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The CCL2 synthesis inhibitor bindarit targets cells
of the neurovascular unit, and suppresses
experimental autoimmune encephalomyelitis
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Abstract

Background: Production of the chemokine CCL2 by cells of the neurovascular unit (NVU) drives critical aspects of
neuroinflammation. Suppression of CCL2 therefore holds promise in treating neuroinflammatory disease.
Accordingly, we sought to determine if the compound bindarit, which inhibits CCL2 synthesis, could repress the
three NVU sources of CCL2 most commonly reported in neuroinflammation – astrocytes, microglia and brain
microvascular endothelial cells (BMEC) – as well as modify the clinical course of neuroinflammatory disease.

Methods: The effect of bindarit on CCL2 expression by cultured murine astrocytes, microglia and BMEC was
examined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Bindarit action on mouse brain
and spinal cord in vivo was similarly investigated by qRT-PCR following LPS injection in mice. And to further gauge
the potential remedial effects of bindarit on neuroinflammatory disease, its impact on the clinical course of
experimental autoimmune encephalomyelitis (EAE) in mice was also explored.

Results: Bindarit repressed CCL2 expression by all three cultured cells, and antagonized upregulated expression of
CCL2 in both brain and spinal cord in vivo following LPS administration. Bindarit also significantly modified the
course and severity of clinical EAE, diminished the incidence and onset of disease, and evidenced signs of disease
reversal.

Conclusion: Bindarit was effective in suppressing CCL2 expression by cultured NVU cells as well as brain and spinal
cord tissue in vivo. It further modulated the course of clinical EAE in both preventative and therapeutic ways.
Collectively, these results suggest that bindarit might prove an effective treatment for neuroinflammatory disease.

Keywords: CCL2, Neuroinflammation, Blood–brain barrier, Neurovascular unit, Brain microvascular endothelial cells,
Astrocytes, Microglia

Background
The chemokine CCL2 (formerly called MCP-1) is a crit-
ical mediator of neuroinflammation in a myriad of dis-
eases states, including multiple sclerosis (MS) and its
animal model experimental autoimmune encephalomy-
elitis (EAE) [1], HIV-1 encephalitis [2], Guillain-Barré
Syndrome [3], Alzheimer’s disease [4], ischemia [5], neu-
rotrauma [6], epilepsy [7], neurogenic hypertension [8]
and alcoholism [9]. While its precise mechanisms of

action remain to be elaborated, among CCL2’s widely
recognized effects are disruption of the blood–brain bar-
rier (BBB) [10-12] and stimulated migration of mono-
nuclear leukocytes into the central nervous system
(CNS) [13-17].
These actions and pathogenic role, along with the fact

that constitutive expression of CCL2 in the healthy cen-
tral nervous system is severely limited [18], render CCL2
an ideal target for therapeutic intervention in neuroin-
flammatory disease [17,19,20]. Indeed, there is already
strong suggestion that pharmacological suppression of
CCL2 expression [21,22], oligomerization [23,24] or
binding to its cognate receptor, CCR2 [25,26], can
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mitigate aspects of EAE. Pharmacologic blockade of
CCL2 binding to glycosaminoglycans (GAGs) has also
been reported to antagonize an autoimmune inflamma-
tory condition of the neural retina, experimental auto-
immune uveitis [27].
While highly effective in moderating neuroinflamma-

tion experimentally, many pharmacological agents that
abrogate CCL2 expression and/or activity have neverthe-
less failed clinically. This disappointing performance in
clinical trials might stem, in part, from overly broad sup-
pression of microglia and astrocytes, a potential caveat
that could curtail beneficial action of these cells in re-
solving neuroinflammation [28,29], as well as redun-
dancy of chemokine binding sites and targets [30,31]. An
alternative approach that more selectively targets CCL2
synthesis might therefore hold therapeutic promise in
the treatment of human neuroinflammatory disease.
An attractive candidate in this regard is the well-char

acterized compound 2-((1-benzyl-indazol-3-yl) methoxy)-
2-methyl propionic acid (bindarit) [32]. A small, synthetic
indazolic derivative that preferentially inhibits transcrip-
tion of the monocyte chemoattractant subfamily of CC che-
mokines (MCP-1/CCL2, MCP-2/CCL8 and MCP-3/CCL7)
[33], bindarit has shown clinical efficacy in a broad array
of experimental inflammatory, autoimmune and vascular
disorders involving peripheral organ beds [34-38], as well
as success in recent clinical trials for diabetic nephropathy
[39] and lupus nephritis [40]. Such efficacy has been asso-
ciated with bindarit’s ability to interfere with monocyte
recruitment, which is also a critical feature in neuroin-
flammatory disease [13-17].
Given this clinical history of bindarit suppressing vari-

