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Abstract

A global health problem, traumatic brain injury (TBI) is especially prevalent in the current era of ongoing world
military conflicts. Its pathological hallmark is one or more primary injury foci, followed by a spread to initially normal
brain areas via cascades of inflammatory cytokines and chemokines resulting in an amplification of the original
tissue injury by microglia and other central nervous system immune cells. In some cases this may predispose
individuals to later development of Alzheimer's disease (AD). The inflammatory-based progression of TBI has been
shown to be active in humans for up to 17 years post TBI. Unfortunately, all neuroprotective drug trials have failed,
and specific treatments remain less than efficacious. These poor results might be explained by too much of a
scientific focus on neurons without addressing the functions of microglia in the brain, which are at the center of
proinflammatory cytokine generation. To address this issue, we provide a survey of the TBI-related brain
immunological mechanisms that may promote progression to AD. We discuss these immune and microglia-based
inflammatory mechanisms involved in the progression of post-trauma brain damage to AD. Flavonoid-based strategies
to oppose the antigen-presenting cell-like inflammatory phenotype of microglia will also be reviewed. The goal is to
provide a rationale for investigations of inflammatory response following TBI which may represent a pathological link
to AD. In the end, a better understanding of neuroinflammation could open therapeutic avenues for abrogation of
secondary cell death and behavioral symptoms that may mediate the progression of TBI to later AD.
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Epidemiology of post-traumatic brain injury
Alzheimer’s disease

It has been suggested that a long-term process of
amyloid-beta (Ap) metabolism is initiated by traumatic
brain injury (TBI). Chronic axonal pathology seems to
supply all of the needed machinery for both the anabol-
ism and catabolism of AP [1]. These AP plaques formed
in the initial weeks after injury may actually regress with
time. In this case, a continuously renewed store of AP in
degenerating axons can be kept in check through deg-
radation by endogenous mediators such as neprilysin or
adequate numbers of anti-inflammatory phagocytic
microglia [1]. In a subset of TBI patients, the balance be-
tween AP anabolism and catabolism eventually shifts
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during the aging process, accounting for the epidemiolo-
gic evidence of a link between TBI and Alzheimer’s dis-
ease (AD) [1]. A deficiency in microglial clearance of Ap
could possibly account for this balance shift since aging
microglia are known to have a reduced phagocytic cap-
acity and this is observed in AD [2]; the most common
age-related dementia. Indeed, in 2006 there were 26.6
million people with AD worldwide, and this number is
predicted to quadruple by the year 2050 [3]. As such, an
understanding of the mechanisms promoting AD risk is
important. A history of TBI is a strong risk factor for
AD [3-11], although there remains an incomplete con-
sensus since some epidemiological studies have not
uncovered such an association [12-18]. This is probably
due to the retrospective nature of some studies that may
have led to recall bias (systematic error due to inaccur-
acies in subjects’ ability to recall their history of TBI).
This can be a confounding source especially when col-
lecting data from patients regarding their cognitive
impairments or from secondary informants [19]. Indeed,
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larger, more controlled studies, including level 1 evi-
dence (which requires prospective examination and
randomization) [20], have led to an overall acceptance
that TBI is a risk factor for AD development [15].

Although TBI is typically believed to be a static patho-
logical insult from a single event, new clinical
unrecognized clinical symptoms can arise many years
after the initial injury. Indeed, patients may display
alterations in their daily living activities long after TBI
and may develop AD [21].

Along these lines, there is evidence that a history of
TBI accelerates the AD onset to younger ages [22-24]
and that the more severe the injury, the greater the risk
of developing AD [20,25]. Repetitive mild TBI especially
promotes incapacitating consequences and AD-like cog-
nitive deficits are reported in such cases. For example, in
a study of 2,552 retired professional American football
players there was a five-fold increase in the precursor to
AD, mild cognitive impairment, and a threefold increase
of reported significant memory problems among retirees
with three or more reported concussions compared with
retirees with no history of concussion [26]. This study
also detected an earlier onset of AD in the retirees com-
pared with the general American male population.

