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The microRNA miR-181c controls
microglia-mediated neuronal apoptosis by
suppressing tumor necrosis factor
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Abstract

Background: Post-ischemic microglial activation may contribute to neuronal damage through the release of large
amounts of pro-inflammatory cytokines and neurotoxic factors. The involvement of microRNAs (miRNAs) in the
pathogenesis of disorders related to the brain and central nervous system has been previously studied, but it
remains unknown whether the production of pro-inflammatory cytokines is regulated by miRNAs.

Methods: BV-2 and primary rat microglial cells were activated by exposure to oxygen-glucose deprivation (OGD).
Global cerebral ischemia was induced using the four-vessel occlusion (4-VO) model in rats. Induction of pro-
inflammatory and neurotoxic factors, such as tumor necrosis factor (TNF)-q, interleukin (IL)-13, and nitric oxide (NO),
were assessed by ELISA, immunofluorescence, and the Griess assay, respectively. The miRNA expression profiles of
OGD-activated BV-2 cells were subsequently compared with the profiles of resting cells in a miRNA microarray.
BV-2 and primary rat microglial cells were transfected with miR-181c to evaluate its effects on TNF-a production
after OGD. In addition, a luciferase reporter assay was conducted to confirm whether TNF-a is a direct target

of miR-181c.

Results: OGD induced BV-2 microglial activation in vitro, as indicated by the overproduction of TNF-q, IL-13, and
NO. Global cerebral ischemia/reperfusion injury induced microglial activation and the release of pro-inflammatory
cytokines in the hippocampus. OGD also downregulated miR-181c expression and upregulated TNF-a expression.
Overproduction of TNF-a after OGD-induced microglial activation provoked neuronal apoptosis, whereas the
ectopic expression of miR-181c partially protected neurons from cell death caused by OGD-activated microglia.
RNAinterference-mediated knockdown of TNF-a phenocopied the effect of miR-181c-mediated neuronal protection,
whereas overexpression of TNF-a blocked the miR-181c-dependent suppression of apoptosis. Further studies
showed that miR-181c could directly target the 3-untranslated region of TNF-a mRNA, suppressing its mRNA and
protein expression.

Conclusions: Our data suggest a potential role for miR-181c in the regulation of TNF-a expression after ischemia/
hypoxia and microglia-mediated neuronal injury.
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Background

Microglia are the resident innate immune cells of the CNS.
Microglia display a quiescent phenotype in the healthy
brain, but they become highly activated after brain insult,
when they produce reactive oxygen and nitrogen species
and pro-inflammatory cytokines [1-5]. Therefore, micro-
glial cells play important roles in the surveillance of and re-
sponse to pathological insults [6]. The available evidence
has indicated that microglial activation results in the over-
production of pro-inflammatory cytokines, which may
contribute to the development and progression of neuro-
degenerative disorders [7]. For example, activated microglia
and their secreted factors, such as tumor necrosis factor
(TNF)-a, are key mediators of neuroinflammation, which
have been shown to correlate with neurodegenerative dis-
eases such as Alzheimer’s disease [8,9], Parkinson’s disease
[10,11] and HIV-associated dementia [12,13]. In addition,
activated microglia, by releasing pro-inflammatory cyto-
kines, participate in the inflammatory response associated
with cerebral ischemia[1]. Overproduction of inflammatory
factors from ischemia-activated microglia is thought to me-
diate post-ischemic neuronal damage [14].

MicroRNAs (miRNAs) are a class of small non-coding
RNA molecules, 22to 25 nucleotides in length, that func-
tion in the post-transcriptional regulation of gene ex-
pression. miRNAs bind partly complementary sequences
in mRNAs, targeting them for degradation and/or inhi-
biting their translation, and thereby downregulating the
expression of the targeted proteins [15]. Dysregulation
of miRNAs has been shown to contribute to many types
of human diseases, including neuronaldisorders [16-18].
However, there are almost no data on the miRNA ex-
pression profiles of microglial cells exposed to hypoxia.
Although microglial activation is considered to be the
hallmark of neuroinflammation [7], it remains unknown
whether expression of pro-inflammatory cytokines dur-
ing microglial activation is regulated by miRNAs.