ous examples of peripheral inflammation, we investigated
its effect on expression of CCL2 in culture by the three
cell types that represent the most frequently reported
CNS sources of this chemokine during neuroinflamma-
tion: astrocytes, microglia and brain microvascular endo-
thelial cells (BMEC). These cells serve as integral
components of the neurovascular unit (NVU) [41] and,
via their expression of CCL2, can impact the BBB and
course of neuroinflammatory disease [42,43]. As a com-
plement to these culture studies, the ability of bindarit to
suppress LPS induction of CNS CCL2 expression in vivo
was well determined. And to gauge bindarit’s potential
clinical efficacy, its effect on EAE, a prototypical neuroin-
flammatory disease [44,45], was also examined. Results
indicate bindarit significantly suppressed CCL2 gene ex-
pression in culture, as well as blunted lipopolysaccharide
(LPS)-induced expression of CCL2 in the CNS. It also
inhibited various facets of clinical EAE, and showed signs
of promoting disease recovery. Collectively, these data
suggest that bindarit might offer promise, either alone or
in conjunction with other therapies, in the treatment of
human neuroinflammatory disease.

Methods
Reagents
All reagents and antibodies were purchased from Sigma-
Aldrich (St. Louis, MO, USA), unless specified other-
wise. Bindarit was synthesized by and obtained from
Angelini (Angelini Research Center-ACRAF, Italy).
MOG peptide35-55 was synthesized by the WM Keck
Biotechnology Resource Center at Yale University,
New Haven, CT, USA.

Preparation of bindarit
For experiments with cultured cells, a stock solution of
100 mM bindarit was prepared in dimethyl sulfoxide
(DMSO), and dilutions (50, 100, 300 and 500 μM) of the
DMSO stock were made in culture medium. For in vivo
experiments, bindarit was prepared as a suspension in
0.5% methylcellulose (MTC) at a concentration of
20 mg/ml as previously described [37].

Mice
C57BL/6 mice were obtained from the Charles River
Laboratories, Inc. (Wilmington, MA, USA). All animal
studies were performed, and CO2-mediated euthanasia
carried-out, according to the Animal Care and Guidelines
of the University of Connecticut Health Center (Animal
Welfare Assurance #A3471-01).

Isolation and culture of mouse astrocytes and microglia
Brain tissue obtained from mice at postnatal days 2 to 3
was used as the source of astrocytes and microglia. After
decapitation, brains were removed immediately and sep-
arate astrocyte and microglial cultures prepared follow-
ing a modified version of the protocol described by Ge
and Pachter [46]. Cerebral cortices were first cut into
small pieces (approximately 1 mm), and the minced tis-
sue incubated in dissecting medium (Hank’s Balanced
Salt Solution, from Gibco/BRL, Rockville, MD, USA),
containing 0.5% glucose, 0.7% sucrose, 20 mM: hydro-
xyethyl piperazineethanesulfonic acid (Hepes) (pH 7.4)
with 0.03% trypsin at 37 °C for 20 to 30 minutes. The
tissue extract was then centrifuged at 1000 × g for 5 min-
utes and the resulting pellet washed and resuspended in
astrocyte culture medium (Earl’s Modified Eagle Medium,
from Gibco/BRL) containing 10% fetal bovine serum, 10%
horse serum, 2 mM glutamine, 20 mM D-glucose, 4 mM
sodium bicarbonate, 100 μg/ml penicillin and 100 μg/ml
streptomycin. The tissue was mildly triturated to produce
a single cell suspension, and the dissociated cells plated
onto tissue culture flasks (T-75 cm2) coated with poly-
lysine (BD Biosciences, Bedford, MA, USA). Cultures were
maintained up to 1 week in plating medium in a humidi-
fied atmosphere (5% CO2) at 37 °C. After this time, cul-
tures were shaken at 200 rpm for 2 hr at 4 °C, and
supernatants containing dislodged microglia collected.
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Supernatant material was then centrifuged at 1000× g for
5 minutes to pellet microglia. Microglia were then resus-
pended in microglia culture medium (Dulbecco’s modified
Eagle Medium, from Gibco-BRL) supplemented with 10%
heat-inactivated fetal calf serum, 100 μg/ml penicillin and
100 μg/ml streptomycin) and cultured in a 24-well plate.
Following removal of microglia from the initial mixed glial
cultures, the latter were shaken for an additional 18 hr at
37 °C to remove residual neurons. The enriched astrocyte
population that remained was further depopulated of
remaining microglia by treatment with L-leucine me-
thyl ester (LME) [47]. LME was dissolved in astro-
cyte culture medium, and the solution adjusted to
pH 7.4 and filtered prior to adding to cultures to
achieve a final concentration of 50 mM. After 90
minutes of LME treatment, astrocyte-enriched cul-
tures were washed thoroughly and re-incubated with
fresh astrocyte culture medium. Cell purity was deter-
mined by immunocytochemistry using a monoclonal anti-
human glial fibrillary acid protein (GFAP) antibody, and
cultures assessed to be≥ 98% astrocytes (GFAP+).