In other human studies, TBI has been shown to result in
amyloid deposits reminiscent of AD pathology [27,28]. The
first piece of evidence to suggest a mechanistic correlation
between TBI and AD was the observation that AP plaques
are found in up to 30% of patients who die acutely post
TBI [27]. The senile plaques were found in all age groups,
even children. Conversely, in control cases (patients who
died from non-neurological causes), these plaques were
detected almost exclusively in older individuals [27]. Add-
itionally, plaques have even been observed in tissue sur-
rounding contusions that was surgically removed from
survivors of TBI [29]. Moreover, the neuritic plaques in
TBI patients are very similar to those in the early stages of
AD [19]. The major difference is that AD plaques develop
slowly and are largely found in older people, whereas TBI-
associated plaques can appear rapidly (within just a few
hours) after injury [27]. The predominant form of A in
the plaques formed after TBI, and in the soluble AP found
in the brains of these patients, is AB4 — which, as men-
tioned earlier, is prone to aggregate.

As TBI is a complex and heterogeneous syndrome, the
type and severity of the acute inflammatory pathology
probably has a central role in determining the risk of
developing AD. Moreover, the baseline susceptibility or
mental reserve of the patient may be predetermined by
multiple factors including age, sex, and the interaction
of several known or unknown genetic factors [19].

In the brains of patients suffering chronic TBI, several
neuropathological hallmarks of AD (in addition to amyl-
oid) have been noted — including neurofibrillary tangles,
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acetylcholine deficiency, and tau immunoreactivity [30].
A common feature of these pathologies is that they initi-
ate and potentiate a brain inflammatory cascade that we
hypothesize as the central mechanistic link between TBI
and later development of AD.

Inflammation links traumatic brain injury to later
Alzheimer’s disease development

The initial inflammatory response of TBI [8,11,21] may
be key to later AD development. This response results in
neuronal injury and often in disruption of the blood-
brain barrier. Microglial cells react to this injury within
minutes, and stay activated chronically [31]. Once
induced into this state, the microglia become nearly
identical to peripheral macrophages, acting as antigen-
presenting cells (APC) and secreting proinflammatory
cytokines and chemokines [32,33]. For a full review of
the activation states of microglia see Town and collea-
gues [34]. In animal models — including, but not limited
to, fluid-percussion brain injury in rats [11], and com-
bined unilateral lesion of the arm area of the primary
motor cortex and arm area of the lateral premotor cor-
tex in rhesus monkeys [21,35] — it was found that the
initial inflammatory response persists for at least 1 year,
especially in the thalamus [11,21,35].

In humans as well, postmortem studies have shown
microglial activation many years after TBI [36]. Sites of
activation often coincide with those of neuronal degen-
eration and axonal abnormality, and include discon-
nected nuclei such as the thalamus [8]. In humans, the
positron emission tomography ligand *"'PK11195 detects
subacute microglial activation at the site of strokes, as
well as in remote white matter connected to the lesion
[37,38]. Later, thalamic and brainstem microglial activa-
tion becomes evident due to the disconnection of these
areas. Autoradiographic studies in rat models of TBI
demonstrate an increased thalamic uptake of **'PK11195
linked to a 31-fold increase in microglial numbers in the
thalamus ipsilateral to a cortical injury. In a recent study
of TBI patients using this modality, it was found that
increased microglial activation can be present up to 17
years after TBI [36]. This observation indicates that TBI
initiates a chronic inflammatory cycle and highlights the
importance of considering the response to TBI as evolv-
ing over years or even decades [36].