In this study, we used oxygen-glucose deprivation
(OGD)-activated microglial cells, which are characterized
by the overproduction of pro-inflammatory and neurotoxic
factors. Wefound that OGD downregulated miR-181c ex-
pression but upregulated TNF-a expression. The overpro-
duction of TNF-a that followed OGD-induced microglial
activation induced neuronal apoptosis, whereas ectopic ex-
pression of miR-181c partially protected neurons from cell
death caused by OGD-activated microglia. Therefore, our
data suggest an important role for miR-181c in the regula-
tion of TNF-a expression after ischemia/hypoxia and
microglia-mediated neuronal injury.

Methods
Reagents
All cell culture products were purchased from Gibco
(Carlsbad, CA, USA). The following antibodies were
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used: anti-CD11b (Millipore, Bedford, MA, USA), anti-
TNF-a, anti-inducible nitric oxide synthase (iNOS;
Abcam, Cambridge, MA, USA), anti-interleukin (IL)-1p
(Santa Cruz Biotechnology, CA, USA), and anti-
glyceraldehyde 3-phosphate dehydrogenase (GAPDH;
Cell Signaling Technology, Beverly, MA, USA). Recom-
binant soluble (s)TNF was purchased from Peprotech
(Rocky Hill, NJ, USA).

Microglial cell culture

The Shanghai Medical Experimental Animal Care Com-
mittee approved the protocol for this study, and all ani-
mal experiments were conducted in accordance with the
National Institutes of HealthGuidelines for the Care and
Use of Laboratory Animals.

Primary hippocampal microglial cells were isolated
from glial cultures prepared from newborn (less than
24 hours old) Sprague—Dawley (SD) rats(Laboratory Ani-
mal Center, Shanghai Medical College, Fudan University,
Shanghai, China). Glial cells were cultured in 75 cm?
flasks for 14 days in DMEM/F12 (Gibco BRL, Grand
Island, NY, USA) supplemented with 10% FCS(Hyclone,
Logan, UT, USA), 100 U/ml penicillin and 100 mg/ml
streptomycin. Microglia were isolated from primary
mixed glial cell cultures on day 10 by shaking the flasks
overnight at 300 rpm on a rotary shaker at 37°C. The
purity of the microglial cultures was assessed as over
90%, using a CD11b antibody. Cells were cultured for 2
daysbefore treatment.

The BV-2 murine microglial cell line and rat primary-
cultured microglial cells were maintained in DMEM
supplemented with 10% FCS.

Oxygen-glucose deprivation and preparation of microglial
conditioned medium

OGD was performed with the microglial cells as
reported previously [19], with minor modifications.
Briefly, microglial cells were initially maintainedin
serum/glucose-free DMEM in an anoxic (95% N, and
5% CQO,) environment at 37°C for 1 hour. The cells were
then transferred to a normoxic incubator (95% air, 5%
CO,) and maintained in serum-free defined medium.At
48 hours after OGD, the medium conditioned with the
microglial cells was harvested. This fresh, conditioned
medium was cleared by centrifugation and diluted 1:1
with serum-free defined medium, then used to treat the
neurons For all experiments, conditioned media from
the indicated microglia were collected simultaneously
and used in parallel.

Four-vessel occlusion

Transient forebrain ischemia was induced by four-vessel
occlusion (4-VO) as described by Pulsinelli [19]. Briefly,
male Wistar rats weighing 260 to 320 g were anesthetized
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with 4% (w/v) chloral hydrate 400 mg/kg administered
intraperitoneally. The bilateral vertebral arteries were per-
manently electrocauterized and the bilateral common ca-
rotid arteries (CCAs) were freed,then atraumatic clasps
were placed around the CCAs without interrupting the ar-
terial blood flow. The rats were allowed to recover for
24 hours after the surgical incisions were closed. On the
next day, the rats were anesthetized, and forebrain ischemia
was induced by tightening the clasps for 20 minutes. The
clasps were then removed for reperfusion. In sham-
operated groups, the same procedure was performed with-
out the 4-VO procedure.