Isolation and culture of mouse brain microvascular
endothelial cells
BMEC were isolated as previously detailed by this la-
boratory [10,48]. Primary cultures were typically grown
for approximately five days prior to sub-culturing for
experiments. At that time, purity was gauged to be ≥ 98%
BMEC, according to diI-acetylated LDL uptake [48].
BMEC also exhibited common endothelial characteris-
tics, e.g. CD31 and vWF immunostaining, plus displayed
expression of the tight junction-associated proteins ZO-1
and occluding, found enriched at the BBB.

Treatment of cultured cells
To examine effects of bindarit on basal CCL2 expres-
sion, cultured microglia and BMEC were incubated with
different concentrations of bindarit for 4 hr or exposed
to 300 μM bindarit for different time. To gauge effects
of bindarit on LPS-stimulated CCL2 expression, astro-
cytes and microglia were pretreated with 300 μM bin-
darit for 1 hr; then cells were incubated with± 100 ng/ml
LPS (Escherichia coli Serotype 026:B6) for 4 or 20 hr in
the continued presence of bindarit. After treatments, cells
were extracted for RNA purification.

Separation of brain microvessels and parenchyma
Distinct brain microvessel and parenchymal fractions
were obtained using a modification of the method to
prepare BMEC [10,48]. In brief, after removal of the
brain from the cranium, the meninges and big vessels
were discarded, and the whole brain diced into approxi-
mately 1 mm pieces. Brain tissue was then homogenized
with a 7 mL Dounce tissue grinder (Kimble/Kontes,

Vineland, NJ, USA) in PBS. The homogenate was then
transferred to a 15 ml conical tube and centrifuged at
400 × g for 15 minutes in an Eppendorf Model 5804R
centrifuge/A-4-44 rotor. The resulting pellet was resus-
pended in 18% dextran (v/v, molecular weight 60 000 to
90 000; USB Corporation, Cleveland, OH, USA) and
centrifuged at 4,500 × g for 15 minutes to pellet the
crude microvessel fraction. The dextran supernatant and
floating layer of myelinated axons were separated from
the crude microvessel pellet, then diluted 1:2 with PBS
and centrifuged at 720 × g for 10 minutes to sediment
the parenchymal fraction. Both microvessel and paren-
chymal fractions were washed twice with PBS to elimin-
ate traces of dextran. Microvessels were further washed
free of blood cells by filtering through a 40 μm cell
strainer (Becton Dickinson Labware, Franklin Lakes, IN,
USA) and eluting with PBS. Eluted microvessels were
pelleted by centrifugation at 16,000 × g in a table-top
microcentrifuge.

Treatment of animals
To determine effects of bindarit on LPS-stimulated
CCL2 expression in brain and spinal cord, C57BL/6 fe-
male mice were given intraperitoneal (i.p.) injection of
bindarit (200 mg/kg) or methylcellulose vehicle, once a
day, for 4 consecutive days. At 30 minutes following the
last bindarit injection, mice were given i.p. injection of
LPS (5 mg/kg; Escherichia coli Serotype 026:B6). Then,
4 hr after LPS injection, mice were euthanized and brain
and spinal cord dissected for CCL2 mRNA and protein
analysis.
For active induction of EAE, C57BL/6 female mice

