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Abstract

Ccl2 siRNA-injected retinas compared with controls.

Background: The recruitment and activation of inflammatory cells is thought to exacerbate photoreceptor death in
retinal degenerative conditions such as age-related macular degeneration (AMD). We investigated the role of Mller
cell-derived chemokine (C-C moitif) ligand (Ccl)2 expression on monocyte/microglia infiltration and photoreceptor
death in light-mediated retinal degeneration, using targeted small interfering (si)RNA.

Methods: Adult Sprague-Dawley rats were injected intravitreally with 1 ug of either Ccl2 siRNA or scrambled
siRNA, and were then exposed to 1000 lux of light for a period of 24 hours. The mice were given an overdose of
barbiturate, and the retinas harvested and evaluated for the effects of bright-light exposure. Ccl2 expression was
assessed by quantitative PCR, immunohistochemistry, and in situ hybridization. Monocytes/microglia were counted
on retinal cryostat sections immunolabeled with the markers ED1 and ionized calcium binding adaptor (IBA)1, and
photoreceptor apoptosis was assessed using terminal dUTP nick end labeling.

Results: Intravitreal injection of Ccl2 siRNA significantly reduced the expression of Ccl2 following light damage to
29% compared with controls. In retinas injected with Ccl2 siRNA, in situ hybridization and immunohistochemistry
on retinal cryostat sections showed a substantial decrease in Ccl2 within Muller cells. Cell counts showed
significantly fewer ED1-positive and IBAT-positive cells in the retinal vasculature and outer nuclear layer of Ccl2
siRNA-injected retinas, compared with controls. Moreover, there was significantly less photoreceptor apoptosis in

Conclusions: Our data indicate that Ccl2 expression by Muller cells promotes the infiltration of monocytes/
microglia, thereby contributing to the neuroinflammatory response and photoreceptor death following retinal
injury. Modulation of exaggerated chemokine responses using siRNA may have value in reducing
inflammation-mediated cell death in retinal degenerative disease such as AMD.

Background

Microglial cells are a major retinal glial constituent de-
rived from the mononuclear phagocyte lineage, and play a
crucial role as the principle resident immunocompetent
and phagocytic cells of the central nervous system (CNS),
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including the retina. Through persistent surveillance of
their microenvironment, microglia act as motile sensors
that help maintain homeostasis in retina through a variety
of functions, including facilitating phagocytosis of debris
and apoptotic cells [1-3], antigen presentation [4-7], and
secretion of neuroprotective factors [8,9].

Recruitment of microglia/monocytes to damaged re-
gions occurs in almost every pathological condition in the
CNS [10,11], and is apparent in a range of prominent
human retinal pathologies including age-related macular
degeneration (AMD) [2,12-15], retinitis pigmentosa [2],
late-onset retinal degeneration [2], retinal detachment
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[16], glaucoma [17-19], and diabetic retinopathy [17,20], as
well as in many experimental models of retinal degene-
ration [9]. Despite their beneficial properties, widespread
recruitment and activation of microglia may damage
neurons [21-25], probably through their secretion of pro-
inflammatory mediators and cytotoxic factors, such as
tumor necrosis factor (TNF)-a, interleukin (IL)-1p
[10,26,27], and nitric oxide [23,28,29]. Moreover,
microglial activation is directly implicated in models of
neovascular AMD [30], light-induced damage [21,31-33],
diabetic retinopathy [34,35], glaucoma [36,37], chronic
photoreceptor degeneration in rds (retinal degeneration
slow) mice [38], and photoreceptor apoptosis in vitro [22].

In spite of their prominent role in retinal degeneration,
the precise signaling events that mediate the trafficking
of microglia/monocytes in the retina are not yet eluci-
dated [39]. Chemokines are a large family of molecules
that have potent chemoattractant properties in the re-
cruitment of leukocytes in immune surveillance and in-
flammation in the CNS [40-43]. Chemokine expression
results in the establishment of chemical ligand gradients
that serve as directional cues for the guidance of certain
leukocytes to sites of injury [40]. Chemokine (C-C motif)
ligand (Ccl)2 is one of the most well-characterized chemo-
kines [44], and is a potent chemoattractant and activator
for monocytes and microglia in vitro [45-47]. Upregu-
lation of Ccl2 is also implicated in a number of CNS
pathologies such as Alzheimer’s disease [48,49], multiple
sclerosis [50,51], frontotemporal lobe dementia [52], and
brain trauma [53,54]. We have shown previously that the
expression of Ccl2 is upregulated in Miller cells in a
light-induced model of retinal degeneration [55], which
coincides spatiotemporally with the local recruitment of
microglia/monocytes and the region of peak photorecep-
tor death [56].