Tissue preparation

At 3 daysafter ischemia induction, animals were deeply
anesthetized, then killed by perfusion with saline, fol-
lowed by 4% paraformaldehyde in 0.1 mol/L phosphate
buffer (pH 7.4). Brains were removed and post-fixed for
4 hours in the same fixative, then embedded in optimum
cutting temperature compound, and stored at -70°C.
Serial sections (20 um in thickness) were cut on a cryo-
stat. Only those regions that contained the same coronal
plane as the hippocampus were evaluated.

Immunofluorescence

Sections were incubated with primary antibodies against
anti-CD11b (mouse monoclonal antibody; dilution
1:300) and anti-iNOS (rabbit monoclonal; dilution
1:100) overnight at 4°C. After thorough washing, the
cells were incubated with fluorescein isothiocyanate-
conjugated anti-rabbit IgG (goat, 1:500 dilution; Santa
Cruz Biotechnology) or with DyLight 649-conjugated
anti-mouse IgG (goat, 1:500 dilution; Santa Cruz Bio-
technology) for 1.5 hours at room temperature. Finally,
the cells were washed and mounted with mounting
medium containing DAPI (Vector Laboratories). A nega-
tive control, in which the primary antibody was omitted,
was used to test for the specificity of the antibody being
used. The images were captured using a conventional
fluorescence microscope (Leica, Heerbrugg, Switzerland).

Primary culturing of hippocampal neurons

Primary hippocampal neuronal cultures were prepared as
described previously [20]. Briefly, the hippocampi of new-
born (< 24 hours old) SD rats were dissected and incubated
in Hank’s balanced salt solution without Ca** or Mg**. The
tissues were subsequently dissociated using 0.125% trypsin
(Gibco BRL, Grand Island, NY, USA) by digesting for
15 minutes at 37°C followed by gentle trituration through a
flame-polished Pasteur pipette. The dissociated cells were
seeded onto glass coverslips coated with poly-L-lysine (mo-
lecular weight 30,000 to 70,000, 0.1 mg/ml; Sigma-Aldrich,
St. Louis, MO, USA) or into 24-well plates at a density of
1x106 cells/ml. The cells were cultured in serum-free
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medium (Neurobasal-A; Gibco BRL,Gaithersburg, MD,
USA) and supplemented with 2% B27 (Gibco BRL), 10 uL/
ml penicillin-streptomycin and 2 mmol/l glutamine (Solar-
bio). The cells were maintained by changing the medium
every 2-3 days and incubating at 37.8°C in a humidified at-
mosphere containing 5% CO,. The purity of the neuronal
cultures was determined by immunocytochemical staining
using an antibody against neurofilament proteins (a
neuron-specific marker). and more than 90% of the cells
were found to be neurons.

Hoechst staining assay for apoptosis

For Hoechst 33342 staining, neurons were fixed in 4%
paraformaldehyde and incubated for 10 minutes at room
temperature with 5 pg/ml Hoechst 33342 (Sigma Chem-
ical Co, St. Louis, MO). Cells were analyzed using a con-
ventional fluorescence microscope (Leica), and the
neurons with clearly condensed and segmented chroma-
tin were counted as apoptotic. For all of the groups, 300
cells (including the normal and apoptotic cells) were
counted manner using fluorescence microscopy by a re-
searcher blinded to the treatment given. Three inde-
pendent experiments were performed for each group.

RNA isolation, microarrays, and real-timePCR

Total RNA was extracted from the BV-2 or primary cul-
tured cells (both with and without OGD treatment) using
TRIzol reagent (Invitrogen, San Diego, CA, USA) in ac-
cordance with the manufacturer’s instructions. Small RNAs
were isolated using a commercial kit (miRNA Isolation Kit;
Ambion, Inc., Austin, TX, USA). Array experiments were
performed by a company (CapitalBio Corp., Beijing, China)
as described on the company’s website (http://www.capital-
bio.com) and in previous reports [21,22], using an miRNA
array (GeneChip miRNA Array; Affymetrix Inc., Santa
Clara, CA, USA),which is composed of 6,703 probe sets
from the miRNAs registered in the Sanger miRBase
miRNA database (version 11; http://microrna.sanger.ac.uk;
accessed 15 April 15 2008). Semi-quantitative real-time
PCR, using SYBR Green I, was conducted to compare the
relative expression levels of specific mRNAs, as described
previously [23]. TagMan miRNA assays (Applied Biosys-
tems Inc., Carlsbad, CA, USA) were used to quantify ma-
ture miRNA expression levels,in accordance with the
manufacturer’s protocol. For each of the selected miRNAs,
real-time PCR measurements were performed to obtain a
mean Cr value for each sample. The Crt valuesof the differ-
ent samples were compared using the 2-*2“T method [24],
and U6 expression levels were used as an internal
reference.