As stated earlier, many of the pathologies of TBI [39]
are mediated through an inflammatory cascade charac-
terized by activation of microglia [40,41] and through a
concordant increase in proinflammatory cytokines
[42,43]; both of which have the ability to exacerbate
other pathologies including later dementia [44]. Micro-
glia do not have simply one phenotypic manifestation
[34]. As we have suggested previously, microglial cells
exist in at least two functionally distinguishable states
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once activated — namely a phagocytic phenotype (innate
activation) or the aforementioned antigen-presenting
phenotype (adaptive activation) that is seen post TBIL
When challenged with certain pathogen-associated mo-
lecular patterns (particularly CpG-DNA), murine micro-
glia seem to activate a mixed response characterized by
enhanced phagocytosis and proinflammatory cytokine
production as well as adaptive activation of T cells. In
the experimental autoimmune encephalitis model, mur-
ine microglia seem to largely support an adaptive activa-
tion of encephalitogenic T cells in the presence of the
CD40-CD40 ligand interaction. In the context of Af
challenge, CD40 ligation is able to shift activated micro-
glia from innate to adaptive activation; similar to the
scenario post TBIL. Further, it seems that the cytokine
milieu to which microglia are exposed biases these cells
to adaptive activation (that is, anti-inflammatory Th2-
associated cytokines such as IL-4, IL-10, and perhaps
transforming growth factor-beta 1) or to an innate form
of activation (that is, proinflammatory Thl-associated
cytokines such as IFNy, IL-6, and TNFa) [34]. In this re-
gard, innate activation of microglia generally leads to
amyloidogenic amyloid precursor protein (APP) proces-
sing and the generation of AP plaques [45-47]. Indeed,
we have previously shown experimentally that blocking
transforming growth factor-p—Smad2/3 innate immune
signaling mitigates AD-like pathology [48].

Not all forms of microglial activation are deleterious,
however, as activated microglia may serve a protective
role in both TBI and AD. Regarding the former, at 3
hours post moderate fluid percussion in rats, the ma-
jority of new cells replacing the subventricular zone of
the traumatized hemisphere were astrocytes, macro-
phage/microglia, oligodendrocytes, and neurons, with
the majority of cells appearing glial in nature. These
populations promoted neurogenesis in the granular cell
layer of the hippocampus and suggest TBI stimulates
widespread cellular proliferation for days after injury
and results in focal neurogenesis in the dentate gyrus of
the hippocampus promoted by microglia. These micro-
glial responses to injury may therefore participate in
brain repair and functional recovery [49].

Regarding the latter, it has been shown in AP;_4,-
immunized mouse models of AD that microglial phago-
cytosis of B-amyloid plaques is at least partly responsible
for the therapeutic benefit in these animals [34]. Since
inflammation post TBI can last for many years, and
since this inflammation is promoted by APC-like micro-
glia, if we could repolarize these cells to their phagocytic
state before the inflammation becomes chronic it may
be prophylactic for post-TBI AD. Moreover, this also
suggests interventions to stop the conversion of TBI to
AD may be beneficial for longer intervals after trauma
than previously assumed [36].
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Intervention with natural flavonoids as a means
of reducing the risk of Alzheimer’s disease after
traumatic brain injury

The most common group of plant phenols, flavonoids
are found in nuts, fruits, vegetables, grains, and tea.
More than 6,000 different flavonoids have been
described [50] and can be categorized into six classes by
structure: flavonoles, flavones, isoflavones, flavanoles,
flavanones, and anthocyanidins [51]. Flavonoids possess
several physiological properties, including antioxidant,
antibacterial, antiviral, antimutagenic, anticancer, and —
most importantly - anti-inflammatory properties
[52,53].

Flavonoids exist as glycoside and aglycone forms in
plant-derived foods. After oral ingestion, flavonoids are
extensively conjugated and metabolized during absorp-
tion in the small intestine and then again in the liver
[54-56]. The intact form of flavonoid and the respective
metabolites derived from flavonoid biotransformation in
the gastrointestinal tract and in the liver are the forms
that enter the circulation and ultimately reach the brain
[57-59].

Several flavonoids have shown potential for the treat-
ment of TBI symptoms in humans and animals. In this
regard, Diamond and colleagues reviewed all researched
conference proceedings and research papers identified in
Medline, in the Research Council for Complementary
Medicine database based on the British Library database,
and in PsychInfo [60]. The review was extensive in that
controlled clinical studies with both positive and nega-
tive findings were included, in addition to animal studies
providing mechanisms of activity. The following are sali-
ent studies from this review [60].