In the current study, we aimed to investigate the role
of Miiller-cell-derived Ccl2 in the recruitment of retinal
monocytes/microglia following exposure to bright con-
tinuous light (BCL), using targeted small interfering (si)
RNA to suppress Ccl2 expression in the retina. siRNA
molecules are short sequences of double-stranded RNA,
which serve as a component of RNA interference
(RNAi) [57]. The RNAIi cellular machinery enables the
specific degradation of a target mRNA of complemen-
tary sequence, which effectively silences expression of
the particular gene [58]. In this study, we found that
intravitreal administration of Ccl2 siRNA suppressed ex-
pression of Ccl2 by Miiller cells, resulting in an inhi-
bition of microglia/monocyte recruitment and reduction
in photoreceptor death following BCL exposure. Conse-
quently, inhibition of endogenous chemokine expression
using siRNA may present a viable means to modu-
late excessive microglial activation in the degenerating
retina.
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Methods

Ethics approval

The study was approved by the Animal Experimentation
Ethics Committee (AEEC) of the Australian National
University (R.BSB.05.10). All experiments conducted were
in accordance with the Association for Research in Vision
and Ophthalmology Statement for the Use of Animals in
Ophthalmic and Vision Research.

Animals

Adult Sprague—Dawley (SD) rats aged between postnatal
days 160 and 190 were used for the experiments. The
rats were born and reared in dim cyclic light conditions
with an ambient level of approximately 5 lux, until the
commencement of bright-light exposure.

Preparation of small interfering RNA and intravitreal
injection

RNAI was achieved using a cocktail of two commercial-
ly available modified siRNAs, specific for Ccl2 (Stealth
siRNA; #RSS302703 and #RSS302704; Invitrogen Inc.,
Carlsbad, CA USA). A scrambled siRNA equivalent, not
homologous to any known gene, served as a negative con-
trol, and was conjugated to an Alexa 555 fluorophore to
assess the uptake of siRNA in the retina (#14750-100;
Invitrogen Inc.). Before administration, siRNAs were
encapsulated using a cationic liposome-based formulation
(Invivofectamine; #1377-901; Invitrogen Inc.) in accord-
ance with the manufacturer’s instructions. The final con-
centration of each encapsulated siRNA formulation was
0.33 pg/pl in a 5% glucose solution.

For intravitreal injections, animals were anaesthetized
with an intraperitoneal injection containing 30 mg keta-
mine (100 mg/ml; Troy Laboratories, NSW, Australia)
and 3 mg xylazil (20 mg/ml; Parnell, NSW, Australia). A
drop of 1% atropine (Chauvin Pharmaceuticals, London,
England) was applied to the ocular surface to produce
mydriasis, and the injection site was then swabbed with
5% povidone iodine (Betadine; Faulding Pharmaceuticals,
SA, Australia). Intravitreal injection was then performed
as described previously [59]; 3 pL of either positive or
negative siRNA complex, corresponding to 1 pg of siRNA,
was injected into both eyes of each animal. For an ad-
ditional control, 3 pLof transfection agent only was also
injected into both eyes of some animals. After injec-
tion, neomycin ointment 5 mg/g (Amacin; Jurox, NSW,
Australia) was applied to the injection site to prevent
infection.

Light exposure

After intravitreal injections, the animals were immediately
transferred to individual cages designed to allow light to
enter unimpeded. BCL exposure was achieved using an
18 W fluorescent light source (Cool White; TFC, Taipei,



Rutar et al. Journal of Neuroinflammation 2012, 9:221
http://www.jneuroinflammation.com/content/9/1/221

Taiwan) positioned above the cages, , which was run from
11.00 to 24.00 hours, and kept at an intensity of approxi-
mately 1000 lux at the cage floor. Corneal hydration was
maintained by application of a synthetic tear gel (GenTeal
Gel; Novartis, NSW, Australia) during BCL, until the ani-
mals awoke. Animals were exposed to BCL for 24 hours
before tissue collection.

Tissue collection and processing

Animals were killed using an overdose (60 mg/kg body-
weight) of barbiturate (Valabarb; Virbac, Australia) given
as intraperitoneal injection, then retinal tissue was ob-
tained from each treatment group for analysis. Eyes from
some animals were marked at the superior surface for
orientation, then enucleated and processed for sectio-
ning on a cryostat, while the retina from others was ex-
cised through a corneal incision and prepared for RNA
extraction.

Eyes for sectioning were immediately immersion-fixed
in 4% paraformaldehyde in 0.1 M PBS (pH 7.3) for 3 hours
at room temperature, then processed as previously des-
cribed [56], and sectioned at 16 pm on a cryostat. Retinas
for RNA extraction were immediately immersed in chilled
solution (RNAlater; #7024; Ambion Inc., Austin, TX,
USA), then stored in accordance with the manufacturer’s
instructions. The RNA was then extracted from each sam-
ple and analyzed as previously described [55,60].

