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Abstract

Background: Altered permeability of the blood-brain barrier (BBB) is a feature of numerous neurological conditions
including multiple sclerosis, cerebral malaria, viral hemorrhagic fevers and acute hemorrhagic leukoencephalitis. Our
laboratory has developed a murine model of CD8 T cell-initiated central nervous system (CNS) vascular permeability
in which vascular endothelial growth factor (VEGF) signaling plays a prominent role in BBB disruption.

Findings: In this study, we addressed the hypothesis that in vivo blockade of VEGF signal transduction through
administration of peptide (ATWLPPR) to inhibit neuropilin-1 (NRP-1) would have a therapeutic effect following
induction of CD8 T cell-initiated BBB disruption. We report that inhibition of NRP-1, a co-receptor that enhances
VEGFR2 (flk-1) receptor activation, decreases vascular permeability, brain hemorrhage, and mortality in this model of
CD8 T cell-initiated BBB disruption. We also examine the expression pattern of VEGFR2 (flk-1) and VEGFR1 (flt-1)
mMRNA expression during a time course of this condition. We find that viral infection of the brain leads to increased
expression of flk-1 mMRNA. In addition, flk-1 and flt-1 expression levels decrease in the striatum and hippocampus in
later time points following induction of CD8 T cell-mediated BBB disruption.

Conclusion: This study demonstrates that NRP-1 is a potential therapeutic target in neuro-inflammatory diseases

permeability.

\

involving BBB disruption and brain hemorrhage. Additionally, the reduction in VEGF receptors subsequent to
BBB disruption could be involved in compensatory negative feedback as an attempt to reduce vascular
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Findings

Disruption of the blood—brain barrier (BBB) is a hall-
mark feature of numerous neurological disorders as di-
verse as multiple sclerosis, stroke, epilepsy, infection,
cerebral malaria and acute hemorrhagic leukoencephali-
tis (AHLE) [1-4]. Immune cells have been linked to cen-
tral nervous system (CNS) vascular permeability and the
ensuing neuropathology in all of the aforementioned
conditions. Therefore, defining mechanisms by which

* Correspondence: johnson.aaron2@mayo.edu

"Equal contributors

"Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH
45267, USA

4Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA

Full list of author information is available at the end of the article

( BioMVed Central

immune cells promote BBB disruption is of paramount
importance for understanding numerous neurologic dis-
eases and developing therapeutic strategies to treat or
prevent them. One cytokine, vascular endothelial growth
factor (VEGF), has been strongly implicated in vascular
permeability. Nevertheless, a complete mechanism by
which VEGF contributes to BBB dysregulation under
neuro-inflammatory conditions has yet to be elucidated
[5]. VEGF has been implicated in the vascular perme-
ability condition associated with Dengue hemorrhagic
fever (DHF) as well as cerebral malaria [6,7]. Signaling
by VEGF occurs via activation of its high affinity recep-
tors. Among these, VEGF receptor flk-1 is thought to
play the most prominent role in angiogenesis and vascu-
lar permeability as it is highly expressed on cerebral
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endothelial cells. Upon binding by VEGE, flk-1 under-
goes phosphorylation at several tyrosine residues achiev-
ing an activated state [8]. Neuropilin-1 (NRP-1), a VEGF
co-receptor, is a non-tyrosine kinase transmembranous
glycoprotein that enhances the interaction of VEGF with
flk-1 and amplifies the angiogenic effects of this signal
transduction [9-11].

To study the interaction between antigen-specific CD8
T cells and the neurovascular unit (NVU) under neuro-
inflammatory conditions, our laboratory has developed
an in vivo model using a variation of the Theiler’s mur-
ine encephalomyelitis virus (TMEV) infection commonly
used to study multiple sclerosis [12-15]. Through the
use of this model system, we recently reported that
VEGF mRNA is expressed predominantly in neurons, as
early as two hours post-induction of CD8 T cell-initiated
permeability. Detectable signal transduction was
observed with phosphorylation of VEGF receptor flk-1
significantly increasing shortly thereafter. In these stud-
ies, we determined that inhibition of neuropilin-1 pre-
vented increased phosphorylation of flk-1, reduced CNS
vascular permeability, and preserved microvessel protein
levels of the BBB tight junction protein, occludin. These
observations supported a hypothesis in which CD8 T
cell-initiated BBB disruption was occurring through
neuronal expression of VEGF, VEGF signal transduction,
and ultimately ablation of BBB tight junctions in CNS
microvessels [16]. In the current study, we assessed flk-1
and flt-1 mRNA expression in the brain during the
course of CD8 T cell-initiated CNS vascular permeabil-
ity. We also determined the extent by which neuropilin-
1 receptor inhibition reduces vascular permeability and
hemorrhage formation as measured by gadolinium-
enhanced T1-weighted and T2*-weighted magnetic res-
onance imaging (MRI), respectively.

