 1). During
the infection phase (5-20 days post infection) IL-1p, IL-
8 and C3 remained at a high level, whereas, other proin-
flammatory factors did not show any difference between
infected and uninfected controls.

To examine the effect of Vpr mutation on differential
gene expression in MDMs, HIV-1AVpr-infected culture
was compared with mock-infected cultures (Table 2).
Comparative analyses indicate that IL-1a, IL-1f, IL-8,
TNF-a, C3 and BCL6 were upregulated during early
time points (1-4 days) and were either downregulated
or did not show significant difference during later infec-
tion phase (5-20 days post infection). Less infectivity of
HIV-1AVpr virus in MDMs was supported by Table 2
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Table 1 Differentially regulated inflammatory genes in
MDM:s infected with HIV-1"* compared to mock/
uninfected (N =6)
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Table 2 Differentially regulated inflammatory genes in
MDMs infected with HIV-1 AVpr compared to mock/
uninfected (N =6)

Genes Dayl Day2 Day3 Day4 Day8 Dayl12 Day16 Day20 Genes Dayl Day2 Day3 Day4 Day8 Day12 Dayl16 Day20
CD40LG - - - - 200 232 - 3.02 CD40LG - - - - 268 736 - -
IFNA2 =270 - =225 - - - -204 - IFNA2 =295 - =224 - - 9.72 - -
IL10 359 - - - - - - 3.224 IL10 211 - - - - - - -

IL13 - - - - - - 2215 - IL13 - - -218 =201 14311 - -
ILTA 954 583 - - - 263 - - IL17C - - - - - 3.29 - -
IL1B 55.89 3159 3.58 231 219 797 8.09 9.87 ILTA 773 774 2088 - - - - -
ILTF5 - - - -340 - 2135 - —4.52 IL1B 71.73 50.57 1030 275 -2.17 - - -
IL1F6 - -2015 =294 - - - - -2.38 ILTF10 - - - - - 5.34 - 3.79
ILTF8 - 242 - —-449 - - - -18.56 IL22 344 -263 496 -370 230
ILTF9 1281 419 - - 376 - - 2.54 IL5 - - - - - 531 249 -

IL22 2237 - =318 =212 - - - 2334 IL8 23.79 16.27 6.30 261 - - - -

IL5 - =213 - 231 541 2.81 - IL9 - —2.74 532 - -533
IL8 20.63 11.56 3.146 2.16 2.08 3.22 3.88 6.698 LTA - - 253 - - 382 304 288
IL9 —246 3445 - - - 202 - —-7.88 TNF 386 246 - - - - - 26
LTA - - - - 474 319 - ILTORA - 245 - =202 - - - -
SPP1 - - - 226 =221 =277 -243 ILTORB - - - - - - - —2.82
TNF 313 - - -269 - - - 2.20 IL9R - - =214 295 - 5.76 - 2.84
ILTORA - 203 - - - - - - ILT3RAT - - - - - - - -
IL9R - - =227 - - - - - ILSRA - - -2.71 -376 1024 215 5.06
IL5RA - - -433 - - - - - BCL6 324 427 226 267 - - - 240
BCL6 3.31 2.50 - - - - 201 3.185 a 851 988 538 222 =204 -1082 -436 -

C3 849 786 335 252 316 203 - 8.90 C4A - - - - - - - 234
C4A - - - - 349 - - 2.35 CEBPB - - - - - - - 6.26
CEBPB - - - - - - - 3.59 CRP - - - - 1347 —-463 -
CRP - - - - - - =227 - ILTRN - - - =231 - - - -
ILTR1 - -214 - - - - - - IL8RB -296 - - - - - - -
IL1RN - -202 =297 - -356 - - -4.26 LTB4R - - - - 235 - - -
IL8RB -296 - - - 273 - 342 - TOLLIP =201 - - - - - 2.29

because the initial differences observed on the first day
of culture are not carried through at further time points
although expression of few cytokines such as TNF-q, IL-
5 and IL-10 was sporadically regulated during the infec-
tion phase.

To delineate the specific effect of Vpr mutation in
presence of other viral proteins in context of HIV-1"",
cytokine array results were compared between HIV-1**
and HIV-1AVpr-infected MDMs (Table 3). Absence of
Vpr downregulated several proinflammatory molecules
such as IL-1a, IL-1p, IL-8 compared to HIV-1""infected
culture in infection phase, suggest that Vpr could have a
specific effect in activating proinflammatory factors, ei-
ther directly or through enhanced viral replication. IL-1f3
and IL-8 were downregulated 4 days post infection and
remained low in the absence of Vpr.

To determine the most significantly regulated proin-
flammatory genes, the gene array data were reanalyzed
including all time points. Table 4 shows the proinflam-
matory genes that were differentially regulated in HIV-
1AVpr-infected MDMs compared to HIV-1"* combining
all time points. Results indicate that Vpr mutant virus
has a significant effect on downregulation of proinflam-
matory IL-1p and IL-8 in MDMs compared to HIV-1"".

To further examine whether the differences noted with
proinflammatory cytokines at the transcriptional level
were also present at the protein levels, the supernatants
from HIV-1", HIV-1AVpr and mock-treated MDMs
from different time points were analyzed for IL-1f, IL-8
and TNF-a by ELISA. TNF-a was included for this study
because it has already been indicated as a known proin-
flammatory marker [14]. Consistent with the data on
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Table 3 Differentially regulated inflammatory genes in
MDM:s infected with HIV-1 AVpr compared to HIV-1**
(N=6)

Genes Dayl Day2 Day3 Day4 Day8 Dayl12 Day16 Day20
CD40LG - - - - - - - 237
[FNA2 - - - - - 3.05

IL10 - - - - - - - -294
IL13 - - - - - 4.20

ILTA - - - - - -2015 =212 =253
IL1B - - 2135 - -3.149 -4.84 -4.76 -4.19
ILF10 - - - - - 2.75

IL22 - - - - - 4.67 -3.21

IL36A - - - - - 355

IL36B 3228

IL36G - - 2.09 2.004 =227
IL5 - - - - - - - —-205
IL8 - - - - -2.62 -262 -3.64 -3.27
IL9 - - - - - - - 212
LTA - - - - - - —2.24

TNF - - - - - —241

ILTRN 2.35
IL5RA - - - - - 6.18 3.44
IL9R - - - 2661 - 505

transcript levels, absence of Vpr also reduced the release
of IL-1pB, IL-8 and TNF-a compared to HIV-1""-infected
MDMs. The concentrations of IL-1p and IL-8 were sig-
nificantly (P=0.045 for IL-1pB at day 16; P=0.0257 and
P=0.010 for IL-8 at day 12 and 20 respectively) higher
in wild type-infected compared with AVpr-infected cul-
ture at infection phase (Figure 2A). The increase and/or
decrease in protein levels were directly correlated with
the RNA transcript levels. Figure 2B represents one of
six individual experiments demonstrating the correl-
ation. For instance, IL-1B and TNF-a showed a decrease
on day 8 both at the protein and transcript levels fol-
lowed by a reduction on day 12 compared to HIV-1*‘-
infected culture.