Quantitative real-time PCR

First-strand cDNA synthesis was performed as described
previously [55]. Gene amplification was measured using
commercially available hydrolysis probes (TagMan®; Ap-
plied Biosystems, Foster City, CA, USA) (Table 1). The
hydrolysis probes were used in accordance with a pre-
viously described quantitative (q)PCR protocol [55]. The
fold change was analyzed using the AACq method, with
expression of the target gene normalized relative to the
expression of two reference genes: glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), and p-actin. Ampli-
fication specificity was assessed using gel electrophoresis.

In situ hybridization

To investigate localization of Ccl2 mRNA transcripts in
the retina following RNAI, a riboprobe to Ccl2 was gene-
rated for in situ hybridization on frozen sections of re-
tinal tissue. Synthesis of the Ccl2 riboprobe and in situ

Table 1 Tagman probes used

Page 3 of 15

hybridization were performed as described previously
[55,61]. The Ccl2 riboprobe was hybridized overnight at
55°C, and then washed in saline sodium citrate (pH 7.4)
at 60°C. After hybridization, some sections were further
stained using immunohistochemistry (see below).

Analysis of cell death

Following BCL, terminal dUTP nick end labeling (TUNEL)
was used to quantify photoreceptor apoptosis in cryostat
sections for each treatment group, using a previously pub-
lished protocol [62]. Counts of TUNEL-positive cells in
the outer nuclear layer (ONL) were carried out along the
full length of retinal sections cut in the parasagittal plane
(superio-inferior), within the vertical meridian. The total
count from each retina is the average of four sections at
comparable locations.

Immunohistochemistry

Frozen sections from each treatment group were used
for immunohistochemical analysis, using the primary an-
tibodies listed in Table 2. Immunohistochemistry was
performed as previously described [55]. Immunofluores-
cence was viewed using a laser scanning microscope
(Carl Zeiss, Jena, Germany), and acquired using PAS-
CAL software (version 4.0; Carl Zeiss). Images were
prepared for publication using Adobe Photoshop software.

Quantification of monocytes/microglia
Monocyte/microglia counts were performed on sections
immunolabeled jointly with the markers ED1 and ionized
calcium binding adaptor (IBA)1. Numbers of ED1+/IBA +
and ED1-/IBA1+ nuclei were assessed long the full length
of retinal sections cut in the parasagittal plane (supero-
inferior) within the vertical meridian. Counts were made
of all ED1+/IBA + monocytes throughout the retina, in-
cluding the retinal vasculature, ONL, and choroidal vascu-
lature. Counts of /ED1-/IBAl+ parenchymal microglia
encompassed those in the outer plexiform layer (OPL) and
ONL/subretinal space (but not the resting population in
the inner plexiform layer; IPL), as microglia recruit to these
areas when activated during retinal degeneration [9,47,63].
The total counts of ED1+/IBA +and ED1-/IBA1+ nuclei
from each retina was the average of four sections at com-
parable locations.

Gene symbol Gene name Catalog number Entrez Gene ID number
B-actin Beta-actin Rn00667869_m1 NM_031144.2
Ccl2 Chemokine (C-C motif) ligand 2 Rn01456716_g1 NM_031530.1
GAPDH Glyceraldehyde-3-phosphate dehydrogenase Rn99999916_s1 NM_017008.3
Jun (AP-1) Jun oncogene (transcription factor activator protein —1) Rn99999045_s1 NM_021835.3
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Table 2 Antibodies used for immunohistochemistry
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Antibody Dilution Source

Catalog number Manufacturer
Hamster a-Ccl2 1:100 505902 Biolegend, San Diego, CA, USA
Mouse a-ED1 1:200 MAB1435 Invitrogen Inc, Carlsbad, CA, USA
Rabbit a-IBA1 1:400 019-19741 Wako, Osaka, Japan
Mouse a-S1003 1:200 S2532 Sigma Chemical Co,, St. Louis, MO, USA
Mouse a-vimentin 1:200 18-0052 Zymed, San Francisco, CA, USA

CCL, chemokine (C-C motif) ligand; IBA, ionized calcium binding adaptor.

Quantification of chemokine (C-C motif) ligand
(Ccl)2-expressing Miiller cells

Ccl2 expression following RNAi in Miiller cells was
assessed on frozen sections after either immunohisto-
chemistry or in situ hybridization for Ccl2 (as described
above). In Ccl2-immunolabeled sections, the number of
Ccl2-immunoreactive Miiller cell processes was assessed.
In sections used for in situ hybridization, counts were
made of Ccl2-expressing Miiller cell bodies. Both sets of
counts were conducted across the full length of re-
tinal sections cut in the parasagittal plane (supero-
inferior) within the vertical meridian; the total count was
the average of four sections at comparable locations.