were immunized with MOG35-55 peptide (MEVG-
WYRSPFSRVVHLYRNGK) of rat origin, by a modification
of the method previously described [49]. Briefly, on day 0
female mice 7 to 9 weeks of age were injected sub-
cutaneously with 150 μg of MOG peptide and 300 μg
of Mycobacterium tuberculosis (DIFCO, Detroit, MI, USA)
in complete Freund’s adjuvant (CFA) (DIFCO) into the
right and left flank, 100 μl per site. Mice were also injected
i.p. with 200 ng pertussis toxin (List Laboratories,
Campbell CA, USA) in PBS on days 0 and 2 following the
first immunization. Animals were monitored and scored
daily for clinical disease severity according to the following
scale: 0 = normal; 1 = tail limpness; 2 = limp tail and weak-
ness of hind legs; 3 = limp tail and complete paralysis of
hind legs; 4 = limp tail, complete hind leg and partial front
leg paralysis; and 5=death. Several disease parameters
were calculated as described [49]. The mean day of onset
was calculated by averaging the time when clinical symp-
toms, that is, a clinical score≥ 1, were first observed for
two consecutive days in each mouse. The mean maximum
clinical score was calculated by averaging the highest score
for each mouse. The disease index was calculated by
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adding the daily average clinical scores in each group, div-
iding by the mean day of onset, and multiplying by 100. In
the case that an animal showed no disease, the day of
onset was arbitrarily counted as one day after the last day
of the experiment (for example, day 22). And the disease
incidence was the fraction of mice experiencing EAE.
To investigate the effects of bindarit on both the clin-

ical course of EAE and CCL2 level during disease, mice
were given daily i.p. injection of bindarit (or vehicle
MTC) at 200 mg/kg for three consecutive days, begin-
ning the day before MOG immunization (day −1), then
injections every other day till day 20. This schedule was
designed to mitigate, as much as possible, trauma asso-
ciated with daily injections at times of peak neurologic
disease and physical compromise.

RNA purification from cell cultures
Total RNA was extracted from cell cultures using the
RNeasy kit according to the manufacturer’s instructions.
RNA was treated with Turbo DNAse (Ambion, Austin,
TX, USA) according to the protocol provided by the
manufacturer. RNA yield and purity were determined by
spectrophotometry absorption at 260 and 280 nm.

RNA purification from CNS tissue
RNA and protein were differentially extracted from the
same mouse brain and spinal cord samples using the
AllPrep RNA/Protein kit (QIAGEN, Valencia, CA) fol-
lowing the manufacturer’s instructions. RNA was treated
with Turbo DNAse (Ambion, Austin, TX, USA) accord-
ing to the protocol provided by the manufacturer. RNA
yield and purity were determined by spectrophotometry
absorption at 260 and 280 nm. Protein level was deter-
mined using the Micro BCA protein assay kit (Pierce,
Rockford, IL, USA), using bovine serum albumin as a
standard.

Reverse transcription
cDNA was synthesized from the total RNA using a
SuperScript III (Invitrogen, Carlsbad, CA, USA) First-
strand synthesis system for RT-PCR with a standard
protocol. The resulting cDNA was stored at −80 °C until
used for further analysis.

CCL2 RNA determination by quantitative RT-PCR
Measurements of cDNA levels were performed by quan-
titative (q) RT-PCR using an ABI PRISM 7500 Sequence
Detection System Version 1.3, and SYBR green (AB
Applied Biosystems, Foster sity, CA, USA) fluorescence
was used to quantify relative amplicon amount. Separate
controls included a no template-control and no reverse
transcriptase-control, and standard curves were con-
structed for all primers used. Cycle time (Ct) values for all
samples were normalized to RPL-19, the housekeeping

gene encoding the 60 S ribosmal protein L19. Specifically,
relative amplicon quantification was performed using the
formula: 1 þ Erefð ÞCt refð Þ= 1 þ Etargetð ÞCt targetð Þñ 100%,
with ref: RPL19; target: CCL2; E: primer pair efficiency;
and Ct: threshold cycle.
For all cell culture studies and in vivo LPS studies, rela-

tive CCL2 gene expression values (after normalization to
RPL19) were expressed as percentage of control. For EAE
studies, relative CCL2 gene expression values were desig-
nated as percentage of RPL-19 expression, as control
CCL2 level (time-point 0) was undetectable. The primer
sequences used in this study were as following: for mouse
CCL2, 5′- GGC TCA GCC AGATGC AGT TAA-3′ (for-
ward) and 5′- CCA GCC TAC TCA TTG GGA TCA −3′
(reverse); for RPL-19, 5′- CGC TGC GGG AAA AAG
AAG-3′ (forward) and 5′- CTG ATC TGC TGA CGG
GAG TTG −3′ (reverse).

