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Abstract

Background: Cerebral blood flow (CBF) is known to be dysregulated in persons with human immunodeficiency
virus 1 (HIV-1), for uncertain reasons. This is an important issue because impaired vasoreactivity has been associated
with increased risk of ischemic stroke, elevated overall cardiovascular risk and cognitive impairment.

Methods: To test whether dysregulation of CBF might be due to virally-induced neuroinflammation, we used a
well-defined animal model (GFAP-driven, doxycycline-inducible HIV-1 Tat transgenic (Tat-tg) mice). We then
exposed the mice to a brief hypercapnic stimulus, and assessed cerebrovascular reactivity by measuring 1) changes
in cerebral blood flow, using laser Doppler flowmetry and 2) changes in vascular dilation, using in vivo two-photon
imaging.

Results: Exposure to brief hypercapnia revealed an underlying cerebrovascular pathology in Tat-tg mice. In control
animals, brief hypercapnia induced a brisk increase in cortical flow (20.8% above baseline) and vascular dilation, as
measured by laser Doppler flowmetry and in vivo two-photon microscopy. These responses were significantly
attenuated in Tat-tg mice (11.6% above baseline), but cortical microvascular morphology and capillary density were
unaltered, suggesting that the functional pathology was not secondary to vascular remodeling. To examine the
mechanistic basis for the diminished cerebrovascular response to brief hypercapnia, Tat-tg mice were treated with
1) gisadenafil, a phosphodiesterase 5 (PDE5) inhibitor and 2) tetrahydrobiopterin (BH4). Gisadenafil largely restored
the normal increase in cortical flow following hypercapnia in Tat-tg mice (17.5% above baseline), whereas BH4 had
little effect. Gisadenafil also restored the dilation of small (<25 um) arterioles following hypercapnia (19.1% versus
20.6% diameter increase in control and Tat-tg plus gisadenafil, respectively), although it failed to restore full dilation
of larger (>25 um) vessels.

Conclusions: Taken together, these data show that HIV-associated neuroinflammation can cause cerebrovascular
pathology through effects on cyclic guanosine monophosphate (cGMP) metabolism and possibly on PDE5
metabolism.
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Introduction

HIV-associated neurocognitive disorder (HAND) is
characterized by sensory, motor and cognitive dysfunc-
tions that result from HIV infection [1]. HAND remains
a major clinical concern despite the widespread use of
combination antiretroviral therapy, and a recent study
showed that HAND was detected in 52% of HIV-
infected persons enrolled in a large multisite patient co-
hort [2]. HAND represents a continuum of symptoms
that may reflect a slowly progressing, multifactorial, de-
generative process [3,4]. While these symptoms are
thought to be the result of HIV-induced neuroinflamma-
tion, the overall pathogenesis of this disease remains in-
completely understood.

The effects of HIV-induced neuroinflammation on
neuronal structure and function have been extensively
studied in both in vitro and in vivo experimental model
systems. In contrast, cerebral blood flow (CBF) was ini-
tially recognized to be dysregulated in persons with
HIV-associated neurologic disease more than 20 years
ago [5-10], but remains poorly understood at the mech-
anistic level. Recently, Ances and colleagues showed that
the resting CBF of HIV-infected individuals is signifi-
cantly decreased in both the lenticular nuclei and the
visual cortex [11]. Follow-up studies revealed that HIV
infection and aging independently affect functional and
resting flow to cortical structures [12], and have shown
that resting CBF in persons with HIV infection is
reduced to a level equivalent to that of HIV-1 negative
persons who are 15 to 20 years older [12]. Not only is
resting CBF reduced in the setting of HIV-1 infection
[11-13], but cerebrovascular responses to metabolic de-
mand are also perturbed [12]. This may have important
implications for neurocognitive function.

To test whether dysregulation of CBF might be due to
virally induced neuroinflammation, we used a well-
defined animal model in which the pro-inflammatory
viral Tat protein is expressed exclusively within the cen-
tral nervous system (GFAP-driven, doxycycline-inducible
HIV-1 Tat transgenic (Tat-tg) mice [14]). To confirm
our findings, we also used a second experimental animal
model, in which wild-type mice were exposed acutely to
HIV-1 Tat by direct intracerebral injection (Tat-ICL; [15]).