Statistical analysis

Statistical analysis for each experiment was performed
using one-way ANOVA with Tukey’s multiple comparison
post hoc test. For each analysis, P <0.05 was considered
significant.

Results

Localization of transfected small interfering RNA in the
retina

To assess the efficacy of the siRNA transfection protocol,
animals reared in dim light conditions were injected intra-
vitreally with siRNA tagged with Alexa 555 to determine
the cellular uptake of siRNA in the retina (Figure 1).
At 24 hours after injection of the fluorophore-tagged
siRNA, fluorescence for siRNA was visible deep within
the retinal cellular layers, including transfection in the
ganglion cell layer (GCL), inner nuclear layer (INL), and
ONL (Figure 1B). Control animals who had not been
injected with the fluorophore-tagged siRNA had no
comparative fluorescence (Figure 1A). Using fluorescent
markers, the transfected siRNA also showed colocaliza-
tion with vimentin-immunoreactive Miiller cell pro-
cesses within the INL (Figure 1G-I; arrows), ONL, and
outer limiting membrane (Figure 1C-E; arrows).

Suppression of chemokine (C-C motif) ligand (Ccl)2

expression with small interfering RNA following light damage
Retinal expression of Ccl2 following Ccl2 siRNA injec-
tion was assessed using qPCR (Figure 2). In animals

injected with Ccl2 siRNA, expression of Ccl2 decreased
significantly to 29.3% (P < 0.05; ANOVA/Tukey’s test) of
that in retinas injected with Invivofectamine after 24 hours
of BCL. Expression of Ccl2 in retinas injected with
scrambled siRNA did not change appreciably, remaining
at 95.4% if of that of the Invivofectamine-only controls
(95.4%, P> 0.05; ANOVA/Tukey’s test).

Localization of Ccl2 mRNA and protein following 24
hours of BCL was assessed in retinas using in situ hy-
bridization (Figure 3) and immunoreactivity (IR) (Figure 4)
respectively. The distribution of both Ccl2 mRNA and pro-
tein following BCL showed strong colocalization for, re-
spectively, vimentin-immunoreactive (Figure 3E-G, arrows)
and S100B-immunoreactive (Figure 4E-G, arrows) Miiller
cell processes, consistent with our previous investigation
[55]. After Ccl2 siRNA injection, the number of Miiller
cells expressing Ccl2 mRNA decreased significantly to
12.6 per retina, compared with 47.4 per retina in Invivo-
fectamine-only controls (P <0.05, ANOVA-Tukey’s test)
(Figure 3). Scrambled siRNA-injected retinas showed
no significant change in the number of Ccl2-expressing
Miiller cells, compared with Invivofectamine-only controls
(50.1 per retina, P>0.05; ANOVA/Tukey’s test). IR for
Ccl2 protein (Figure 4 histogram) showed a significant re-
duction in the number of Ccl2-IR Miiller cell processes in
retinas injected with Ccl2 siRNA (11.6 per retina, P < 0.05;
ANOVA/Tukey’s test) compared with retinas treated with
Invivofectamine only or with scrambled siRNA (45.1 and
45.2 per retina, respectively).

Quantification of monocyte/microglia recruitment after
Ccl2 siRNA injections

The recruitment of monocytes/microglia in the retina fol-
lowing siRNA injections was assessed using immunolabe-
ling for IBA1 and ED1 markers (Figures 5 and 6), which
identify both monocytes (ED1+/IBAl+) and ramified
microglia (ED1-/IBA1+) [64,65]. After BCL exposure,
ED1+/IBAl+ nuclei (Figure 5A-C) were recruited to the
retinal and choroidal vasculature (as described previously
[55]). These nuclei were reduced significantly in total
counts to 33.1 per retina in the Ccl2 siRNA group (P < 0.05;
ANOVA-Tukey’s), compared with 57.1 and 55.6 per reti-
na in the Invivofectamine-only and the scrambled siRNA
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GCL

A: Dim Reared - Control

Figure 1 Localization of fluorescently-tagged small interfering (si)RNA following intravitreal injection in control retinas. (A) Fluorescence
was not detected in retinas injected with Invivofectamine only in mice reared in dim light. (B) Strong fluorescence for injected siRNA (red) was
seen after 24 hours of incubation, which was apparent throughout all cellular layers through to the outer nuclear layer (ONL). (C-1) Dual
immunolabeling of siRNA (red) and the Mdller-cell-specific proteins S100B3/vimentin (green) showed colocalization of SIRNA with ST003/vimentin
in Muller cell processes situated within the (C-F) ONL and outer limiting membrane (OLM) (arrows), and (G-1) the inner nuclear layer (INL)
(arrows). GCL, ganglion cell layer; IPL, inner plexiform layer; OS, outer segments.