Western blotting analysis
Western blotting was performed as described previously
[25]. Briefly, total protein was extracted from cultured
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cells and quantified using a commercial bicinchoninic
acid (BCA) kit(BCA Protein Assay Kit; Pierce Biotech-
nology Inc., Rockford, IL, USA) with BSA as the stand-
ard. Equal amounts of protein from different cells were
separated by 10% SDS-PAGE and transferred to a nitro-
cellulose membrane (Bio-Rad, Hercules, CA, USA). The
membrane was blocked with 5% non-fat milk, and incu-
bated with primary antibodies against TNF-o (rabbit
polyclonal; 1:500 dilution) and GAPDH (rabbit mono-
clonal; 1:3000 dilution). The blots were then incubated
for 2 hours at room temperature with horseradish
peroxidase-conjugated secondary antibodies (goat;
1:3000 dilution) in blocking buffer and appropriate sec-
ondary antibodies. Target proteins were detected using
an enhanced chemiluminescence kit (Amersham Phar-
macia Biotech, Uppsala, Sweden).

Measurement of cytokine release by enzyme-linked
immunosorbent assay

To detect the levels of pro-inflammatory factors in the
hippocampus, rats were killed at defined time points.
Brain homogenates were obtained from the hippocampi
,and separated by centrifugation at 14,000 g for 5 minutes
at 4°C to remove cellular debris. The supernatant was
stored at —80°C until use. To detect cytokine secretion
in microglial supernatants in response to OGD, cells
were plated intosix-well plates and exposed to OGD or
normoxic conditions, as described above. After 48 hours,
the media were collected and stored at —80°C until use.
The concentrations of IL-1p and TNF-a in the stored
media were measured using a sandwich ELISA kit (Duo-
Set; R&D Systems, Minneapolis, MN, USA).

Nitric oxide production assay

Nitric oxide (NO) levels were determined by measuring
the levels of the stable metabolite nitrite in the culture
medium, as described previously [26]. Briefly, BV-2 or
primary rat microglial cells in 24-well plates (2 x 10°
cells in 500 ml/well) were exposed to OGD. Sample ali-
quots (100 ml) were mixed with 100 ml Griess reagent
and incubated at 25°C for 10 minutes. Absorbance at
550 nm was measured on a microplate reader.

Oligonucleotide transfection

The miRNA duplexes corresponding to miR-181c were
designed as described previously [27]. The control RNA
duplexes (referred to as NC for ‘negative control)
for the miRNA mimics and the small interfering RNAs
(siRNAs) were not homologous to any human gene
sequences. The siRNAs were synthesized by targeting
mouse TNF-a (GenBank accessnumber NM_013693)
transcripts. The sequences of the RNA oligoribonucleo-
tides (Genepharma, Shanghai, China)are shown in
Table 1. Oligonucleotide transfection was performed
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Table 1 The sequences of the RNA oligoribonucleotides
used for transfection

Name Direction Sequence (5'—3)

miR-181c mimic Forward AACAUUCAACCUGUCGGUGAGU
Reverse UCACCGACAGGUUGAAUGUUUU

NC Forward UUCUCCGAACGUGUCACGUTT
Reverse ACGUGACACGUUCGGAGAATT

TNF-a siRNA Forward UGAGGUCAAUCUGCCCAAGUACUUA
Reverse UAAGUACUUGGGCAGAUUGACCUCA

miR, microRNA; NC, negative control; TNF-a siRNA, tumor necrosis factor-a
small interfering RNA.

with commercialreagents (Lipofectamine 2000; Invitro-
gen Corp.). Each transfection used 50 nmol/L of RNA
duplexes.