Table 4 Differential expression of inflammatory factors in
HIV-1AVpr-infected MDMs compared to HIV-1""-infected
(N =6) including all time points

Gene symbol Fold change p-value
IL5RA 2.091 0.269
XCR1 2.046 0.974
IL1B -4.178 0.033
IL8 -2.997 0.036
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Absence of Vpr reduces activation of p38 and SAPK/JNK
and not ERK1/2 in MDMs

MAPK signaling cascade is known to play a role in the
production of cytokine/chemokine by macrophages/
microglia and astrocytes and hence activate immune re-
sponse in the host cells [19,32,33]. Therefore, next we
examined whether deletion of Vpr could modulate phos-
phorylation of the three most important members of
MAPK family including ERK1/2, p38 and SAPK/JNK
that are known to regulate proinflammatory cytokine
production. Phosphorylation of ERK1/2, p38 and SAPK/
JNK was assessed by western blot from 6 hours to
20 days post infection after activating the MDMs with
LPS and the bands were quantified by densitometry
(Figure 3A, B). Results indicate an increase in phosphor-
ylation of p38, SAPK/INK and ERK1/2 at 6 hours post
infection in both HIV-1"* and HIV-1AVpr-infected
MDMs compared to control (data not shown). This in-
crease was followed by a decrease at 12, 24 and 36
hours. Phosphorylation of MAPKs at 6 hours may be the
consequence of gpl20 binding and Vpr may not have
specific effect at this stage. The difference of phosphoryl-
ation levels of p38 and SAPK/JNK between HIV-1** and
HIV-1AVpr-infected MDMs was first observed at 48
hours post infection and was maintained up to day 8.
Phosphorylation of SAPK/JNK was most pronounced at
day 8. However, ERK1/2 showed no change in phosphor-
ylation between HIV-1** and HIV-1AVpr-infected
MDMs over a period of 20 days except the initial expos-
ure (6 hours post infection).

To confirm the involvement of p38 and SAPK/JNK
signaling molecules and to cross check the effect of
ERK1/2 on IL-1f, IL-8 and TNF-a upregulation, MDMs
were pretreated with SB203580, SP600125 and PD98059
prior to infection with HIV-1"* or HIV-1AVpr or mock.
Supernatants were collected 48 hours post infection and
the concentrations of TNF-a, IL-13 and IL-8 by ELISA
were measured (Figure 3C) in multiple donors (N =3).
MAPK inhibitors reduced the levels of all tested proin-
flammatory factors in all infected MDM supernatants
compared to control MDMs. Blocking of ERK1/2 path-
way with PD98059 showed reduction in IL-1pB, IL-8 and
TNEF-a levels in both infected and uninfected MDM
supernatants. However, SB203580, that blocks p38 path-
way, significantly suppressed the production of IL-1f as
well as IL-8 in HIV-1"“-infected MDMs compared to
HIV-1AVpr-infected culture suggesting that activation of
p38 pathway is involved in production of IL-1p and IL-8
in MDMs. However, SB203580 did not exhibit any spe-
cific difference in TNF-a level between HIV-1"' and
HIV-1AVpr virus-infected MDM cultures indicating that
Vpr-induced TNF-a production could be mediated by
other pathways. Pretreatment of MDM culture with
SP600125, a selective inhibitor of JNK, specifically
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Figure 2 HIV-1AVpr produces less proinflammatory IL-1p, IL-8 and TNF-a in MDMs than HIV-1"". MDMs were infected with HIV-1"* or
HIV-1AVpr virus at an MOI of 0.1 or left untreated for 1, 2, 3, 4, 8, 12, 16 and 20 days. (a) Expression of IL-1B, IL-8 and TNF-a in protein levels in
supernatants of HIV-1"", HIV-1AVpr and mock-infected (NT) MDMs collected at indicated time points was monitored by ELISA (N =6). Absence of
Vpr reduced the production of proinflammatory cytokines. The results presented are the mean concentration of cytokines + SEM. *P <0.05 (two
tailed student's t-test) compared to HIV-1AVpr-infected cultures. (b) gRT-PCR was carried out with the cell lysates as mentioned in Methods
(N=6). RNA fold changes were compared with ELISA data for each individual experiment. The expression of cytokines in protein levels (HIV-1";
red lines and HIV-1AVpr; blue lines) was correlated with the respective RNA transcripts (fold changes in HIV-1"" compared to HIV-1AVpr; green
lines). Figure represents one of six independent experiments.

reduced the HIV-1““-infected MDM-derived IL-8 pro-
duction compared to mock treated or HIV-1AVpr-
infected culture suggesting the association of SAPK/JNK
pathway with IL-8 production in MDMs. No specific

differential expression pattern was observed for IL-1p
and TNF-a with SP600125 in presence or absence of
Vpr. These results suggest that p38 and SAPK/JNK but
not ERK1/2 are involved in IL-1f and IL-8 production.
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Figure 3 HIV-1AVpr does not activate p38 and SAPK/JNK in MDMs as HIV-1"*. MDMs infected with HIV-1"", HIV-1AVpr or mock (NT) were
activated with 1 pg/ml of LPS for 4 hours and the cells were harvested at 6, 12, 24, 48 hours, 4, 8, 12 days. (a) Cells were lysed and 50 pg of
protein of each sample was analyzed by western blot using antibodies against the active and total form of ERK1/2, p38 and antibodies against
SAPK/INK and tubulin. (b) Relative band intensities of phosphorylated products were normalized with total proteins. Densitometrical
quantification of western blot data represents the + SEM of three independent observations. *P < 0.05 (two tailed student’s t-test) compared to
HIV-1AVpr-infected cultures. (c) MDMs were preincubated with PD98059 (10 uM), SB203580 (10 puM) and SP600125 (10 uM) for 2 hours and then
infected with HIV-1"" or HIV-1AVpr virus at an MOI of 0.1 or mock. After 48 hours of infection IL-1B, IL-8 and TNF-a ELISA were performed. MDMs
without MAPK inhibitors were considered to be the control and were reused to normalize other results. Each sample was run in triplicates, the
results are + SEM of the concentration of the cytokines and *P < 0.05 compared with HIV-1 AVpr treated.