CCL2 protein determination
The level of CCL2 was measured with mouse JE/CCL2
commercial enzyme-linked immunoassay kit (BioSource
International Inc., Camarillo, CA) according to the man-
ufacturer’s instructions.

Statistical analysis
Statistical significance of differences between mean
values of bindarit-treated cultures and control cultures
was analyzed using a paired two-tailed t-test, while com-
parisons of bindarit treatment on LPS-treated mice were
performed using a two-tailed t-test for independent
samples. For analysis of bindarit effects on clinical
EAE, a chi-squared (χ2) test was used for comparisons
of disease incidence; a Mann–Whitney U-test was
used for comparisons of disease index; and a two-
tailed t-test for independent samples was used for
comparison of disease onset. A P-value< 0.05 was
considered significant in all cases.

Results
Bindarit differentially suppresses CCL2 expression by
cultured CNS cells
The effects of bindarit on cultured glial and BMEC were
investigated first (Figures 1, 2, 3). Figure 1 shows that
cultured microglia demonstrated both a dose and time
dependency of bindarit effect on CCL2 mRNA level.
Suppression of basal CCL2 mRNA was seen beginning
with the lowest dose of 50 μM for 4 hr, amounting to
nearly 75% reduction. Increasing the dose to 300 and
500 μM resulted in still further diminution of CCL2
mRNA to approximately 10% and 5%, respectively, of
control level. Treatment with bindarit at 300 μM for as
little as 2 hr resulted in near 60% reduction in CCL2
mRNA level, and treatment for longer times at this
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concentration resulted in suppression of CCL2 mRNA
to ≥ 90% of control level.
BMEC demonstrated a similar qualitative response

in basal CCL2 mRNA to increasing bindarit concen-
tration, but suppression was not as severe as seen
with microglia (Figure 2). Significant reduction was
not observed until 100 μM, and the maximal suppres-
sion achieved was about 20% that of control. The
time course of bindarit action on BMEC also differed.
Maximal suppression by 300 μM bindarit was
achieved at the earliest time-point of 2 hr, reaching a
level of approximately 20% of that of the control.
Longer time-points, however, appeared to result in a
lesser effect. It is important to reemphasize that, in

the normal CNS, CCL2 expression is barely detect-
able. This would suggest that both cultured microglia
and BMEC, possibly removed from a normally sup-
pressive microenvironment, are in a somewhat acti-
vated state.
This situation appears different for astrocytes. In

this case, bindarit’s effects on constitutive CCL2 gene
expression could not be accurately assessed, as level
of this chemokine’s mRNA in murine culture of these
cells is very low. Astrocyte cultures were thus stimu-
lated with LPS for different lengths of time to greatly
induce CCL2 mRNA, and the effect of bindarit on
this CCL2 induction was assayed (Figure 3A). Stimu-
lation with 100 ng/ml LPS for both 4 hr and 20 hr
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Figure 1 Bindarit effects on CCL2 mRNA in cultured microglia.
Microglia, prepared from C57BL/6 mouse brain, were incubated with
bindarit at the indicated concentrations for 4 hr (A), or exposed to
300 μM bindarit for the indicated times (B). Control cultures
received only vehicle. Relative CCL2 RNA levels were determined by
qRT-PCR, and effects of bindarit treatment reported as % change
compared to control cultures. *P< 0.05; #P< 0.01 (compared to
control at 0 concentration or 0 time of bindarit).

A

B

0

10

20

30

40

50

60

70

80

90

100

110

120

C
C

L
2 

m
R

N
A

( 
%

 o
f 

co
n

tr
o

l e
xp

re
ss

io
n

) 
   

0 2 4 8 24
Time of Bindarit (300μM) treatment (hr) 

#

*

0

10

20

30

40

50

60

70

80

90

100

110

120

C
C

L
2 

m
R

N
A

( 
%

 o
f 

co
n

tr
o

l e
xp

re
ss

io
n

 )
 

0 50 100 300 500

Concentration of Bindarit (μM)