B: Dim Reared - SiRNA  ©CL

groups respectively (Figure 5G). The numbers of recrui-
ted ED1+/IBA1+ cells in different locations (retinal vas-
culature, choroid) are shown in Figure 5H. These counts
show a significant reduction in the recruitment of ED1+/
IBA1+ nuclei to both the choroid and retinal vasculature
in Ccl2 siRNA treated animals, compared with controls
(P<0.05; ANOVA-Tukeys). ED1-/IBA1+ nuclei were re-
cruited to the ONL and outer plexiform layer (OPL) after
24 hours BCL (Figure 6A-C). Following Ccl2 siRNA injec-
tion, the total number of these nuclei was found to decrease
significantly to 34.6 per retina (P < 0.05; ANOVA-Tukey’s)
in comparison to those injected with either Invivofectamine

only or scrambled siRNA (67.3 and 64.3 per retina respec-
tively, Figure 6G). The recruitment of ED1-/IBA1+ nuclei
to both locations (OPL, and ONL/subretinal space) was
reduced in siRNA-injected animals, compared with con-
trols (P < 0.05; ANOVA/Tukey’s test, Figure 6B).

Assessment of apoptosis in the retina following
suppression of Ccl2 with siRNA

There was no significant change in the number of TUNEL-
positive photoreceptors (Figure 7A-E,) seen throughout
the retina following BCL between animals intravitreally
injected with either Invivofectamine only or scrambled
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Changes in Retinal Ccl2 Expression Following RNAi
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Figure 2 Relative expression of Ccl2 in the retina measure by
quantitative PCR following small interfering (si)RNA injection
and light damage. In animals injected with Ccl2 siRNA,
expression of Ccl2 decreased significantly to 29.3% relative to the
Invivofectamine-only control group after 24 hours BCL

(P < 0.05; ANOVA/Tukey's test), whereas expression of Ccl2 in animals
injected with scrambled siRNA did not change appreciably
compared with the Invivofectamine-only group (95.4%, P < 0.05;
ANOVA/Tukey's test). Inivofectamine-only (n =8), scrambled siRNA
(n=38), Ccl2 siRNA (n = 6). Error bars represent SEM. *Significant
change at P <0.05 using ANOVA with Tukey's post hoc test.

siRNA (263.8 and 250.1 per retina, P >0.05; ANOVA/
Tukey’s test). However, in animals injected with Ccl2
siRNA, a marked decrease in the number of TUNEL-
positive photoreceptors (to 85.1 per retina) was seen
after BCL compared with both the Invivofectamine-
only group and the scrambled siRNA control group
(P<0.05; ANOVA/Tukey’s test). In conjunction, expres-
sion of the apoptosis-related gene Jun (activator protein-1)
[66] following BCL (Figure 7B) was markedly reduced in
animals injected with Ccl2 siRNA, compared with both
control groups (P < 0.05; ANOVA/Tukey’s test).

Discussion

The findings of the current study confirm a key role for
Miiller cells and Ccl2 in the retinal neuroinflammatory
response in the light-damage model of retinal degenera-
tion. Firstly, using both in situ hybridization and immu-
nohistochemistry, we confirmed the efficacy of siRNA
transfection in targeted suppression of Ccl2 expression
in Miiller glia following damage. Second, we found that
suppression of Ccl2 mRNA in Miiller cells inhibited the
recruitment of both EDI1-positive and IBA1l-positive
monocytes/microglia to the injured retina after BCL ex-
posure. Third, our data showed that photoreceptor death
was reduced after BCL when Ccl2 expression was inhi-
bited by Ccl2 siRNA.
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Previous investigators have theorized that Miiller cells
or retinal pigment epithelial cells (RPE) may be the
source of chemokines that mediate neuroinflammation
following light-induced degeneration [67],and several
studies have shown that RPE cells in vitro express Ccl2
in response to stimulatory cytokines in the extracellular
environment [68-72]. The present study is the first, to
our knowledge, to directly confirm that Miiller cells guide
monocyte/microglia recruitment in the retina through the
expression of Ccl2 mRNA, and that such expression
exacerbates photoreceptor death following the initial
damaging-light stimulus. This is consistent with our pre-
vious investigation, which found that Miiller cells express
Ccl2 in spatiotemporal correlation with the recruitment of
ED1-positive monocytes and photoreceptor death follo-
wing BCL exposure [55].