HIV-1AVpr activates these MAPKs to a less extent and  phenotype followed by increased expression of neuronal
hence induces less production of proinflammatory cyto-  markers, MAP2 or B-III tubulin. Expression of MAP2 or

kines compared to HIV-1"", B-III tubulin positive cell population increased to ap-
proximately 80% 2 weeks post differentiation (Figure 4).

Absence of Vpr reduces neuronal death in part through Astrocyte contamination was verified by immunostain-

proinflammatory cytokines ing the cells using antibody against GFAP and results in-

To obtain primary neurons for toxicity studies, NP cells  dicate absence of astrocytes in our cultures.

were differentiated as described in Methods and con- Infected target cells in CNS compartment are known to

firmed by immunostaining using specific markers. One  dysregulate neuronal function and survival through proin-
week post-differentiation the cells exhibited neuronal flammatory factors [9,34,35]. To investigate the role of
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Neuronal differentiation was confirmed by immunostaining. Neurons were fixed, permeabilized and stained with neuronal marker MAP2 (green)
and B-lIl tubulin (green) or astrocyte specific marker GFAP (red). Nuclei were stained with Hoechst 33342 (blue). The figures are representatives of
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proinflammatory factors in inducing neuronal death, pri-
mary neurons were exposed to different amounts of cul-
ture supernatants from HIV-1"', HIV-1AVpr and mock-
infected MDMs (5%, 10%, 20%v/v in culture media).
Supernatants from day 8 and day 12 were used, as IL-1f,
IL-8 and TNF-a concentrations were highest at these time
points. Neuronal death (%) was assessed 24 to 48 hours
post treatment by Annexin-V staining. Recombinant pro-
teins, rhIL-1f, rhIL-8 and rhTNF-a were used in parallel
as positive controls. When neurons were exposed to dif-
ferent concentrations of MDM supernatants no difference
in cell viability was observed at a concentration of 5%
(v/v) exposure, whereas 10% (v/v) supernatant induced
differential cell death and this effect tapered off with in-
creasing concentration (data not shown). Hence all the
experiments were performed with 10% MDM superna-
tants to assess neurotoxicity. Supernatant from mock-
treated neurons exhibited approximately 11% cell death as
basal level apoptosis, whereas neuronal culture exposed to
HIV-1** or HIV-1AVpr-infected supernatant, exhibited
approximately 25% (P =0.0078) and approximately 17%,
(P=0.0349) cell death respectively. HIV-1AVpr-infected
MDM supernatant resulted in significantly (P=0.0481)
lower neuronal death compared to HIV-1"". Interestingly,
the recombinant proteins rhIL-1p (approximately 27%)

and rhIL-8 (approximately 24%) and not rhTNF-a (ap-
proximately 14%) exhibited similar significant cell death
(Figure 5A).

To confirm this result, neuronal survival was also exam-
ined by MTT assay, which exhibited significantly reduced
neuronal survival with HIV-1"* (73%; P =0.0139) but not
with HIV-1AVpr (84%; P =0.0669)-infected MDM super-
natant compared to control. HIV-1AVpr-infected MDM
supernatant further reduced the neurotoxic effect of the
virus significantly (P=0.0439) compared to HIV-1"*
(Figure 5B). Treatment of neurons with recombinant pro-
teins, rhIL-1p, rhIL-8 and rhINF-a exhibited 63%, 78%
and 87% cell survival respectively, confirming their role in
neuronal apoptosis.

Induction of apoptosis via death receptors activates
initiator caspases, which in turn activate effector cas-
pases 3 and 7. To investigate whether caspase 3/7 path-
way is involved in inducing neuronal apoptosis neurons
were pretreated with MDM supernatants (day 8 and 12)
or recombinant proteins, for 24 hours and Caspase-
Glo® 3/7 assay was performed. Exposure of neurons to
HIV-1*"infected MDM supernatants significantly in-
creased caspase 3/7 activity compared to untreated or
HIV-1AVpr-infected MDM supernatant (Figure 5C).
Compared to mock-infected supernatant, HIV-1AVpr
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Figure 5 HIV-1-induced neuronal death is mediated in part through IL-13 and IL-8 and not TNF-a present in supernatants of

HIV-1"* virus-infected MDM:s. Primary neurons exposed to HIV-1"", HIV-1AVpr and mock-infected (NT) MDM supernatants (10%v/v) as well as
recombinant IL-13 (10 ng/ml), IL-8 (10 ng/ml) and TNF-a (100 ng/ml) for 24 — 48 hours were analyzed for neuronal apoptosis by (a) Annexin-V
FITC staining, nuclei of the cells were stained with Hoechst 33342 and measured the neuronal death (%); (b) MTT assay, absorbance was
measured and cell viability was normalized with negative controls. HIV-1""infected MDM supernatants were more neurotoxic compared to
HIV-1AVpr culture. (c) The cells were lysed in Caspase—G|o® 3/7 substrate and protease activity was measured as relative light units (RLU).

(d) Neurons were lysed and 50 pg of protein for each sample was analyzed by western blot using specific antibodies for cleaved and total PARP.
(e) Neurons exposed to supernatants from HIV-1", HIV-1AVpr and mock-infected MDM (NT) were treated with and without anti-IL-1B, anti-IL-8
and anti-TNF-a and neurotoxicity was analyzed after 24-48 hours by Annexin-V staining. Results are the = SEM of three individual experiments;
*P <005, *P <001 in HIV-1"" compared with control or HIV-1 AVpr treated.

virus-infected supernatant exposure induced approxi- of caspase 3/7 in neuronal culture treated with recom-
mately 2-fold higher caspase 3/7 activity, whereas, HIV-  binant proteins confirmed their role in neuronal apop-
1" virus-infected supernatant showed approximately 3-  tosis. Although rhIL-1B induced the highest activation
fold increased caspase 3/7 activity in neurons. Activation  (approximately 3-fold), rhIL-8 (approximately 2.5-fold)
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also significantly enhanced the caspase 3/7 levels in neu-
rons. Compared to control, caspase 3/7 activity caused
by rhTNF-a was <2-fold higher, which was much less
compared to other recombinant proteins.