*

*
*

Figure 2 Bindarit effects on CCL2 mRNA in cultured BMEC. Brain
microvascular endothelial cells (BMEC), prepared from C57BL/6
mouse brain, were incubated with bindarit at the indicated
concentrations for 4 hr (A), or exposed to 300 μM bindarit for the
indicated times (B). Control cultures received only vehicle. Relative
CCL2 RNA levels were determined by qRT-PCR, and effects of
bindarit treatment reported as % change compared to control
cultures. *P< 0.05; #P< 0.01 (compared to control at 0 concentration
or 0 time of bindarit).
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produced similar elevations in CCL2 gene expression,
and bindarit treatment at 300 μM similarly suppressed, by
40 to 60%, the induction of CCL2 mRNA at both time-
points.
In light of bindarit’s success at mitigating induction

of CCL2 in astrocytes, we next assayed whether it
was similarly effective in preventing induction in LPS-
stimulated microglia. Figure 3B shows that this was in
fact the case, bindarit completely suppressing the in-
duction and reducing CCL2 mRNA level to 15% of
the control (basal) value.

Bindarit blocks LPS-induced CCL2 expression in brain and
spinal cord
It was next investigated whether bindarit could suppress
LPS-induced CCL2 expression in the CNS in vivo
(Figure 4). In the normal, resting state, CNS CCL2
mRNA level is barely detectable in C57BL/6 mice
[50], but is elevated 50- to 100-fold shortly after per-
ipheral LPS injection [51]. Pretreatment with bindarit
was nevertheless able to effectively block this induc-
tion both in the brain and spinal cord, by 92% and
86%, respectively. In addition to abrogating LPS-
induction of CCL2 mRNA in the CNS, bindarit was
also effective at reducing CCL2 protein level in both
brain and spinal cord, though not to the same extent
as mRNA.
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Figure 4 Bindarit’s effects on CCL2 mRNA and protein in brain
and spinal cord following LPS. Mice received i.p. injection of
200 mg/kg bindarit (or vehicle) once a day for 4 days, followed by i.
p. injection of 5 mg/kg lipopolysaccharide (LPS) at 30 minutes after
the last bindarit treatment. At 4 hr after LPS injection, brain and
spinal cord were prepared for CCL2 mRNA (A) and protein (B)
determinations. LPS + bindarit-treated brain or spinal cord samples
were compared to corresponding samples treated with LPS + vehicle
(control). *P< 0.05; #P< 0.01.
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Bindarit therapeutically modifies clinical EAE
The ability of bindarit to modify clinical EAE was exam-
ined next. Figure 5 shows that, with a bindarit schedule
of daily injections for the first three days, and beginning
at day −1, then injections every other day till day 20,
bindarit yielded several therapeutic effects. By the criter-
ion that disease is manifest when a clinical score of at
least 1 is demonstrated for at least two consecutive days
[49], bindarit delayed onset of EAE. Specifically, control
mice developed acute disease beginning at day 8, while
bindarit-treated mice did not show evidence of clinical
disease until days 14 to 15. A second therapeutic effect
observed was reduced disease progression and severity.
Control mice showed rapid progression of EAE, pro-
ceeding towards a maximum mean clinical score of
approximately 2.1 to 2.2 by day 9. Bindarit-treated
mice evidenced slower progression, and only reached

a maximum mean clinical score of 1.5. A third therapeutic
effect was apparent reversal of disease course. After ex-
periencing rapid onset, control mice showed a plateau in
disease score typical of this monophasic MOG-induced
EAE [52,53]. However, in marked distinction, bindarit-
treated mice demonstrated a consistent downward trend
in disease score following their delayed and attenuated
peak in clinical presentation. A summary of the effects of
bindarit treatment on clinical EAE is presented in Table 1.
We next sought to examine how bindarit modifies

CCL2 expression in the brain during EAE. First, the
temporal expression of CCL2 was determined only in
MOG-immunized mice not receiving any bindarit, to
gauge the window of opportunity during which bindarit
might act. As seen in Figure 6, CCL2 RNA is barely
detectable at the time of immunization. Its expression
then accelerates beginning around day 9, is significantly
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Figure 5 Bindarit effects on clinical experimental autoimmune encephalomyelitis (EAE). Mice were subject to EAE by active immunization
with MOG peptide, beginning on day 0, as detailed in Methods. Bindarit (or vehicle) was injected i.p. at 200 mg/kg according to the schedule
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elevated by day 14, rapidly declines at day 17, and
reaches near basal level by day 21. Because bindarit has
been shown to most effectively suppress stimulated, ra-
ther than basal, CCL2 expression [33,54], bindarit effects
on CCL2 were analyzed selectively during this peak
interval. Additionally, brain tissue was resolved into
microvascular and parenchymal fractions to further
identify targeted cell types. This resolution was deemed
important, as both microvessels (BMEC) and parenchy-
mal neural cells (astrocytes and microglia) have been
reported as sources of CCL2 during EAE [55-58], though
microvessels only contribute< 1% to brain volume [59].
It was thus reasoned that parenchymal effects could
overshadow possible bindarit-induced changes in micro-
vascular CCL2 expression if only whole-brain levels were
evaluated. Figure 7 reveals that bindarit significantly
reduced peak CCL2 expression during EAE in both
microvascular and parenchymal fractions, in agreement
with what was found in our culture studies. Also, bin-
darit did not affect CCL2 expression outside the peak
window, reinforcing that its action appears restricted to
activated cells within and outside the CNS [33,54].