Vector construction and luciferase reporter assays

To generate the miR-181c expression vector, the miR-
181c gene was amplified from mouse genomic DNA and
cloned into the pcDNA3.0 vector (Invitrogen Corp.).
The open reading frame of the mouse TNF-a gene was
amplified and cloned into the pcDNA3.0 vector. The
luciferase complexes were constructed by ligating oligo-
nucleotides containing the wild-type or mutated putative
target site of the mouse TNF-a 3'-untranslated region
(UTR) into the multi-cloning site of the p-MIR lucifer-
ase reporter vector (Ambion Inc., Austin, TX, USA).
HEK293 or BV-2 cells were cotransfected with 80 ng of
the luciferase reporter plasmid, 40 ng of the pRL-TK-
Renilla-luciferase plasmid (Promega Corp., Madison, W1,
USA), and the indicated RNAs (final concentration 20
nmol/l). At 24 hours after the transfection, the firefly
and Renilla luciferase activities were measured (Dual-
Luciferase Reporter Assay; Promega Corp.). Each trans-
fection was repeated twice in triplicate.

Statistical analyses

All data are expressed as the mean+SE of at least
three independent experiments performed in triplicate.
Statistical analyses were performed using ANOVA
models and Student’s f-tests. P<0.05 were considered
significant.

Results

Hypoxia/ischemia induces microglial activation and the
release of pro-inflammatory cytokines and

neurotoxic factors

Microglia activated by ischemic conditions have been
shown to release pro-inflammatory and neurotoxic
factors, such as IL-1, TNF-a and NO, which may be
responsible for severe brain-tissue damage [2,3].
Therefore, real-time PCR and ELISA were used to as-
sess the induction of IL-1p and TNF-a in BV-2 micro-
glia exposed to OGD. BV-2 cells were activated after
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Figure 1 Hypoxia/ischemia induces microglial activation and the release of pro-inflammatory cytokines and neurotoxic factors. (A-C)
BV-2 cells were exposed to oxygen-glucose deprivation (OGD), and the mRNA levels of the pro-inflammatory cytokines (A)tumor necrosis factor
(TNF)-a, (B) interleukin (IL)-1B and (C)inducible nitric oxide synthase (iNOS) were evaluated using real-time PCR at 3 hoursafter OGD treatment.
(D-E) The release of(D) TNF-a (E) and IL-1( into the medium of BV-2 cells was measured by ELISA at 48 hours after OGD. (F) The release of NO
into the medium of BV-2 cells was measured by the Griess assay. Results are presented as the mean + SE from three independent experiments.
(G) Brain homogenates were obtained from the hippocampus 3 daysafter transient global cerebral ischemia/reperfusion (I/R) injury. The
supernatant concentrations of IL-13 and TNF-a were tested by ELISA. (H) Sections from rat brain taken 3 daysafter I/R injury were incubated with
primary antibodies against CD11b and iNOS. Representative immunoreactivities in the hippocampal CA1 region are shown. Photomicrographs are
shown at x400 magnification. ‘Ctrl" (control) represents the microglial cells that were not subjected to OGD treatment. *P < 0.05.

OGD (Figure 1), characterized by the overexpression
of IL-1p and TNF-a mRNA as detected by real-time
PCR, and by the secretion of the cytokines IL-1p and
TNF-a as detected by ELISA. In addition, OGD caused
expression of iNOSand mRNA, and overproduction of
the neurotoxic factor, NO (Figure 1C,F).

We further confirmed these effects in a rat model. We
induced 20 minutes of global cerebral ischemia by 4-VO
in rats, and studied the microglial activation and release
of pro-inflammatory cytokines in the hippocampus.
We evaluated microglial activation 3 days afterl/R. We
detected increased levels of IL-1B and TNF-a in the
hippocampus by ELISA (Figure 1G). After 3 days of I/R,
the number of microglia was markedly increased in
the hippocampal CA1 region. By contrast, only a few
scattered ramified microglia (resting microglia) were
seen in sham-operated rats (Figure 1H). In addition, im-
munofluorescence showed that transient global cerebral
I/R significantly increased expression of iNOS in the
hippocampus (Figure 1H). These results indicate that
hypoxia/ischemia induces microglial activation and the

release of pro-inflammatory cytokines and neurotoxic
factors.