Furthermore, impaired activation of caspase 3/7 was
also reflected in PARP expression in neurons. PARP, cat-
alyzed by cleaved caspase 3 and 7, is the end product of
caspase cascade and functions as a DNA-binding en-
zyme that detects DNA strand break [36,37]. Western
blot results further confirmed that absence of Vpr
induced a decreased level of cleaved PARP (c-PARP) in
HIV-1AVpr-infected MDM supernatants-treated neu-
rons compared to its HIV-1"* counterpart (Figure 5D).
Similarly, recombinant cytokines showed increased c-
PARP signals in neuronal culture confirming their asso-
ciation with neuronal apoptosis. This result indicates
that IL-1pB, IL-8 and TNF-a might play a role either dir-
ectly or by networking with some other downstream fac-
tors that in turn can activate neuronal death through
caspase pathway.

Neutralization of IL-1 and IL-8 protects neuronal death
To confirm that the neuroprotective effect of Vpr-
deleted virus is mediated through proinflammatory fac-
tors released by MDMs, neurons were exposed to HIV-
1", HIV-1AVpr and mock-infected MDM supernatants
with or without IL-1f, IL-8 and TNF-a-neutralizing
antibodies or isotype controls for 24 hours and neuronal
apoptosis was determined by Annexin-V staining.
Results showed that pre or post incubation of neurons
with anti-IL-1p and anti-IL-8 antibodies restored 38%
and 22% neuronal death in HIV-1** MDM supernatant-
treated cultures, respectively whereas anti-TNF-a anti-
body had no significant effect (4%) in protecting HIV-
1** MDM supernatant-induced cell death (Figure 5E).
Interestingly, in HIV-1AVpr-infected MDM culture, al-
though neutralizing antibodies also reduced neuronal
death the effects were not significant. Collectively, these
results confirm the role of Vpr-mediated indirect effect
on neuronal survival via proinflammatory cytokines.

Discussion

Neuroinflammation in the context of viral infections in-
cluding HIV-1 could result from the following scenarios.
First, the infiltration of infected monocytes/macrophages
and lymphocytes from the periphery into CNS compart-
ment; second, the release of viral and cellular factors by
the infiltrated cells; third, the infection of resident
macrophages/microglia by HIV-1 entering CNS or
through virus released from the infiltrated cells. The
infiltrated monocytes and lymphocytes are the key
players of proinflammatory cytokines production [38,39].
The infected target cells are also known to secrete viral
proteins including gp120, Tat, and Vpr, which are known
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to alter proinflammatory milieu in brain [24,40,41]. The
role of gp120 and Tat in modulating proinflammatory
cytokines and hence the effect on neurodegeneration has
been studied extensively [16,42,43]. Few studies have
also documented HIV-1 Vpr-mediated neuropathogen-
esis [24,44], however, effect of Vpr on neurotoxicity
through proinflammatory cytokines remains undefined.
HIV-1 Vpr has several features that may facilitate its role
as a player in neuropathogenesis. Vpr, as a late viral pro-
tein synthesized in the infected cells, is released from
the infected cells and is also taken up by nearby cells.
Hence, the ability to cause damage is not confined to
only virus-infected cells. Another interesting feature is
that Vpr is also incorporated into the virus particles.
This enables Vpr to be transferred to cells upon infec-
tion by the virus. It should be noted that virus particles,
both in the infected individual and in cell culture, com-
prise a high proportion of non-infectious in comparison
to infectious particles. Although non-infectious virus
particles are replication defective, they are still capable
of transferring viral proteins such as Vpr into target
cells. This shows that Vpr can cause damage through
multiple avenues. In an effort to analyze the effect, pre-
vious studies focused on using specific viral proteins
(purified recombinant proteins) in the absence of other
viral proteins. Although these studies provided some
insight, unfortunately the concentrations used are in the
non-physiological range. This is the basis for our studies
aimed at investigating the indirect effect of Vpr deletion
on protection from neuronal damage (in comparison to
HIV-1"") through proinflammatory cytokine network
using replication competent HIV-1"* and HIV-1AVpr-
infected MDMs.

Expression of proinflammatory cytokines was upregu-
lated in HIV-1""-infected MDMs compared to controls
at the transcriptional level. In Vpr-deleted virus-infected
culture, most of the proinflammatory cytokine genes
were upregulated only in the first four days when com-
pared with mock. The increased expression of these
cytokines immediately upon infection and not at the in-
fection phase could be an immediate effect of HIV-1 en-
velope protein binding to cell surface receptors or may
be indicative of less HIV-1AVpr virus infectivity in
MDMs at later time points. Compared to HIV-1*", HIV-
1 AVpr-infected MDMs exhibited downregulation of IL-
1P and IL-8 four days post infection and maintained the
low level up to day 20. Lower expression of TNF-a was
also observed at protein level in HIV-1AVpr culture
compared to HIV-1", although no significant difference
was found in transcriptional level.

Deletion of Vpr-suppressed IL-1f, IL-8 and TNF-a pro-
duction in MDMs suggests that Vpr plays a role in the
production of these cytokines. However, it is not clear
whether Vpr specifically regulates these cytokines directly
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through transcriptional regulation or by enhanced MDM
infection [45]. It has been shown that Vpr either as a
virion-associated molecule or as a free protein is known to
act as a transcriptional regulator [46-48]. Our preliminary
bioinformatics analyses (data not shown) indicate the
presence of several common transcription factor-binding
sites present in IL-8 and IL-1( promoters suggesting that
they could be potentially involved in increased expression
of these genes. However, many of these sites are also
shared by other cytokines such as TNF-a (four common
in all three) suggesting that Vpr might utilize these tran-
scription factors to upregulate these cytokines in an addi-
tive manner. In-depth chip-based analyses are required to
address these questions, which is beyond the scope of this
manuscript. Alternatively, the coincidence of decreased
HIV-1 replication with decrease of IL-1fB, IL-8 and
TNF-a levels in HIV-1 AVpr-infected MDMs with
time indicates virus replication could also be one of
the major determinants of increased expression of
proinflammatory factors [45].

IL-1p and TNF-a have a broad range of similar and
complex physiological effects including their ability to
induce expression of a number of genes depending on
the cell lineage. These two cytokines stimulate the pro-
duction of chemotactic factors such as IL-8 in cells of
CNS [49]. Hence, it is possible to speculate that IL-8
downregulation in HIV-1AVpr-infected MDMs may be a
consequence of decreased levels of IL-1f and TNF-a
compared to HIV-1*"-infected culture.