Our data point to a crucial role for chemokines in the
propagation of local neuroinflammatory responses driven
by the neural retina. Ccl2 is a strong chemoattractant and
activator of monocytes [46] and microglia [47] in vitro,
and is induced in the CNS in a range of pathologies
(reviewed in [42]). Our data indicate that Ccl2 upregula-
tion by Miiller cells promotes the recruitment of two
monocyte/microglia populations immunoreactive for the
markers ED1 and IBA1 in the retina following BCL expo-
sure [65]. First are parenchymal microglia immunoreactive
for IBA1, which infiltrate the OPL and ONL after BCL
[63,65]. Second, there is modulation of ED1+/IBA1+ nu-
clei recruited from the retinal and choroidal blood sup-
plies, which is consistent with the markers, morphology,
and distribution of bone-marrow-derived ‘hematogenus’
monocytes [65,66,73]. These findings are supported by a
previous study in the CNS using Ccr2-knockout mice sub-
jected to partial sciatic nerve ligation, which showed that
the Ccr2 chemokine receptor, of which Ccl2 is a known
ligand [74], mediates the recruitment of both hemato-
genous and resident microglia/monocytes immunoreac-
tive for IBA1 [75].

Because both bone-marrow and resident microglia/
monocytes are implicated in the clearance of debris and
dead photoreceptors after injury [66], the expression of
Ccl2 by Miiller cells may promote homeostasis and re-
covery through efficient recruitment and activation of
phagocytes to sites of photoreceptor degeneration. How-
ever, given that we found a decrease in photoreceptor
apoptosis and expression of AP-1 following suppression
of Ccl2 by siRNA, the secretion of Ccl2 by Miiller cells
may be a maladapted process, which is prone to eliciting
exaggerated and damaging microglial responses. A num-
ber of studies have shown that microglial activation and
aggregation exacerbates photoreceptor degeneration in
the light-damage model [32,33], whereas activated micro-
glia induce apoptosis of cultured photoreceptors through
the secretion of cytotoxic factors in vitro [22]. Moreover,
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Frequency of Ccl2-Expressing Muller Cells Following RNAI
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Figure 3 Chemokine (C-C motif) ligand (Ccl)2 expression in Mdller cells following Ccl2 small interfering (si)RNA treatment and light
damage. (A-C) Representative images taken from the superior mid-periphery showing in situ hybridization results for Ccl2 mRNA within
processes situated in the inner nuclear layer (INL) following exposure to bright continuous light (BCL; black arrows). (D) Sense controls showed
no specific staining. (E-G) Co-labelling for Ccl2 mRNA with a fluorescent stain (red) showed colocalization for vimentin-immunoreactive (green)
Mdller cell processes (white arrows). The histogram shows that the number of Ccl2-expressing Mdller cells per retina decreased significantly in the
Ccl2 siRNA-treated group (12.6 cells) compared with the Invivofectamine-only (474 cells; P < 0.05) and the scrambled siRNA (50.1 cells; P < 0.05)
groups. Inivofectamine-only (n =4), scrambled siRNA (n =4), Ccl2 siRNA (n=4). Error bars represent SEM. *Significant change at P <0.05 using
ANOVA with Tukey's post hoc test. ONL, outer nuclear layer.
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Frequency of Ccl2-Immunoreactive Muller Cells Following RNAI

60-
g, [ *kk
pre *kk
Qo I
1]
o
S 451
39
£ 8
£
[ 1™
N
S 330
5
- Q@
O =
0 3
E=
=
Z 45
]
°
}_
0-.

Invivofectamine Only ; Scrambled Ccl2

Invivofectamine + SiRNA
A: 24hrs BCL - Inviv. Only ONL |B: 24hrs BCL - Scrambled SiRNA ONL

» »
4

Cel2 NG
C: 24hrs BCL - SiRNA

E: 24hrs BCL : “|G»24hts BCL _
4 \. i o ,\ !

»

25um »