Some 44% of TBI patients experience brain hypoxia,
which can result in hypoperfusion and severe deficits of
physical, psychological, and cognitive functions [61-68].
In a double-blind study of 50 patients suffering chronic
cerebral insufficiency, patients were administered either
120 mg/day Ginko Biloba extract (GBE) or placebo for 1
month prior to assessment [69]. Patients who received
GBE showed improvements in motor activity, speech
comprehension/production, and mood, as well as a re-
duction in dizziness [69]. Further, in a placebo-
controlled, double-blind trial, GBE was administered at a
dosage of 160 mg/day for 6 weeks to 60 patients with
cerebral insufficiency. Subjects from the GBE group
were found to have had progressive improvement in
concentration and reduction in fatigue. Between the sec-
ond and fourth weeks of treatment, two-thirds of the
patients on GBE showed improvement compared with
one-fifth of the patients on placebo [69].

Moreover, in a double-blind, placebo-controlled study
researching the effects of GBE on patients diagnosed
with mild to moderate cerebrovascular insufficiency, 40
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outpatients receiving 120 mg/day GBE for 12 weeks
showed improvement on clinical assessment and on self-
rating scales monitoring changes in dizziness, tinnitus,
headaches, and hearing loss [70]. Eighteen out of 20
patients showed statistically significant improvements in
tinnitus, dizziness, and in the frequency and severity of
headaches [71]. Another study, involving 80 patients with
cerebrovascular insufficiency, used a double-blind, placebo-
controlled, crossover design to test the effects of GBE on
perceptual reasoning [72]. Group A received GBE for the
first 45 days and placebo for the remainder of the trial, and
Group B initially received placebo followed by GBE.
Patients in the GBE versus placebo treatment groups dis-
played significant improvement on the block design subtest
of the Wechsler Adult Intelligence Scale [72] and on a vis-
ual-spatial construction task. It should be noted, however,
that an improvement of 0.7 points on the block design
subtest of the Wechsler Adult Intelligence Scale, while
being statistically significant, is unlikely to represent a clin-
ically meaningful change [72].

Le Bars and colleagues conducted a 52-week double-
blind, randomized placebo-controlled, multicenter clinical
trial consisting of 309 patients with AD and multi-infarct
dementia to study the efficacy and safety of EGb 761 (24%
ginkgo-flavone glycosides and 6% terpenoids [73]). Patients
were administered either EGb (120 mg/day) or placebo.
Evaluable data were obtained from 202 of the original
309 patients at the 52-week end-point analysis. The cog-
nitive subscale of the AD Assessment Scale, which was
used to assess cognitive function in these patients, dis-
played positive changes in the patients who received
EGD. Using the literature-based cutoff score of +4 as an
indicator of change, 14% of the people in the placebo
group displayed a positive change compared with 27% of
the EGb treatment group [74]. The effect size appeared
to be independent of age or severity of symptoms at base-
line. When clinical symptom severity and treatment re-
sponse were assessed, however, no differences were noted
[74].

Overall, these findings suggest that ginkgo’s broad
spectrum of pharmacologic effects allows it to be
used in the treatment of various neurologic functions
(for example, cognitive, mood, motoric, headache, and
motivational) that are associated with both AD and
TBI (for example, cerebral insufficiency).

However, difficulties may still remain with brain
bioavailability. This difficulty applies not so much
with GBE but with other flavonoids, as will be
expanded upon [60]. Several studies have been con-
ducted to wunderstand the pharmokinetics and
pharmacodynamics of GBE. For example, expired
radiolabeled *C—CO, extract was administered orally
in a rat model, and it was found that 16% of the
administered dose was excreted in the first 3 hours
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and a total of 38% after 72 hours. Twenty-one per-
cent of the radiolabeled extract was excreted in the
urine and 29% was excreted in the feces [75]. Total
absorption reached at least 60%. Regarding the evalu-
ation of blood-specific activity data, the pharmacokin-
etics of Ginko Biloba follow a two-compartment
process. In the first-order phase, the biologic half-life
is approximately 4.5 hours. In the second-order phase,
the drug was distributed through plasma, followed by
a gradual uptake after 48 hours [75]. The upper
gastrointestinal tract was also an absorption site, as
was neuronal, glandular, and ocular tissue [75].