We explored the cerebrovascular response of these
animals to a defined hypercapnic stimulus, by measuring
changes in CBF over the somatosensory cortex using
laser Doppler flowmetry, in combination with two-
photon in vivo imaging of cortical vessels. We found a
significant loss of normal responsiveness to hypercapnia
in Tat-exposed mice, relative to controls. This pathology
was initially revealed by a long (5 minute) exposure to
moderate hypercapnia (6% inspired CO,) which was
then recapitulated during brief exposure (30 seconds);
this transient hypercapnic challenge was selected for
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subsequent experiments so as to avoid hemodynamic
changes as a result of acidosis [16,17], which can occur
following longer challenges [18].

In both our chronic (Tat-tg) and acute (Tat-ICI) mouse
models for HIV-1 neuroinflammation, the vascular re-
sponse to brief, moderate hypercapnia was significantly
attenuated when compared to control animals (that is,
wild-type littermates in the case of Tat-tg mice, or mice
injected with saline in the case of Tat-ICI mice). These
responses occurred in the absence of changes in cortical
microvascular morphology and capillary density in the
Tat-tg mice, suggesting that the functional pathology
could not be attributed to vascular remodeling.

To explore the mechanistic basis for this pathology,
we examined the possible dysregulation of the nitric
oxide-cyclic guanosine monophosphate (NO-cGMP) axis
within the neurovascular unit, which regulates the
hypercapnic dilatory response [19-23]. We next per-
formed experiments to directly address the mechanistic
role of the NO-cGMP axis in contributing to the dimin-
ished vascular response to brief hypercapnia in mice
with HIV-1 associated neuroinflammation. To do this,
we exposed Tat-tg mice to hypercapnia in the presence
or absence of 1) gisadenafil, a phosphodiesterase 5
(PDE5) inhibitor that prevents degradation of cGMP
[24,25], and 2) tetrahydrobiopterin (BH4) which is a lim-
iting cofactor necessary for NO production [26,27].
Treatment with BH4 had little effect on the cerebrovas-
cular response to brief hypercapnia, whereas the PDE5
inhibitor largely restored the normal increase in cortical
flow following hypercapnia in Tat-tg mice. Gisadenafil
also restored the dilation of small (<25 um) arterioles
following hypercapnia, although it failed to restore full
dilation of larger (>25 um) vessels. This suggests that
normalization of flow resulting from (PDE5) inhibition
was predominantly determined by the functional recov-
ery of smaller arterioles (<25 pum) within the cortex.

Materials and methods

Animal models of HIV-1 induced neuroinflammation
Acute model of HIV-1 neuroinflammation

All animal procedures were approved by the University
Committee on Animal Research. Adult (10 to 12 weeks
old) C57BL/6 male mice were obtained from Charles
River Laboratory and housed with a 12-hour light and
12-hour dark photoperiod. Food and water were pro-
vided ad libitum. Acute Tat-induced neuroinflammation
was produced by stereotactic intracranial injection (ICI)
to the right somatosensory cortex, essentially as
described [15]. Briefly, a 10-pl microvolume syringe
(NanoFil, World Precision Instruments, Sarasota, FL,
USA) and 35-gauge needle were silanized (Sigmacote,
Sigma, St. Louis, MO, USA) to prevent Tat adhesion.
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Anesthesia was induced with isofluorane at a rate of
3.5 L/min and maintained at 2.0 L/min in a 50% oxygen
and 50% nitrogen gas mixture. A small craniotomy
(0.5 mm) was made 1 mm lateral to the sagittal suture
at Bregma level -0.5 using a rotary hand tool. Syringe
and needle were mounted in an Ultramicropump III syr-
inge pump (World Precision Instruments, Sarasota, FL,
USA) that was fixed to a three-axis micromanipulator.
The needle tip was then maneuvered into the craniotomy
and advanced to a depth of approximately 500-700 pm
below cortical surface. Three pl of Tat (recombinant
Tat; .75, 1 mg/ml, produced and purified from E. coli [28])
dissolved in sterile saline (0.9% NaCl), was delivered at
a rate of 80 nL/min. This dosage has been shown to
elicit a strong neuroinflammatory response in mice fol-
lowing intracerebral injection [15]. As controls, we used
1) sterile saline, 2) Tat inactivated by heating at 95°C
for 10 min and 3) 3 pg of recombinant oligomeric
HIV-1 Env (HIV-1yy, gpl40 [29]). The needle was then
removed and the craniotomy was filled with bone wax
(Ethicon, Raleigh, NC, USA). Three simple interrupted
sutures were used to close the scalp, which was then
treated with topical antibiotic. Rimadyl (5 mg/kg) was
administered to provide post-surgical analgesia. Forty-
eight hours post ICI, cerebrovascular reactivity (CVR) to
carbon dioxide was examined.