CNS vascular permeability was induced as described
previously [12]. Briefly, C57BL/6 mice were infected
intracranially with 2 x 10° PFU Daniel’s strain of TMEV.
Seven days post-TMEV infection, mice were injected
intravenously with 0.1 mg VP25, 130 (FHAGSLLVFM)
peptide (GenScript Corp. Piscataway, NJ, USA) to initi-
ate CD8 T cell-initiated BBB disruption. We have previ-
ously published that virus infection alone is not
sufficient to induce overt BBB disruption. Seven-day
TMEV-infected mice have minimal CNS vascular per-
meability, normal BBB tight junctions, and lack microhe-
morrhages [14-16]. Mice were euthanized at various
time points following this induction to analyze gene ex-
pression events, vascular permeability, hemorrhage and
overall survival. All experiments were approved by the
Institutional Animal Care and Use Committee of the
University of Cincinnati.

To determine the contribution of neuropilin-1 inhibition
in reducing CNS vascular permeability, microhemorrhage,
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and overall survival, 3 mg of ATWLPPR peptide or PBS
(sham treatment) was intravenously injected at —30 min-
utes, 3 hours, 6 hours and 9 hours post-administration of
VP2141.130 to initiate CD8 T cell-initiated BBB disruption.
Twenty-four hours post-VP2i5; 130 peptide administra-
tion, mice were scanned using gadolinium-enhanced T1-
weighted MRI to assess CNS vascular permeability and
T2/T2*-weighted MRI to assess hemorrhage formation
according to our previously published methods [14].
Analyze 10 software developed by the Mayo Clinic was
used to quantify the three-dimensional volume of gado-
linjum leakage from vasculature as well as the volume of
microhemorrhage. Treatment with NRP-1 inhibitor
(n=4) markedly reduced three-dimensional gadolinium
enhancement leakage when compared to PBS-treated
controls (n=2) (P<0.001, Student’s ¢-test) (Figure 1A-C).
Treatment with NRP-1 inhibitor (n=5) also significantly
reduced microhemorrhage formation when compared to
treatment with PBS (n=4) (P=0.023, Student’s t-test)
(Figure 1D-H). In addition, inhibiting NRP-1 significantly
increased survival of mice administered VP25, 3, peptide
undergoing CD8 T cell-initiated BBB disruption
(P=0.014, Kaplan-Meier survival curve analysis). Mice
were monitored for 72 hours post-administration of
VP2151.130 peptide and did not receive additional NRP-1
inhibitor treatment past the 9-hour time point. We also
determined that treatment with NRP-1 inhibitor did not
alter viral loads when compared to treatment with PBS
using quantitative real time (RT)-PCR to detect viral
RNA as a ratio to actin mRNA (PBS group mean=
57027 + SD 12287, 3 mg NRP-1 inhibitor mean = 43687
+15474, P=0.519, Students t-test). Additionally, vascu-
lar permeability was analyzed by quantifying fluorescein
isothiocyanate (FITC)-albumin leakage into the brain in
mice administered normal goat serum (n=2; 0.750 mg),
DC101 antibody to flk-1 (n=4; 0.500 mg), or DC6.12
antibody to flt-1 (n=4; 0.750 mg) 2 days prior, to deter-
mine the contribution of VEGF receptors to CNS vascu-
lar permeability. We determined that pre-treatment with
DC101, but not DC6.12, significantly reduced CNS vas-
cular permeability when compared to treatment with
normal goat serum (P=0.003) (Figure 1I). This further
supports our hypothesis that VEGF plays a role in BBB
disruption through binding receptor flk-1.