Oxygen-glucose deprivation upregulates tumor necrosis
factor-a expression and downregulates microRNA
(miR)-181c expression in BV-2 cells

We further evaluated the miRNA expression profiles of the
OGD-activated BV-2 cells compared with the resting cells
by miRNA microarray. The thresholdfoldchange value to
screen for upregulated and downregulated miRNAs was
>1.5. In total, 26 miRNAs that exhibited significantly
altered expression levels between the hypoxic and nor-
moxic conditions were identified. Of these 26 miRNAs, 7
were upregulated and 19 were downregulated. miR-181c
exhibited the highest degree of downregulation in the acti-
vated microglia (Figure 2A). Subsequent database searches
of both the TargetScan (http://www.targetscan.org) and
Sanger (http://microrna.sanger.ac.uk) sitesshowed that
TNF-a mRNAs have conserved miR-181c recognition sites
in their 3'-UTRs (Figure 2B). It is generally accepted that
miRNAs exert their function by downregulating the
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expression of their downstream target genes. To confirm
this inverse correlation between the expression of miR-
181c and TNF-a found in this study, we measured the
mRNA expression levels of TNF-a at different time points
after OGD treatment. TNF-« exhibited increased levels of
mRNA expression, whereas expression of miR-181c was
significantly decreased after treatment (Figure 2C). These
results confirmed an inverse correlation between expres-
sion of miR-181c and TNF-a during hypoxia-induced
microglial activation.

Tumor necrosis factor-a is a direct target of microRNA
(miR)-181c

As detailed above, OGD upregulated TNF-a and down-
regulated miR-181c expression in microglial cells. We
hypothesized that increased TNF-a production might re-
sult from the downregulation of miR-181c. To address
this hypothesis, a dual-luciferase reporter system was
used (Figure 3A). Coexpression of miR-181c significantly
suppressed the firefly luciferase reporter activity of the
wild-type 3'-UTR but not of the mutant 3'-UTR in both
HEK193T (Figure 3B) and BV-2 cells (Figure 3C), indi-
cating that miR-181c suppresses TNF-a expression
through miRNA binding sequences in its 3-UTR. Fi-
nally, BV-2 cells were transfected with the NC or miR-

181c duplexes. miR-181c was capable of significantly
suppressing the mRNA and protein expression of
TNE-a (Figure 3D). Taken together, this result suggests
that miR-181c suppresses TNF-a expression by binding
to the 3-UTR, and that TNF-a is a direct target of
miR-181c.

Ectopic expression of microRNA (miR)-181c attenuates
oxygen-glucose deprivation-activated BV2-induced
neuronal apoptosis

TNF-a is a key pro-inflammatory cytokine, and
increased levels of this cytokine have been associated
with the pathology of a variety of neurological, neurode-
generative, and neurotoxic conditions [28]. TNF-a can
activate receptor-mediated pro-apoptotic pathways
within the neuron. TNF-a can also stimulate microglial
activation in the form of iNOS induction, which leads to
the production of NO, a neurotoxic factor associated
with brain injury [29]. Therefore, we transfected micro-
glial cells with NC or miR-181c mimics and treated the
microglial cells with OGD. Evaluation of the harvested
microglia-conditioned mediumshowed that the miR-
181c-transfected cells secreted less TNF-a after OGD
(Figure 4A). In addition, the miR-181c-transfected
cells exhibited decreased iNOS expression and NO
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production (Figure 4B). To confirm whether the ectopic
miR-181c expression was able to attenuate activated
microglia-induced neuronal death, neurons were
exposed to cell-free conditioned medium collected from
microglia with or without the ectopic expression of miR-
181c. The ectopic expression of miR-181c significantly
reduced the neuronal apoptosis induced by OGD-
activated microglia (Figure 4C,D), suggesting that ec-
topic expression of miR-181c attenuates OGD-activated
BV2-induced neuronal apoptosis.