Chronic model of HIV-1 induced neuroinflammation
Tat-transgenic (Tat-tg) mice were a generous gift from
Drs. Pamela Knapp and Kurt Hauser (Virginia Common-
wealth University) [14]. At 8 weeks old, male mice were
fed pellets infused with 6 mg/kg doxycycline (Harlan
Laboratories, South Easton, MA, USA), ad libitum, for
3 weeks prior to use in experiments. Non-transgenic lit-
termates (WT) were used as controls, and were also fed
doxycycline-infused food. The expression of Tat mRNA in
cortices of Tat-tg mice exposed to doxycycline was tested
by RT-PCR, as described [30]. Figure 1E shows that treat-
ment with doxycycline dramatically increased the level of
Tat expression as expected [30,31]. Animals were housed
with a 12-hour light and 12-hour dark photoperiod.

Drug administration

BH4 (15 mg/kg; Sigma, St. Louis, MO, USA) and gisa-
denafil besylate (UK-369003, 2 mg/kg; Tocris Bioscience,
Bristol, UK) were suspended in a 5% DMSO, 95%
physiologic saline solution and was administered by intra-
peritoneal (IP) injection to mice 2 hours before exposure
to hypercapnia; control animals received vehicle alone.

Cerebral blood flow and physiological parameters
Cerebral blood flow was measured using either bilateral
or unilateral laser Doppler flowmetry (LDF) (BLF 21 D,
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Transonic Systems Inc., Ithaca, NY, USA) over the som-
atosensory cortex, as described [32]. Physiological para-
meters were measured as described [32]. Briefly, mean
arterial pressure (MAP) was monitored via a femoral
artery catheter. Arterial blood gases (ABG) and pH were
measured with a blood gas analyzer (Siemens, Rapidlab
248, Erlangen, Bavaria, Germany) in 40 pl microsamples
of blood from the femoral artery; blood samples were
obtained prior to recording baseline, and after 30 second
or 5 minute CO, exposure was complete. The oxygen
saturation and heart rate (HR) were continuously moni-
tored using MouseOx (Harvard Apparatus, Starr Life
Science Corporation, Holliston, MA, USA). Body tem-
perature was monitored with a rectal probe.

Cerebrovascular response to hypercapnia

Male mice (25 to 28 g) acutely or chronically exposed to
Tat were anesthetized with a urethane/xylazine (1 g/kg,
2 mg/kg, respectively) combination via IP injection. This
regimen was chosen to avoid the perturbation of cerebral
blood flow that is observed with volatile anesthetics [33].
Animals were placed on a heating pad (37°C) to prevent
anesthesia-induced hypothermia, and temperature was
monitored rectally for the duration of experiment. Bi-
lateral LDF was used to examine CBF in the acute model
of HIV-induced neuroinflammation (in this case, the
uninjected left hemisphere served as a control for the
injected right hemisphere). Unilateral LDF measurements
were recorded for Tat-tg mice. In all cases, initial cortical
baseline blood flow was recorded for 1 minute after
which 6% CO, was added to a 21% O, air mixture for ei-
ther 5 minutes or 30 seconds; CBF was then recorded for
a total of 9 or 5 minutes, respectively.