Expression of the proinflammatory factors in HIV-1
disease can be partly explained through the influence of
HIV-1 on signaling pathways. Although HIV-1 interacts
with several signaling molecules, in this study we fo-
cused on MAPK because these kinases are involved in
many cellular activities including activation, prolifera-
tion, differentiation, survival and cytokine production
[50-52]. Furthermore, signaling pathways controlling IL-
1B, IL-8 and TNF-a gene expression have been linked to
MAPK [53,54]. Several viral proteins such as gp120, Nef
and Tat are known to interact with MAPK pathways
[55-57]. Hence, we investigated if deletion of Vpr could
suppress activation of MAPK pathways in MDMs; that
could indicate indirectly the involvement of MAPKs in
Vpr-induced differential regulation of proinflammatory
cytokines. We observed decreased activation of p38 and
SAPK/JNK in HIV-1AVpr compared to HIV-1""-infected
MDMs stimulated with LPS. Studies have shown that
gp120 activates p38 during early phase of exposure/in-
fection via chemokine and HIV-1 co-receptors binding
[58]. However, it is unclear how phosphorylation p38
and SAPK/JNK are associated with the proinflammatory
cytokine production in MDM. One explanation could be
that activation of these signaling molecules may phos-
phorylate and/or translocate transcription factors that

Page 13 of 15

may activate promoters of IL-1f and IL-8 and upregu-
late gene expression. In the current study phosphoryl-
ation of ERK1/2 was not enhanced in response to
infection, which is quite similar to an early study where
the authors showed that Vpr induces cell cycle arrest
through downregulation of ERK pathway rather than
change in phosphorylation status [59].

Although HIV-1 does not infect neurons directly, the
cytopathic effects on neurons are probably caused by
macrophage/microglia-derived proinflammatory cytokines.
The neurotoxic and proinflammatory cytokines implicated
in HAND pathogenesis are IL-1 and TNF-a [12,14]. These
factors have been reported to increase the permeability of
blood—brain barrier and also over stimulate NMDA recep-
tors, which cause lethal neuronal increase in Ca* levels
[60]. IL-8 also could function as a mediator of neuronal
death via its effects on release of neurotoxins such as
matrix metalloproteinase as well as by induction of cell
cycle and pro-apoptotic proteins [61]. A recent study re-
ported that IL-8 levels in CSF of HAND patients are higher
compared to HIV-1 seropositive patients without neuro-
logical disorders [19]. HIV-1 gp120 and Vpr-induced in-
crease in IL-8 production in CNS is reported [62,63].
Suppression of production of these neurotoxic proinflam-
matory cytokines could be a possible way to reduce risk of
neuronal apoptosis. In our study, deletion of Vpr caused
significant reduction of proinflammatory cytokine IL-1f,
IL-8 and TNF-a production, coinciding with the viral repli-
cation. This suggests that Vpr has both direct and indirect
effects on the cytokine production. The exact mechanism
of Vpr in neuropathogenesis is not prominent, although it
is known to activate both intrinsic and extrinsic pathways.
Soluble Vpr causes neuronal apoptosis, involving cyto-
chrome c extravasation and p53 induction [44]. Our results
on neuronal apoptosis and effector caspase activation upon
exposure to HIV-1""-infected MDM supernatants showed
increased caspase-mediated neuronal death suggesting that
soluble factors present in these cultures are responsible for
neuronal death. This result is consistent with other studies,
which also demonstrated increased caspase activation in
presence of rVpr [44,64]. However, this does not delineate
whether the soluble viral proteins and/or cellular factors
present in MDM supernatant are responsible for neuronal
damage. Results of partial restoration of neuronal death in
presence of neutralizing antibodies against IL1p and IL-8
suggest that HIV-1 Vpr-induced IL-1f and IL-8 could pos-
sibly be the two important factors that affect neuronal
apoptosis. Previous studies showed that administration of
rhIL-1fB enhances ischemic brain edema formation, size of
the brain infarction, increases neuronal death, whereas, ad-
ministration of anti-IL-1p reverses the neuronal death
in rat model [65]. Compared to an HIV-1 positive pa-
tient without neurological disorder, HAND patients
have increased levels of IL-8, the production of which
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is probably induced by IL-1f and TNF-a through
MAPK pathways [19].

Conclusion

Overall, our results demonstrate that HIV-1 Vpr plays
an important role in MDM infection as well as produc-
tion of proinflammatory and neurotoxic cytokines IL-1
and IL-8 by infected/exposed MDMs. These cytokines
have already been reported to be associated with preva-
lence, frequency and severity of neurological disorders.
Currently, different studies are in progress focusing on
targeting cytokines as a therapeutic strategy for treat-
ment of neurocognitive diseases. Deletion or alteration
of Vpr reduces the production of proinflammatory cyto-
kines and partially rescues neurons from cell death, thus
targeting HIV-1 Vpr could be one possible approach to
reduce the risk of HAND.

Competing interests
The authors declare that they have no competing interests.

Authors’ contribution

DG performed the experiments, analyzed the data and wrote the
manuscript; PN performed the experiments and analyzed the data; CR
generated the primary neurons; AS and GS wrote the manuscript; VA
designed the study, analyzed the data and wrote the manuscript. All authors
read and approved the final manuscript.

Acknowledgement

Proviral DNAs YU2wt and YU2AVpr were from Dr. Serge Benichou, France.
We would like to thank Ms Beth Fullert and Dr Todd Reinhart for their help
with the immunofluorescence imaging. This work was supported by RO1
MH087247 to V.A from the NIMH, NIH.

Author details

'Department of Infectious Diseases & Microbiology, Graduate School of
Public Health, University of Pittsburgh, 130 DeSoto Street, Pittsburgh, PA
15261, USA. %Pittsburgh Development Center, Magee Womens Research
Institute, 204 Craft Avenue, Pittsburgh, PA 15213, USA. 3NanoBio Diagnostics,
1196 Saint Andrews Lane, West Chester, PA 19382-2312, USA.

Received: 16 April 2012 Accepted: 19 May 2012
Published: 22 June 2012

References

1. Zink WE, Zheng J, Persidsky Y, Poluektova L, Gendelman HE: The
neuropathogenesis of HIV-1 infection. FEMS Immunol Med Microbiol 1999,
26:233-241.