Discussion
Given the success of the CCL2 synthesis inhibitor bindarit
in ameliorating several animal disease models and human
clinical conditions associated with peripheral inflamma-
tory disease, initial studies were conducted to examine its
effects on elements critical to neuroinflammatory disease.
Focusing on the three main cell types responsible for
CCL2 expression during neuroinflammation, experiments
revealed bindarit significantly suppressed CCL2 in cul-
tured BMEC, microglia and astrocytes. Bindarit was
further shown to be effective in vivo in two neuroinflam-
matory paradigms: 1) it blocked LPS induction of CCL2 in
both brain and spinal cord; and 2) it therapeutically modi-
fied the course of EAE while suppressing CCL2 ex-
pression in both brain microvascular and parenchymal
compartments.
As to the effects on the seminal sources of CCL2, it

was critical to determine whether each was susceptible
to bindarit, as the specific cellular pool(s) responsible for
CCL2’s pathogenic actions during neuroninflammatory
disease remain unclear [51]. While all three cell types
responded with significant reduction in CCL2 mRNA,
microglia were the most sensitive - experiencing> 90%
diminution in this chemokine’s expression. This high
sensitivity to bindarit holds particular significance, as
microglia are widely considered the primary immune ef-
fector cells in the CNS [60-63], and their expression of
CCL2 has been linked to monocyte recruitment into the
CNS [64,65]. As CCL2 can also direct recruitment and
proliferation of microglia [66-68], as well as activation of
these cells [68], microglial expression of CCL2 can poten-
tially support a self-sustaining cycle of neuroinflammation.
Bindarit action, however, might effectively abrogate such a
scenario.
That bindarit also suppressed CCL2 mRNA in BMEC

is noteworthy. As these cells form the first line of
defense in the BBB [69], their expression of CCL2 might
strongly influence incipient steps of neuroinflammation
[70]. Indeed, elevated CCL2 expression by BMEC has
been reported in MS [71] and EAE [55,56], as well as in
autoimmune inflammation of the peripheral nervous
system [3]. Furthermore, intravenously administered anti-
CCL2 antibody blocked heightened leukocyte adhesion to
pial venular endothelium in vivo in mice suffering acute

Table 1 Summary of bindarit effects on clinical experimental autoimmune encephalomyelitis (EAE) parameters

Group Sick/total, number Mean day of onseta Mean max clinical score Mean disease indexb

MTC 14/14 11.42 ± 1.76 2.43 ±0.47 163.7 ± 20.53

BND 8/14 16.85 ± 2.17 1.52 ± 0.88 99.3 ± 10.21

P-value - <0.005 <0.001 <0.01

Mean presented ± SD.
aDay of onset established when clinical score ≥ for two consecutive days.
bDisease index calculated at day 21.
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EAE [72], as well as prevented recurring clinical episodes
in a chronic relapsing EAE model [73], possibly by antag-
onizing CCL2 at the luminal endothelial surface. Support-
ing this possibility, CCL2 harbors in its C-terminal α-helix
a binding site for GAGs typically found on the luminal
endothelial surface [74], and has been shown to bind
to the luminal surface of cultured endothelial cells
and then trigger firm adhesion followed by transmi-
gration of mononuclear leukocytes [75,76]. Binding of
CCL2 released from BMEC in culture has most re-
cently been shown to switch from the luminal to the
abluminal surface following cytokine-induced activa-
tion [77], possibly reflecting the changing roles of this
chemokine pool from first promoting leukocyte adhe-
sion to later directing extravasation into the paren-
chyma. Thus, by targeting the BMEC reservoir of
CCL2 during disease, bindarit might be able to blunt
neuroinflammation at different stages.