In a study in which possible or probable AD patients
received an oral dose of standardized extract of dry
Ginko Biloba leaves, electroencephalogram changes
within 3 hours showed that the extract was adequately
absorbed, metabolized, and crossed the blood—brain bar-
rier [76]. GBE, or its constituents, has exhibited half-
lives ranging from 2 to 4 hours while activity levels peak
at 1.5 to 3 hours in animal and human models [60].
Regarding the mechanism of action of this flavonoid,
GBE was shown to have activity both centrally and per-
ipherally modulating electrochemical, physiologic,
neurologic, and vascular systems in animals and humans
with few adverse side effects or drug interactions. As
such, GBE may show promise in patients with neuro-
logic sequelae associated with both AD and TBI [60].

Green tea-derived epigallocatechin gallate (EGCQG) has
anti-amyloidogenic and anti-inflammatory properties in
AD mouse models, but the comparable effective dose of
EGCG in humans may exceed clinical convenience and/
or safety. We previously found that fish oil enhanced
bioavailability of EGCG versus EGCG treatment alone
(P <0.001). Fish oil and EGCG therefore synergistically
inhibit cerebral AB deposits (P <0.001). This finding sup-
ports the use of fish oil supplementation with ECGC in
order to have significant therapeutic potential for the
treatment of AD or TBI [77].

One element of therapeutic animal studies is the
type of simulated TBI: focal or diffuse. The majority of
studies use a type of mechanical pneumatic or fluid
percussion applied to the brain. It is common for both
focal and diffuse damage to occur as the result of the
same event; so for the purposes of this review we will
treat both damage types the same in terms of AD risk.
Further the literature does not differentiate diffuse ver-
sus focal in terms of AD risk [78]. For example, Di
Giovanni and colleagues found that activation of cell cycle
proteins after TBI is associated with cell death and caspase
activation in neurons, but with proliferation of astrocytes
and microglia [79]. This study was conducted over 17 days
post injury in male Sprague—Dawley rats. Moreover, cell
cycle inhibition by the flavonoid flavopiridol reduced
neuron cell death and glial proliferation. Importantly,
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these changes were paralleled by a significant reduction in
lesion volume and by nearly complete functional recovery
[79]. In another study, rats were subjected to controlled
cortical impact injury and then injected with the flavonoid
baicalein (30 mg/kg) or vehicle immediately after injury or
daily for 4 days. Improved functional recovery and
reduced contusion volumes up to day 28 post injury were
observed [80]. These changes were associated with signifi-
cantly decreased levels, at the contusion site, of TNFa, IL-
1B and IL-6 mRNA at 6 hours, and cytokine protein on
day 1 post injury — suggesting that the neuroprotective ef-
fect of baicalein may be related to a decreased proinflam-
matory response following the injury [80].

In addition to our work on EGCG in AD mouse models,
others found EGCG increased the number of surviving
neuronal cells 1, 3, and 7 days post TBI (pneumatic-con-
trolled injury device at 10 weeks of age) and provided an
improvement in cerebral dysfunction in 6-week-old male
Wistar rats. The authors suggest consumption of water
containing EGCG pre and post TBI inhibits free radical-
induced neuronal degeneration and apoptotic cell death
around the damaged area, resulting in the improvement
of cerebral function following TBI [81]. Furthermore, we
have found that EGCG promotes nonamyloidogenic pro-
cessing of APP in mice, resulting in elevations of the
neurotrophic soluble APPa [82]. Importantly, soluble
APPa reduces neuronal injury and improves functional
outcome following diffuse traumatic brain injury in rats
[83,84]. In addition we have found that EGCG reduces
APC-like microglia and re-polarizes them to phagocytic-
like microglia [77,82,85-90].