2. Lipton SA, Gendelman HE: Seminars in medicine of the Beth Israel
Hospital, Boston. Dementia associated with the acquired
immunodeficiency syndrome. N Engl J Med 1995, 332:934-940.

3. Palmer DL, Hjelle BL, Wiley CA, Allen S, Wachsman W, Mills RG, Davis LE,
Merlin TL: HIV-1 infection despite immediate combination antiviral
therapy after infusion of contaminated white cells. Am J Med 1994,
97:289-295.

4. Ho DD, Sarngadharan MG, Resnick L, Dimarzoveronese F, Rota TR, Hirsch
MS: Primary human T-lymphotropic virus type lll infection. Ann Intern
Med 1985, 103:880-883.

5. Ances BM, Ellis RJ: Dementia and neurocognitive disorders due to HIV-1
infection. Semin Neurol 2007, 27:86-92.

6. Harezlak J, Buchthal S, Taylor M, Schifitto G, Zhong J, Daar E, Alger J, Singer
E, Campbell T, Yiannoutsos C, et al: Persistence of HIV-associated cognitive
impairment, inflammation, and neuronal injury in era of highly active
antiretroviral treatment. AIDS 2011, 25:625-633.

7. Simioni S, Cavassini M, Annoni JM, Rimbault Abraham A, Bourquin |, Schiffer
V, Calmy A, Chave JP, Giacobini E, Hirschel B, Du Pasquier RA: Cognitive

20.

21.

22.

23.

24

25.

26.

27.

28.

Page 14 of 15

dysfunction in HIV patients despite long-standing suppression of
viremia. AIDS 2010, 24:1243-1250.

Ellis R, Langford D, Masliah E: HIV and antiretroviral therapy in the brain:
neuronal injury and repair. Nat Rev Neurosci 2007, 8:33-44.

Ghafouri M, Amini S, Khalili K, Sawaya BE: HIV-1 associated dementia:
symptoms and causes. Retrovirology 2006, 3:28.

Huang Y, Erdmann N, Zhao J, Zheng J: The signaling and apoptotic effects
of TNF-related apoptosis-inducing ligand in HIV-1 associated dementia.
Neurotox Res 2005, 8:135-148.

Kaul M, Garden GA, Lipton SA: Pathways to neuronal injury and apoptosis
in HIV-associated dementia. Nature 2001, 410:988-994.

Raivich G, Jones LL, Kloss CU, Werner A, Neumann H, Kreutzberg GW:
Immune surveillance in the injured nervous system: T-lymphocytes
invade the axotomized mouse facial motor nucleus and aggregate
around sites of neuronal degeneration. The Journal of neuroscience: the
official journal of the Society for Neuroscience 1998, 18:5804-5816.

Moynagh PN: The interleukin-1 signalling pathway in astrocytes: a key
contributor to inflammation in the brain. J Anat 2005, 207:265-269.
Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y,
Mizuno T, Suzumura A: Tumor necrosis factor-alpha induces neurotoxicity
via glutamate release from hemichannels of activated microglia in an
autocrine manner. J Biol Chem 2006, 281:21362-21368.

Sui Z, Fan S, Sniderhan L, Reisinger E, Litzburg A, Schifitto G, Gelbard HA,
Dewhurst S, Maggirwar SB: Inhibition of mixed lineage kinase 3 prevents
HIV-1 Tat-mediated neurotoxicity and monocyte activation. J Immunol
2006, 177:702-711.

Lipton SA: Similarity of neuronal cell injury and death in AIDS dementia
and focal cerebral ischemia: potential treatment with NMDA open-
channel blockers and nitric oxide-related species. Brain pathology 1996,
6:507-517.

Kelder W, McArthur JC, Nance-Sproson T, McClernon D, Griffin DE: Beta-
chemokines MCP-1 and RANTES are selectively increased in cerebrospinal
fluid of patients with human immunodeficiency virus-associated dementia.
Ann Neurol 1998, 44:331-835.

Cinque P, Vago L, Mengozzi M, Torri V, Ceresa D, Vicenzi E, Transidico P,
Vagani A, Sozzani S, Mantovani A, et al: Elevated cerebrospinal fluid levels
of monocyte chemotactic protein-1 correlate with HIV-1 encephalitis
and local viral replication. AIDS 1998, 12:1327-1332.

Zheng JC, Huang Y, Tang K, Cui M, Niemann D, Lopez A, Morgello S, Chen
S: HIV-1-infected and/or immune-activated macrophages regulate
astrocyte CXCL8 production through IL-1beta and TNF-alpha:
involvement of mitogen-activated protein kinases and protein kinase R.
J Neuroimmunol 2008, 200:100-110.

Lee C, Tomkowicz B, Freedman BD, Collman RG: HIV-1 gp120-induced
TNF-{alpha} production by primary human macrophages is mediated by
phosphatidylinositol-3 (PI-3) kinase and mitogen-activated protein (MAP)
kinase pathways. J Leukoc Biol 2005, 78:1016-1023.

Nath A: Human immunodeficiency virus (HIV) proteins in
neuropathogenesis of HIV dementia. J Infect Dis 2002, 186(Suppl 2):
$193-5198.

Pomerantz RJ: Effects of HIV-1 Vpr on neuroinvasion and
neuropathogenesis. DNA and cell biology 2004, 23:227-238.

Wheeler ED, Achim CL, Ayyavoo V: Immunodetection of human
immunodeficiency virus type 1 (HIV-1) Vpr in brain tissue of HIV-1
encephalitic patients. Journal of neurovirology 2006, 12:200-210.

Cheng X, Mukhtar M, Acheampong EA, Srinivasan A, Rafi M, Pomerantz RJ,
Parveen Z: HIV-1 Vpr potently induces programmed cell death in the
CNS in vivo. DNA and cell biology 2007, 26:116-131.

Patel CA, Mukhtar M, Pomerantz RJ: Human immunodeficiency virus type
1 Vpr induces apoptosis in human neuronal cells. J Virol 2000,
74:9717-9726.

Muthumani K, Kudchodkar S, Papasavvas E, Montaner LJ, Weiner DB,
Ayyavoo V: HIV-1 Vpr regulates expression of beta chemokines in human
primary lymphocytes and macrophages. J Leukoc Biol 2000, 68:366-372.
Muthumani K, Hwang DS, Dayes NS, Kim JJ, Weiner DB: The HIV-1
accessory gene vpr can inhibit antigen-specific immune function. DNA
and cell biology 2002, 21:689-695.