Figure 4 Immunoreactivity (IR) for chemokine (C-C motif) ligand (Ccl)2 protein in Miller cells following light damage in relation to Ccl2
small interfering (si)RNA treatment. (A-D) Representative images from the superior mid-periphery showed strong IR for Ccl2 (red) in radially
oriented processes within the inner nuclear layer (INL) following (A-C) BCL (white arrows), whereas (D) negative controls showed no
fluorescence. (E-G) The Ccl2 IR showed strong colocalization for ST00B-immunoreactive (green) Mdller cell processes (white arrows). The
histogram of the quantification of Ccl2-IR Muller cell processes per retina indicated a substantial reduction in animals injected with Ccl2 siRNA
(11.6, P<0.05) compared with those injected with Invivofectamine only or with scrambled siRNAs (45.1 and 45.2 respectively). Inivofectamine-only
(n=4), scrambled siRNA (n =4), Ccl2 siRNA (n=4) Error bars represent SEM. *Significant change at P <0.05 using ANOVA with Tukey's post hoc
test. ONL, outer nuclear layer.
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Figure 5 Recruitment of monocytes positive for ED1 and ionized calcium binding adaptor molecule (IBA)1 following treatment with
bright continuous light (BCL) in retinas injected with chemokine (C-C motif) ligand (Ccl)2 small interfering (si)RNA. (A-F) Representative
images taken from the superior mid-periphery showed immunoreactivity for ED1 (green) and IBA1 (red) in ED1+/IBA1+ nuclei recruited to the
retinal vasculature following BCL (arrows). (G) The total number of these ED1+/IBAT+ nuceli per retina was significantly reduced in Ccl2 siRNA-
injected retinas following BCL compared with the Invivofectamine-only group and the scrambled siRNA control group (P < 0.05). (H) Numbers of
ED1+/IBA1+ nuclei recruited to retinal and choroidal vasculature locations were reduced in retinas injected with Ccl2 siRNA in comparison to
controls (P < 0.05). Inivofectamine-only (n =4), scrambled siRNA (n = 4), Ccl2 siRNA (n=4) Error bars represent SEM. *Significant change at P <0.05
using ANOVA with Tukey's post hoc test. GCL, ganglion cell layer; IPL, inner plexiform layer.
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Figure 6 Recruitment of microglia positive for ionized calcium binding adaptor molecule (IBA)1 and negative for ED1 following BCL in
retinas injected with chemokine (C-C motif) ligand (Ccl)2 small interfering (si)RNA. (A-F) Representative images from the superior mid-periphery
showed immunoreactivity for IBA1 (red), but not ED1 (green), in ramified ED1—/IBAT+ nuclei that were recruited to the outer nuclear layer (ONL) and
outer plexiform layer (OPL) after 24 hours of BCL (A-C; arrows). (G) The total number of these recruited ED1—/IBA1+ nuclei per retina decreased
significantly in Ccl2 siRNA-injected retinas following BCL, compared with both the Invivofectamine-only group and the scrambled siRNA control group
(P<0.05). (H) Numbers of ED1—/IBAT+ nuclei recruited to either the OPL or the ONL/subretinal space were reduced in retinas injected with Ccl2 siRNA
in comparison with control groups (P < 0.05). Inivofectamine-only (n = 4), scrambled siRNA (n = 4), Ccl2 siRNA (n = 4). Error bars represent SEM.
*Significant change at P <0.05 using ANOVA with Tukey's post hoc test. INL, inner nuclear layer; OS, outer segments.
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Figure 7 Quantification of apoptosis following BCL by terminal dUTP nick end labeling (TUNEL) and activator protein (AP)-1 expression in
retinas injected with chemokine (C-C motif) ligand (Ccl)2 small interfering (si)RNA. (A-D) Representative images from the superior mid-
periphery show TUNEL (red) for nuclei situated predominantly in the ONL in the siRNA treatment groups following BCL exposure. E: Animals injected
with Ccl2 siRNA found a marked decrease in the number of TUNEL-positive nuclei in the outer nuclear layer (ONL) (85.1, P < 0.05; ANOVA/Tukey's test)
compared with the Invivofectamine-only group and the scrambled siRNA control group after 24 hours of BCL (263.8 and 250.1 respectively).

(F) Expression of AP-1 in the retina following BCL was reduced to 14.1-fold in retinas injected with Ccl2 siRNA (P < 0.05), compared with 20.5-fold and
24.9-fold reduction in the Invivofectamine-only group and the scrambled siRNA control group, respectively. Inivofectamine-only (n = 8), scrambled
SIRNA (n=8), Ccl2 siRNA (n=6) Error bars represent SEM. *Significant change at P <0.05 using ANOVA with Tukey's post hoc test. NS, not significant.
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the introduction of synthetic Ccl2 to cultured microglial
cells or monocytes has been shown to promote their acti-
vation and cytotoxicity toward co-cultured photoreceptors
and RPE cells [47,76]. The signaling events that govern
the synthesis of Ccl2 by Miiller cells are unknown, al-
though upregulation of Ccl2 may be stimulated as a re-
sult of local photoreceptor death, because increased
levels of Ccl2 in Miiller cells correlates spatially with the
localization of light-induced photoreceptor apoptosis, as
shown in our previous investigation [55]. Alternatively,
or perhaps concurrently, Ccl2 synthesis may be stimu-
lated by the presence of cytokines in the extracellular
environment, such as IL-1f, IL-7, and TNF-a [68,71,77],
following BCL exposure.