Bindarit action on CCL2 expression by cultured astro-
cytes had to be studied in the context of LPS stimula-
tion, as these cells exhibit barely detectable CCL2
mRNA in culture or in situ in the naïve state [50,51].
Yet despite significant induction, astrocyte CCL2 mRNA
was reduced by half or more following bindarit expos-
ure. As astrocytes constitute the most abundant glial cell
population in the CNS [78], suppression of their CCL2
production by bindarit in vivo might well exert profound
influence on pathologic events.
That bindarit could indeed act in vivo to effectively

suppress neuroinflammation was evident in both the
LPS and EAE paradigms. Injection of bindarit dramatic-
ally reduced LPS-stimulated expression of CCL2 in both
brain and spinal cord, dropping mRNA levels to near
10% of vehicle-injected control values, while cutting pro-
tein levels approximately by half. In this case, the effi-
cacy of bindarit in suppressing brain CCL2 may have
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been aided by the fact that LPS can severely disrupt the
BBB [79,80], and thereby possibly facilitate bindarit entry
into the CNS parenchyma. As CCL2 can also disrupt tight
junctions leading to elevated BBB permeability [10-12],
CCL2 generated early after LPS injection may have con-
tributed to its subsequent suppression by further enabling
bindarit CNS access.
The effects of bindarit on clinical EAE suggest that bin-

darit exerted both preventative and therapeutic actions.
Preventative action is indicated by the considerable delay
in disease onset in the bindarit-treated group, as well as
the reduced incidence and severity of disease displayed by
these mice. Possible therapeutic action is conveyed by the
steady decline in disease severity following diminished
peak clinical score. Such decline was in marked contrast
to the typical plateau in clinical score exhibited by EAE
mice given vehicle. These results are qualitatively similar
to those recently reported by Laborde et al. [81] who,
employing a regimen of twice daily oral dosage of a novel
heteroaroylphenylurea antagonist of CCL2 function, also
described delayed disease onset and resolution of EAE
symptoms. In the case of bindarit, however, clinical symp-
toms seemed to steadily remit following attenuated peak
disease, and a reduced incidence was also noted. Both
studies nevertheless highlight the prospect that selective
targeting of CCL2 activity might prevent EAE, as well as
reverse its course.
The effect of bindarit on clinical EAE was accompan-

ied by significant reduction of CCL2 mRNA in both
brain microvessel and parenchymal fractions, consistent
with bindarit’s mechanism of action being inhibition of
CCL2 transcription [33]. Reinforcing this point, global
knockout of the CCL2 gene has been shown to similarly
delay EAE onset, and reduce both disease incidence and
severity, effects that have been attributed to absence of
CCL2 expression within the CNS compartment [81,82].
This, along with demonstration that CCL2-deficient
mice also exhibit reduced neuroinflammatory responses
to peripheral LPS injection [83,84], underscores CCL2’s
non-redundant role in neuroinflammatory disease and
accentuates its value as a therapeutic target. Results with
bindarit and EAE may further suggest that both micro-
vascular and parenchymal sources of CCL2 contribute
to pathogenesis. If this is so, it could further imply bin-
darit would not have to penetrate the BBB in order to
reach at least one of its targets, BMEC. In contrast to
the acute situation with LPS, which acts directly on the
endothelium, it is reasoned that the BBB was more in-
tact in EAE mice receiving bindarit, as mean disease
score only reached approximately 1.5. Thus, a likely
scenario is that bindarit also sufficiently crossed the
BBB to suppress the astrocyte and/or microglial re-
sponse as well. This lends promise that bindarit can
access the CNS parenchyma during the early stages of

neuroinflammatory disease, when BBB breakdown is
not yet manifested.

Conclusions
In summary, the CCL2 synthesis inhibitor bindarit,
previously shown to be highly effective in myriad ex-
perimental disease models as well as human condi-
tions having inflammatory involvement [34-40], was
observed to significantly reduce steady state and LPS-
induced CCL2 expression in cultured microglia,
BMEC and astrocytes, as well as LPS-stimulated
CCL2 mRNA and protein levels in CNS tissue in situ.
Bindarit was further effective in delaying, preventing
and attenuating clinical EAE, and evidenced signs of
possibly reversing disease course while also suppres-
sing elevation of CCL2 in brain microvascular and
parenchymal compartments. Collectively, these data
are consistent with the widely proposed critical role
for CCL2 in neuroinflammation [18-20], and suggest
bindarit, by targeting cells of the NVU [41], might
have therapeutic success in the treatment of MS and/or
other human neuroinflammatory diseases.
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