To further extend our previous study [16], we per-
formed an analysis of VEGF receptor gene expression
following induction of CD8 T cell-initiated BBB disrup-
tion. In situ hybridization was carried out on fresh-fro-
zen, cryostat-cut (at 10-pm thickness), slide-mounted
sections throughout the brain. Semi-adjacent sections
were hybridized with >°S-labeled cRNA sense (control)
and anti-sense probes for detection and localization of
VEGEF receptors flk-1 and flt-1 mRNAs according to our
previously published protocol [16,17]. The flk-1 and flt-1
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Figure 1 NRP-1 inhibition reduces central nervous system (CNS) vascular permeability, microhemorrhage formation, and morbidity
following induction of CD8 T cell-initiated blood-brain barrier (BBB) disruption. We present the three-dimensional volume of gadolinium
leakage as measured using T1-weighted magnetic resonance imaging (MRI) in a representative animal treated with (A) phosphate-buffered saline
(PBS) or (B) NRP-1 inhibitor, 24 hours post-induction of vascular permeability with intravenous injection of VP21,1.130 peptide. In (C), we
demonstrate reduced three-dimensional volumes of gadolinium leakage in animals receiving NRP-1 inhibitor as compared to sham PBS-treated
controls (P<0.001). T2 MRI was performed on animals receiving (D) sham PBS treatments or (F) NRP-1 inhibitor. Following these scans, the
ventricle size was determined (red outline) and subsequently not included in the analysis of microhemorrhage area (green outlines) determined
in (E) PBS-treated and (G) NRP-1 inhibitor-treated groups analyzed by T2*-weighted MRI. Using this method of analysis, we observed reduced
microhemorrhage in NRP-1 inhibitor-treated animals as compared to PBS-treated controls (P=0.023). All MRI scans were analyzed blind before
breaking the code of each treatment group. (I) Quantification of FITC-albumin leakage into the brain reveals that pretreatment with DC101
antibody to flk-1, but not DC6.12 antibody to flt-1, is effective in reducing CNS vascular permeability (P=0.003). In (J), administration of NRP-1
inhibitor enhances survival of mice undergoing CD8 T cell-initiated CNS vascular permeability (P=0.014).

c¢DNA plasmids were contained in a pGEMS3 vector and  linearized c¢DNA plasmids using the proper RNA
consisted of 390 bp and 660 bp, respectively (kindly pro-  polymerase in the presence of excess *°S-UTP (Perki-
vided by LF Brown, Harvard University [18]). Labeled nElmer, Waltham MA, USA) and were generated as pre-
probes were prepared by in vitro transcription from  viously described [19]. The pretreated sections were
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incubated overnight at 60 °C in hybridization solution
consisting of 50% de-ionized formamide, 10% dextran
sulfate, 20 mM Tris—HCl, 1 mM EDTA, 1X Denhardt’s
solution, 0.33 mg/ml denatured salmon sperm DNA,
0.15 mg/ml tRNA, 40 mM dithiothreitol, DEPC H,O
and the 3°S-labeled probe at a concentration of
1x10° cpm/50 pl. After hybridization, sections were
washed in a series of standard saline citrate washes
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including a ribonuclease A treatment. Slides were then
exposed to BioMax MR film (Kodak, Rochester NY,
USA) for 8 days for generation of film autoradiographs.
The films were developed with Kodak GPX developer
and fixer. Semi-quantitative analysis of the dorsal hippo-
campus (including the dentate gyrus granule cell layer,
hippocampal principal cell layers and molecular layers)
and striatum ipsilateral to the hemisphere of TMEV
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Figure 2 Analysis of vascular endothelial growth factor (VEGF) receptors flk-1 and flt-1 mRNA expression in brain using in situ
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hybridization. Flk-1 and flt-1 mRNA hybridization was determined in uninfected, sham-infected, Theiler's murine encephalomyelitis virus (TMEV)-
infected animals, and in mice at 2, 4, 12 and 24 hours post-induction of CD8 T cell-initiated BBB disruption through administration of VP2;5.130
peptide. We present semiquantitative analysis of flk-1 expression in (A) the striatum and (B) the hippocampus of uninfected, saline-treated (sham),
TMEV-infected and VP25, 430 peptide-administered animals. Also shown is semiquantitative analysis of flt-1 expression in (C) the striatum and (D)
the hippocampus of uninfected, phosphate-buffered saline (PBS)-treated (sham), TMEV-infected and VP2;51.139 peptide-administered animals
undergoing CD8 T cell-initiated BBB disruption (P < 0.05). (E) Representative film autoradiographs depicting flk-1 mRNA expression in the
hippocampus (top row) and striatum (bottom row) of TMEV-infected mice. The expression of flk-1 mRNA appears to be altered in TMEV-injected
animals prior to induction of vascular permeability (0 hours). Flk-1 mRNA levels then decline by 4 hours after induction of vascular permeability,