Our findings are consistent with other studies that
have characterized Ccl2 as a non-redundant factor in
the guidance of microglia/monocytes in a variety of de-
generative models. In the retina, an investigation in ex-
perimental retinal detachment using Ccl27/” mice and
Ccl2-specific antibody neutralization noted a substantial
decrease in the recruitment of parenchymal microglia to
the ONL following detachment, in conjunction with
reduced photoreceptor death [47]. Deficiencies in mono-
cyte recruitment have also been reported after Ccl2 in-
hibition in other models such as skin inflammation [78],
thioglycollate challenge [79], experimental autoimmune
encephalomyelitis [80], pulmonary granuloma [79], and
peripheral endotoxin insult [81]. Despite this, a previous
investigation did not observe modulation in a population
of F4/80-positive macrophages in the subretinal space
following light-induced damage to Ccl27/™ mice [82]. As
discussed in our previous investigation, however [55],
the authors in that investigation did not quantify those
cells, nor did they assess the distribution of other micro-
glial markers such as ED1 and IBA1.

Relevance to human retinal dystrophies
Exposure to bright continuous light in rats has been
used to model retinal degeneration for over 40 years
[83,84]. Several lines of evidence also indicate that light
damage is a useful model of AMD [56,85-87]. This
model, like the established laser-induced model of neo-
vascular AMD, uses an acute damaging stimulus to
evoke site-specific AMD-like retinal degeneration. Al-
though the rat retina lacks a macula and fovea centralis,
it includes an homologous feature, the area centralis, in
superiotemporal retina [88-90]. Previous studies have
identified the focal degeneration of photoreceptors and
RPE cells and associated changes to the blood—retinal
barrier as being localized to the area centralis, thus mi-
micking many of the histopathological aspects of ad-
vanced ‘dry’ AMD [56,85-87].

Recruitment of monocytes/microglia has been asso-
ciated with the progression and severity of AMD
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pathology for many years [2,12-15], while several investi-
gations have shown that microglial attenuation reduces le-
sion size in the laser-induced model of neovascular ‘wet’
AMD [91-93]. Retinas from human donors show
increased expression for Ccl2 in all forms of AMD [94],
while increased levels of Ccl2 protein have been detected
in aqueous humor samples taken from patients in
advanced stages of ‘wet’ and ‘dry’ AMD [95,96]. Increased
Cc2 expression has also been described in the retinas of
aged (20-month-old) mice, compared with young (3-
month-old) mice [97]. Moreover, studies in experimental
laser-induced choroidal neovascularization (CNV) have
shown that ablation of either Cc/2 or the receptor Cecr2
inhibits the infiltration of monocytes/microglia and
reduces lesion size following CNV [98,99]. Conversely, it
has been previously suggested that aging Ccl27/~ Ccr27/~
mice develop AMD-like retinal degeneration [100,101], in-
dicating that a degree of Ccl2 signaling is also required for
homeostasis, although the AMD-like phenotype in the
knockout has been questioned [98].

siRNA-mediated gene therapy is considered to have the-
rapeutic potential in knocking down deleterious genes in
various human pathologies (reviewed in [102,103]). Our
investigation is the first to show that monocyte recruit-
ment, and in turn photoreceptor death, may be modified
in the retina by siRNA-mediated suppression of Ccl2
in vivo in the CNS. Previous studies in AMD have shown
that intravitreally injected siRNA targeting vascular endo-
thelia growth factor ameliorates retinal degeneration in
experimental CNV [104,105], and has also been the basis
for several clinical trials [106]. However, unlike the current
investigation, these early studies used ‘naked’ unmodified
siRNA molecules, which are now known to produce non-
specific effects via Toll-like receptor 3 signaling in the re-
tina [106]. Nevertheless, modulation of Ccl2 expression
using appropriately targeted RNAi may provide a powerful
means to control excessive microglial recruitment and ac-
tivation in retinal dystrophies such as AMD.

Conclusion

Targeted suppression of Ccl2 in Miiller cells by siRNA
inhibits recruitment of monocytes/microglia and amelio-
rates apoptosis of photoreceptors following BCL expo-
sure. Although the recruitment of phagocytes by Ccl2
may be geared toward beneficial function after retinal
injury, our data suggest that robust Ccl2 secretion by
Miiller cells leads to an excessive aggregation of activa-
ted monocytes/microglia, leading to further photoreceptor
degeneration. We therefore suggest that therapeutic at-
tenuation of microglial recruitment using RNAi may be a
useful strategy to control detrimental immune responses
in the retina, which has relevance for the treatment of
human pathologies such as AMD.
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