microRNA (miR)-181c controls microglia-mediated
neuronal apoptosis and is dependent on tumor

necrosis factor-a

To clarify the role of microglia-derived TNF-a in miR-
181c-mediated neuronal apoptosis, we first tested the
capacity of TNF-« to trigger death in cultured neurons.
We found that addition of soluble (s)TNF-a to the
neuron culture triggered apoptosis in a dose-dependent
manner (Figure 5A). Furthermore, addition of sTNF-a
significantly abrogated miR-181c-mediated neuronal sur-
vival (Figure 5B). Next, the effects of TNF-a silencing on
neuronal apoptosis were determined. We found that

silencing of TNF-a in the microglia-conditioned media
significantly =~ decreased both TNF-a production
(Figure 5C) and microglia-mediated neuronal apoptosis
(Figure 5D), which was similar to the phenotype induced
by miR-181c. By contrast, the ectopic expression of
TNF-a using a TNF-a expression vector that encoded
the entire coding sequence of TNF but lacked its 3'-
UTR expression significantly abrogated miR-181c-
induced neuronal survival (Figure 5E,F), indicating that
TNF-a is a functional target for miR-181c.

microRNA (miR)-181c controls tumor necrosis factor-a
production in primary rat microglial cells

To confirm the observations from the primary rat micro-
glia, primary-culturenewborn rat microglial cells were
used. As seenwith the BV-2 cells, miR-181c transfection
significantly suppressed basal TNF-a mRNA and protein
expression levels (Figure 6A,B). In addition, OGD led to
overproduction of secreted TNF-a in the primary rat
microglia, whereas ectopic expression of miR-181c sig-
nificantly reduced TNF-a production (Figure 6C). This
system was also used to confirm that ectopic expression
of miR-181c-attenuated neuronal death was caused by
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activated primary rat microglia (Figure 6D). Finally, as
seen with the BV-2 cells, we found that miR-181c inhib-
ited OGD-induced iNOS expression and NO production
in primary rat microglia (Figure 6E,F). Taken together,
the results indicate that miR-181c controls microglia-
mediated neuronal apoptosis by suppressing TNF-a pro-
duction (Figure 7).

Discussion

To our knowledge, this study is the first to report the
miRNA expression profile of microglial cells exposed to is-
chemia, although it is already becoming clear that miRNA-
dependent post-transcriptional gene regulation plays pivotal
roles at all stages of neural development [30]. In addition,
for the first time, we have also identified in microglia a
microRNA, miR-181c, whichcan directly regulate TNF-a
production post-transcription.

Inflammation is an underlying component of a diverse
range of neurodegenerative diseases and their associated
neuropathologies. Increasing evidence suggests that micro-
glia are a key causative factor in this process [7,31]. Acti-
vated microglia serve initially to phagocytose necrotic
debris, which allows for the eventual healing of the injured
brain. However, under pathological conditions, activated

microglia can induce significant and strongly detrimental
neurotoxic effects through excess production of a large
array of cytotoxic factors, such as IL-1B, NO, reactive oxy-
gen species (ROS), and TNF-a [1,32]. In our study, we
found that OGD upregulated IL-1B, TNF-a, and iNOS.
However, although microglial activation is considered to be
a hallmark of neuroinflammation, whether the expression
of pro-inflammatory cytokines is regulated by miRNAs dur-
ing microglial activation has not been previously deter-
mined. Therefore, after identifying the miRNA profile of
ischemia-activated microglia, we investigated the correl-
ation between altered miRNA expression and pro-
inflammatory cytokines.