We and others have also demonstrated that flavo-
noids significantly suppressed the activation of inflam-
matory pathways involved in TBI and AD, including
NF-kB as well as mitogen-associated protein kinase
pathways in activated microglia, resulting in an at-
tenuation of the production of inflammatory mole-
cules [85,91,92]. Luteolin, a flavonoid from celery and
green peppers, was recently shown to suppress lipo-
polysaccharide (LPS)-induced IL-6 protein and mRNA
expression by inhibiting activator protein-1 activation
and phosphorylation of JNK in the murine microglial
cell line BV-2 [91]. IL-6 is among the first cytokines
upregulated post TBI [93]. Moreover, when mice were
provided drinking water supplemented with luteolin
before treatment with LPS, plasma IL-6 and IL-6
mRNA in the hippocampus were reduced compared
with those not receiving luteolin [91]. In another
study, luteolin affected the microglial transcriptome
leading to an anti-inflammatory, anti-oxidative, and
neuroprotective phenotype [94]. In further support we
found that apigenin and luteolin also suppressed
microglia TNFa and IL-6 productions stimulated by
IFNy in the presence of CD40 ligation [95].
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In further support of the study by Di Giovanni and
colleagues mentioned earlier [79], microglia are the
major cells in the brain that generate inflammatory
molecules including cytokines, superoxide, and nitric
oxide. Previous studies reported that inhibition of these
molecules is beneficial for mitigating neurodegenerative
disorders [85] including TBI [79]. In the inflammatory
response, NF-kB and activator protein-1 are important
transcription factors, and mitogen-associated protein
kinase (ERK1/2, p38 and JNK) pathways are involved in
modulating inflammatory gene expression.

Furthermore, studies have shown that flavonoids exert
neuroprotection through inhibiting microglia activation
and the subsequent release of various inflammatory mole-
cules. For example, pretreatment with luteolin attenuated
inflammatory mediators (IL-1, TNFa, nitric oxide, and
prostaglandin E2) produced by LPS-stimulated microglia
[96]. Supernatant from LPS-stimulated microglia caused
discernible death in N2a cells (a neuroblastoma cell line).
However, treating microglia with luteolin prior to LPS
reduced neuronal cell death caused by conditioned super-
natants [96]. Incubating N2a cells with luteolin did not
protect them from supernatants from LPS-stimulated
microglia, indicating that luteolin protects neurons by act-
ing exclusively on microglia [96]. Zheng and colleagues
also reported that the flavonoid fisetin decreased TNFa
and nitric oxide production and significantly suppressed
nuclear translocation of NF-kB and phosphorylation of
p30 mitogen-associated protein kinase in the LPS-
stimulated BV-2 microglia cells [97]. In addition, fisetin
reduced cytotoxicity of LPS-stimulated microglia toward
B35 neuroblastoma cells in a co-culture system [97].

Inhibition of microglia by wogonin reduced cytotox-
icity when co-cultured with pheochromocytoma PC12
cells , supporting a neuroprotective role for wogonin
in vitro [98]. Other studies have shown that resveratrol,
quercetin, or genistein diminished neuronal cell death
induced by microglial activation [99,100].

Conclusions

The inflammatory-based progression of brain injury has
been shown to be active in humans for up to 17 years
post-TBL. The proinflammatory, APC-like microglial
phenotype is a common mechanistic link between both
TBI and later development of AD. We and others have
shown that naturally occurring flavonoids safely and effect-
ively promote the neuroprotective, anti-inflammatory,
phagocytic phenotype. Taken together, these results indi-
cate that flavonoids may be important bioactives for at-
tenuating microglia activation and neuronal cell damage by
inflammatory conditions initially initiated by TBI. Ultim-
ately, modulation of microglial phenotype with flavonoids
or other compounds provides an avenue for abrogation of
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secondary cell death and behavioral symptoms that may
mediate the progression of TBI and AD.
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