Schafer EA, Venkatachari NJ, Ayyavoo V: Antiviral effects of mifepristone
on human immunodeficiency virus type-1 (HIV-1): targeting Vpr and its
cellular partner, the glucocorticoid receptor (GR). Antiviral Res 2006,
72:224-232.



Guha et al. Journal of Neuroinflammation 2012, 9:138
http://www.jneuroinflammation.com/content/9/1/138

29.

30.

31

32.

33.

34

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49.

Jegga AG, Chen J, Gowrisankar S, Deshmukh MA, Gudivada R, Kong S,
Kaimal V, Aronow BJ: GenomeTrafac: a whole genome resource for the
detection of transcription factor binding site clusters associated with
conventional and microRNA encoding genes conserved between mouse
and human gene orthologs. Nucleic Acids Res 2007, 35:D116-D121.
Herbein G, Varin A: The macrophage in HIV-1 infection: from activation to
deactivation? Retrovirology 2010, 7:33.

Herbein G, Gras G, Khan KA, Abbas W: Macrophage signaling in HIV-1
infection. Retrovirology 2010, 7:34.

Bachstetter AD, Xing B, de Almeida L, Dimayuga ER, Watterson DM, Van
Eldik LJ: Microglial p38alpha MAPK is a key regulator of pro-inflammatory
cytokine up-regulation induced by toll-like receptor (TLR) ligands or
beta-amyloid (Abeta). Journal of neuroinflammation 2011, 8:79.

Furler RL, Uittenbogaart CH: Signaling through the P38 and ERK
pathways: a common link between HIV replication and the immune
response. Immunol Res 2010, 48:99-109.

Kaul M, Lipton SA: Mechanisms of neuronal injury and death in HIV-1
associated dementia. Curr HIV Res 2006, 4:307-318.

Kaul M, Lipton SA: Mechanisms of neuroimmunity and
neurodegeneration associated with HIV-1 infection and AIDS. Journal of
neuroimmune pharmacology: the official journal of the Society on
Neurolmmune Pharmacology 2006, 1:138-151.

Decker P, Muller S: Modulating poly (ADP-ribose) polymerase activity:
potential for the prevention and therapy of pathogenic situations
involving DNA damage and oxidative stress. Curr Pharm Biotechnol 2002,
3:275-283.

Bressenot A, Marchal S, Bezdetnaya L, Garrier J, Guillemin F, Plenat F:
Assessment of apoptosis by immunohistochemistry to active caspase-3,
active caspase-7, or cleaved PARP in monolayer cells and spheroid and
subcutaneous xenografts of human carcinoma. The journal of
histochemistry and cytochemistry: official journal of the Histochemistry Society
2009, 57:289-300.

Burger D, Dayer JM: Cytokines, acute-phase proteins, and hormones: IL-1
and TNF-alpha production in contact-mediated activation of monocytes
by T lymphocytes. Ann N Y Acad Sci 2002, 966:464-473.

Woiciechowsky C, Schoning B, Lanksch WR, Volk HD, Docke WD:
Mechanisms of brain-mediated systemic anti-pro-inflammatory
syndrome causing immunodepression. Journal of molecular medicine 1999,
77:769-780.

Strazza M, Pirrone V, Wigdahl B, Nonnemacher MR: Breaking down the
barrier: the effects of HIV-1 on the blood-brain barrier. Brain research
2011, 1399:96-115.

Power C, Hui E, Vivithanaporn P, Acharjee S, Polyak M: Delineating HIV-
Associated Neurocognitive Disorders Using Transgenic Models: The
Neuropathogenic Actions of Vpr. J Neuroimmune Pharmacol 2012,
7:319-332.

Barak O, Goshen |, Ben-Hur T, Weidenfeld J, Taylor AN, Yirmiya R:
Involvement of brain cytokines in the neurobehavioral disturbances
induced by HIV-1 glycoprotein120. Brain research 2002, 933:98-108.

Li W, Galey D, Mattson MP, Nath A: Molecular and cellular mechanisms of
neuronal cell death in HIV dementia. Neurotox Res 2005, 8:119-134.

Jones GJ, Barsby NL, Cohen EA, Holden J, Harris K, Dickie P, Jhamandas J,
Power C: HIV-1 Vpr causes neuronal apoptosis and in vivo
neurodegeneration. The Journal of neuroscience: the official journal of the
Society for Neuroscience 2007, 27:3703-3711.

Aida Y, Matsuda G: Role of Vpr in HIV-1 nuclear import: therapeutic
implications. Curr HIV Res 2009, 7:136-143.

Subbramanian RA, Kessous-Elbaz A, Lodge R, Forget J, Yao XJ, Bergeron D,
Cohen EA: Human immunodeficiency virus type 1 Vpr is a positive
regulator of viral transcription and infectivity in primary human
macrophages. The Journal of experimental medicine 1998, 187:1103-1111.
Ayyavoo V, Mahalingam S, Rafaeli Y, Kudchodkar S, Chang D,
Nagashunmugam T, Williams WV, Weiner DB: HIV-1 viral protein R (Vpr)
regulates viral replication and cellular proliferation in T cells and
monocytoid cells in vitro. J Leukoc Biol 1997, 62:93-99.

Cui J, Tungaturthi PK, Ayyavoo V, Ghafouri M, Ariga H, Khalili K, Srinivasan A,
Amini S, Sawaya BE: The role of Vpr in the regulation of HIV-1 gene
expression. Cell cycle 2006, 5:2626-2638.

Aloisi F, Care A, Borsellino G, Gallo P, Rosa S, Bassani A, Cabibbo A, Testa U, Levi
G, Peschle C: Production of hemolymphopoietic cytokines (IL-6, IL-8, colony-

50.

52.

53.

54.

55.

56.

57.

58.

59.

60.

62.

63.

64.

65.

Page 15 of 15

stimulating factors) by normal human astrocytes in response to IL-1 beta
and tumor necrosis factor-alpha. J Immunol 1992, 149:2358-2366.

Kyriakis JM, Avruch J: Mammalian mitogen-activated protein kinase signal
transduction pathways activated by stress and inflammation. Physiol Rev
2001, 81:807-869.

Narang H, Bhat N, Gupta SK, Santra S, Choudhary RK, Kailash S, Krishna M:
Differential activation of mitogen-activated protein kinases following
high and low LET radiation in murine macrophage cell line. Mol Cell
Biochem 2009, 324:85-91.