and returned to normal levels by 24 hours (compare 24 h with Ul). Arrows indicate the hippocampus (top panel) or the striatum (bottom panel).
h, hours; Ul, uninfected.
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infection was performed using optical density measure-
ments (Scion Image software, National Institutes of
Health). The corrected grey levels were generated by
subtracting a background measurement (taken from a
non-tissue-containing area on the same slide) from the
optical density measurements in the hippocampus or
striatum for each section. No specific labeling was
obtained with the control sense riboprobes. Mean and
standard error values for in situ hybridization measure-
ments were calculated using software program Sigma-
Stat (SYSTAT Software Inc, San Jose CA, USA). Bar
graphs with standard error values were plotted on soft-
ware program SigmaPlot (SYSTAT Software Inc).

In Figure 2A and B, we demonstrate that at seven days
post-TMEV infection, there is significantly increased ex-
pression of flk-1 mRNA in the hippocampus (n=4 for
both sham and TMEV infected animals, P=0.016) and
striatum (n=4 for both sham and TMEYV infected ani-
mals; P=0.025) when compared to sham controls, in
which sterile PBS is intracranially administered to the
brain. These data also demonstrate that flk-1 mRNA ex-
pression is decreased in the hippocampus (n=4;
P=0.005) and striatum (n=4; P=0.009) by 12 hours
post-administration of VP2,;.130 peptide, returning to
similar expression levels as sham-treated animals. Unlike
flk-1 mRNA expression, flt-1 mRNA expression in the
hippocampus and striatum remains unaltered 7 days
post-TMEV infection (Figure 2C and D). However, flt-1
mRNA expression is significantly decreased in the hippo-
campus by 12 hours post-administration of VP25 139
(n=4; P=0.029; Figure 2D) and remained significantly
decreased at 24 hours (n=4; P=0.002). By 24 hours, flt-1
expression is significantly decreased in the striatum (sham
group n=4, 24 hour group n=4; P<0.001; Figure 2C).
We have previously published that vascular permeability
occurs as early as 4 hours post administration of VP2
peptide proportionally with the increase in VEGF cyto-
kine expression [16]. Also in this previous study, flk-1 re-
ceptor becomes phosphorylated at 4 hours post VP2
peptide administration [16]. The reduction of flk-1 and
flt-1 mRNA expression observed in this study are there-
fore indicative of negative regulation of VEGF receptor
gene expression following increased levels of VEGF cyto-
kine and ensuing BBB disruption in these animals.

Using this model system of immune-mediated BBB
disruption, we have demonstrated that intracranial
TMEYV infection alters expression of flk-1, but not flt-1,
mRNA in the CNS. We also show that inhibition of the
VEGEF co-receptor, neuropilin-1, improves survival out-
come in this model. The observation that VEGF receptors
contribute to vascular permeability is prominent in the
literature. Studies in DHF patients have shown that vas-
cular permeability is inversely correlated to the amount of
soluble VEGFR2, the human homolog of flk-1. Levels of
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plasma-soluble VEGFR1, the human homolog of flt-1,
were stable indicating that VEGFR2 is the key receptor
involved in DHF [7]. Based on the results obtained in our
model system, we hypothesize that flk-1 mRNA expres-
sion is upregulated during viral infection to promote
angiogenesis and vascular permeability to enable effective
inflammation necessary to clear pathogens. Furthermore,
this study provides in vivo evidence that NRP-1, a VEGF
co-receptor that has been shown to enhance flk-1 activity,
is a potential target when designing therapies for neuro-
inflammatory CNS conditions in which BBB integrity is
compromised via VEGF-mediated mechanisms.
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