TNF-«a is a key pro-inflammatory cytokine that has been
reported to play an important role in the events that follow
ischemia [33]. Increased levels of TNF-a have been asso-
ciated with the pathological effects of a variety of infectious,
neurological, neurodegenerative, and neurotoxic conditions
[33]. We analyzed the predicted TNF-a-regulating miR-
NAs that were downregulated in activated microglial
cells, and found that TNF-a might be regulated by miR-
181c. To better understand this regulatory relationship,
the capacity of miR-181c to directly regulate TNF-a ex-
pression by binding to its 3/-UTR was confirmed. To
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determine whether the dysregulated miRNAs were role because they may act upstream of several anti-
functional, we confirmed that ectopic expression of inflammatory genes.

miR-181c resulted in decreased release of TNF-a from An increasing body of evidence indicates that oxidative
the microglial cells and decreased neuronal apoptosis.  stress resulting from excessive generation of ROS and
Silencing TNF-a also produced a significant decrease in  reactive nitrogen species (RNS) is a causal factor in vari-
neuronal apoptosis in microglia-conditioned media, ous neurodegenerative disorders [34]. The interaction
which was similar to the phenotype induced by miR- between NO and superoxide anion-forming toxic perox-
181c. Additionally, ectopic TNF-a expression signifi- ynitritehas been proposed as being involved in neuronal
cantly abrogated the neuronal survivalinducec by miR-  injury [35,36]. TNF-a can activate receptor-mediated
181c. All these results suggest that miRNAs represent en-  proapoptotic pathways within the neuron, and can fur-
dogenous functional microglial moleculesthat respond to  ther stimulate the microglia through iNOS and cycloox-
ischemia and produce a neurotoxic phenotype in micro- ygenase 2 induction [28,29]. Therefore, inhibition of
glia. Taken together, the results from our study suggest TNF-a production is expected to be beneficial in
that some miRNAs lie upstream of pro-inflammatory inflammation-related neurological disorders. In our
cytokines or other inflammatory mediators. However, we  study, we found that OGD resulted in increased produc-
cannot exclude the possibility that some of the miRNAs  tion of NO, whereas ectopic expression of miR-181c
that were upregulated in the activated microglia play a  could suppress expression of iNOS, leading to decreased
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production of NO. Therefore, our study indicates an im-
portant role of miR-181c in TNF-a-mediated neurotox-
icity after ischemia (Figure 7).

Our study also demonstrates the importance of inves-
tigating the mechanisms underlying cytokine regulation
when studying the effect of cytokines on neuronal injury,
because this information may facilitate the development
of more effective therapeutic interventions. Previous
studies have shown enhancement of neuronal damage by
TNE-a in vivo in ischemia models. For example, intra-
cerebroventricular administration of TNF-a increased
the lesional area produced by focal ischemia, whereas in-
hibition of TNF-a activity by administration of soluble
TNE-a receptors or anti-TNF-a antibodies reduced the
ischemic damage [37]. Clinical studies on the effects
produced by modification of cytokines in CNS disease
are currently underway. At present, the main challenge
is to deliver sufficient levels of cytokines or their modi-
fiers to the ischemic or injured brain. miRNAs may rep-
resent a new drug target class. By taking advantage of
their small size and the current knowledge of miRNA
biogenesis, modified RNAs can be transiently delivered
as synthetic, pre-processed miRNAs or as anti-miRNA
oligonucleotides [38].

Delivering an miRNA that reduces the protein levels of
target genes linked to a particular disease by post-
transcriptional regulation or that targets a particular func-
tional miRNA linked to a particular disease represents new
therapeutic options. A recent study has shown that the
in vivo administration of miR-124 suppresses experimental
autoimmune encephalitisby affecting macrophages, sug-
gesting that miRNA delivery could be used to treat some
inflammatory diseases associated with microglial activation
[39]. A recent report also showed that another member of
the miR-181c family, miR-181a, could influence cerebral is-
chemia outcomes in vitro and in vivo by regulating GRP78
expression in astrocytes [40]. Collectively, all of these stud-
ies have indicated that manipulating miRNA levels could
be a potential treatment strategy for ischemic brain injury.

Conclusions

We identified a correlation between miRNA levels and
the expression of genes involved in pro-inflammatory
cytokine production. We also characterized one particu-
lar molecular series, the miR-181c-TNF-a pathway,
which is partially responsible for microglia-mediated
neuronal apoptosis. Our data suggest a potential role for
miR-181c in the regulation of TNF-a expression after is-
chemia/hypoxia and microglia-mediated neuronal injury.
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