Roux PP, Shahbazian D, Vu H, Holz MK, Cohen MS, Taunton J, Sonenberg N,
Blenis J: RAS/ERK signaling promotes site-specific ribosomal protein S6
phosphorylation via RSK and stimulates cap-dependent translation. J Bio/
Chem 2007, 282:14056-14064.

Hagemann C, Blank JL: The ups and downs of MEK kinase interactions.
Cell Signal 2001, 13:863-875.

Liu Y, Kimura K, Yanai R, Chikama T, Nishida T: Cytokine chemokine, and
adhesion molecule expression mediated by MAPKs in human corneal
fibroblast exposed to poly (I:C). Invest Opthalmol Vis Sci 2008, 49:3336-44.
Lee EO, Kim SE, Park HK, Kang JL, Chong YH: Extracellular HIV-1 Tat
upregulates TNF-alpha dependent MCP-1/CCL2 production via activation
of ERK1/2 pathway in rat hippocampal slice cultures: inhibition by
resveratrol, a polyphenolic phytostilbene. Exp Neurol 2011, 229:399-408.
Witte V, Laffert B, Gintschel P, Krautkramer E, Blume K, Fackler OT, Baur AS:
Induction of HIV transcription by Nef involves Lck activation and protein
kinase C theta raft recruitment leading to activation of ERK1/2 but not
NF kappa B. J Immunol 2008, 181:8425-8432.

Khan NA, Di Cello F, Stins M, Kim KS: Gp120-mediated cytotoxicity of
human brain microvascular endothelial cells is dependent on p38
mitogen-activated protein kinase activation. Journal of neurovirology 2007,
13:242-251.

Medders KE, Sejbuk NE, Maung R, Desai MK, Kaul M: Activation of p38
MAPK is required in monocytic and neuronal cells for HIV glycoprotein
120-induced neurotoxicity. J Immunol 2010, 185:4883-4895.

Yoshizuka N, Yoshizuka-Chadani Y, Krishnan V, Zeichner SL: Human
immunodeficiency virus type 1 Vpr-dependent cell cycle arrest through
a mitogen-activated protein kinase signal transduction pathway. J Viro/
2005, 79:11366-11381.

Brabers NA, Nottet HS: Role of the pro-inflammatory cytokines TNF-alpha
and IL-Tbeta in HIV-associated dementia. Eur J Clin Investig 2006,
36:447-458.

Thirumangalakudi L, Yin L, Rao HV, Grammas P: IL-8 induces expression of
matrix metalloproteinases, cell cycle and pro-apoptotic proteins, and cell
death in cultured neurons. J Alzheimers Dis 2007, 11:305-311.

Shah A, Kumar A: HIV-1 gp120-mediated increases in IL-8 production in
astrocytes are mediated through the NF-kappaB pathway and can be
silenced by gp120-specific siRNA. Journal of neuroinflammation 2010, 7:96.
Roux P, Alfieri C, Hrimech M, Cohen EA, Tanner JE: Activation of
transcription factors NF-kappaB and NF-IL-6 by human
immunodeficiency virus type 1 protein R (Vpr) induces interleukin-8
expression. J Virol 2000, 74:4658-4665.

Sabbah EN, Roques BP: Critical implication of the (70-96) domain of
human immunodeficiency virus type 1 Vpr protein in apoptosis of
primary rat cortical and striatal neurons. Journal of neurovirology 2005,
11:489-502.

Yamasaki Y, Matsuura N, Shozuhara H, Onodera H, Itoyama Y, Kogure K:
Interleukin-1 as a pathogenetic mediator of ischemic brain damage in
rats. Stroke; a journal of cerebral circulation 1995, 26:676-680. discussion 681.

doi:10.1186/1742-2094-9-138

Cite this article as: Guha et al.: Neuronal apoptosis by HIV-1 Vpr:
contribution of proinflammatory molecular networks from infected
target cells. Journal of Neuroinflammation 2012 9:138.




	Abstract
	Background
	Methods
	Results
	Conclusion

	Background
	Materials and methods
	Reagents
	Isolation and culture of MDMs
	Culture and differentiation of NP cells
	Virus preparation and characterization
	Treatment of MDMs
	Proinflammatory cytokine array profiling by quantitative reverse transcription-PCR
	Measurement of cytokines by ELISA
	Immunofluorescence staining
	Treatment of neurons with specific neutralizing antibodies against proinflammatory cytokines
	Annexin-V FITC staining
	MTT assay
	Caspase - Glo&reg; 3/7 assay
	Western blot
	Statistical analysis

	Results
	Characterization of viruses and replication kinetics of HIV-1wt and HIV-1∆vpr in MDMs
	Differential regulation of proinflammatory factors in HIV-1wt, HIV-1∆vpr and &b_k;mock-&e_k;&b_k;infected&e_k; MDMs

	link_Fig1
	link_Tab1
	link_Tab2
	Absence of Vpr reduces activation of p38 and SAPK/JNK and not ERK1/2 in MDMs

	link_Tab3
	link_Tab4
	link_Fig2
	Absence of Vpr reduces neuronal death in part through proinflammatory cytokines

	link_Fig3
	link_Fig4
	link_Fig5
	Neutralization of &b_k;IL-&e_k;&b_k;1&beta;&e_k; and &b_k;IL-&e_k;&b_k;8&e_k; protects neuronal death

	Discussion
	Conclusion
	Competing interests
	Authors´ contribution
	Acknowledgement
	Author details
	References
	link_CR1
	link_CR2
	link_CR3
	link_CR4
	link_CR5
	link_CR6
	link_CR7
	link_CR8
	link_CR9
	link_CR10
	link_CR11
	link_CR12
	link_CR13
	link_CR14
	link_CR15
	link_CR16
	link_CR17
	link_CR18
	link_CR19
	link_CR20
	link_CR21
	link_CR22
	link_CR23
	link_CR24
	link_CR25
	link_CR26
	link_CR27
	link_CR28
	link_CR29
	link_CR30
	link_CR31
	link_CR32
	link_CR33
	link_CR34
	link_CR35
	link_CR36
	link_CR37
	link_CR38
	link_CR39
	link_CR40
	link_CR41
	link_CR42
	link_CR43
	link_CR44
	link_CR45
	link_CR46
	link_CR47
	link_CR48
	link_CR49
	link_CR50
	link_CR51
	link_CR52
	link_CR53
	link_CR54
	link_CR55
	link_CR56
	link_CR57
	link_CR58
	link_CR59
	link_CR60
	link_CR61
	link_CR62
	link_CR63
	link_CR64
	link_CR65