Two-photon microscopy

Examination of pial arterioles

Urethane/xylazine anesthetized mice were securely
placed into a stereotactic frame and a thin skull window
was created as described in [34]. To visualize blood ves-
sels, Texas Red-dextran (MW 70 kDa, Life Technologies,
Invitrogen, Grand Island, NY, USA) was injected intra-
venously (10 mg/kg, in 0.1 ml of saline) into the right
femoral vein. Arterioles were identified by the intrinsic
auto-fluorescence of smooth muscle (as visualized using
a 480/20 bandpass emission filter), branching patterns
and blood flow direction. Imaging was performed on a
Spectra PhysicsMaiTai HP DeepSee/Olympus Fluoview
FV1000 multiphoton imaging setup with a 25x NA 1.05
water immersion microscope objective, and recorded
by FluoViewl000 software (Olympus America, Center
Valley, PA, USA). The excitation wavelength was 880 nm,
with the laser power at the sample set below 10 mW. The
Texas Red fluorescence was detected using a 607/36 band-
pass emission filter. Vessel diameter was extracted from
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Figure 1 Tat-transgenic mice display attenuated cerebrovascular response to hypercapnic challenge. (A) Cerebral blood flow (CBF)
change in response to 5-minute exposure to 6% CO,, as measured by laser Doppler flowmetry (LDF). Results represent mean from seven Tat-
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transgenic (Tat-tg) mice and four wild type (WT) mice. (B) Maximum CBF reached in response to exposure to 6% CO, for the data shown in (A).
**P <0.01, nonparametric permutation test. (C) CBF change in response to 30-second exposure to 6% CO,, as measured by LDF. Results represent
mean from five Tat-tg mice, four Tat-tg mice not induced with doxycycline (DOX) (Tat-tg Ul) and five WT mice. (D) Maximum CBF reached in
response to exposure to 6% CO,, for the data shown in (C). **P <0.01, nonparametric permutation test. (A, C) Values are expressed as a
percentage change from baseline CBF, defined here as the mean CBF measured during the one-minute period immediately preceding delivery of
CO,. Shadowed area along X-axis represents duration of hypercapnic challenge. All data represent mean + SEM. (E) Confirmation of inducible Tat
expression in the cortex of Tat-tg mice, as analyzed by RT-PCR. A 141-bp Tat-specific PCR product is shown in the upper panel and a control 480-

bp GAPDH product is shown in the lower panel. DNA-free RNA samples were analyzed from a WT c57Bl mouse (negative control), two Tat-tg
DOX+ mice, two Tat-tg DOX- mice; genomic DNA from a Tag-tg mouse was used as a positive control (gDNA Tat-tg).

two-photon images of pial arterioles using ImageJ software
(NIH). Diameter was measured at two time points - at
baseline and again at 30 seconds following exposure to
6% CO,.

Examination of cortical capillaries

Tat-tg and WT animals were injected with Texas Red-
dextran as described above. Dye was allowed to circulate
for 5 minutes, and anesthetized animals were then
sacrificed by cervical dislocation and decapitated. Intact
brains were removed, washed with cold artificial cere-
brospinal fluid (aCSF, Harvard Apparatus, Starr Life
Science Corporation, Holliston, MA, USA) and placed
into a brain slicing matrix (Zivic Instruments, Pittsburgh,
PA, USA). Tissue was cut into 2 mm coronal slices
and placed onto glass slides with a shallow depression

containing aCSF. A glass cover slip was placed over the
sectioned tissue and a drop of aCSF was added to the
cover slip to provide a liquid interface for the water
immersion microscope objective. Images were taken from
Bregma level -1.0, interaural 3.10, approximately 1.5 mm
from midline. A 25x, 100-um Z-stack was imaged through
the cortex which was then skeletonized and analyzed
in three dimensions using AMIRA software (Visage
Imaging, San Diego, CA, USA).

PDE activity assay

The specificity of the PDES5 inhibitor gisadenafil besylate
on PDE5 was evaluated by PDE activity assay on recom-
binant PDE5A and PDE1A proteins expressed in Cos7
cells as described in [35]. The ¢cGMP PDE activity of
Cos7 cell lysates were assayed in buffer containing
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20 mM Tris—HCI (pH 7.5), 3 mM MgCl, 15 mM magne-
sium acetate, 1 uM cGMP, [*H]cGMP (100,000 cpm/tube),
either 400 mM EGTA (for PDE5A lysates) or 200 mM
CaCl and 4 g/ml of CaM (for PDE1A lysates), and indi-
cated concentrations of PDE5 inhibitor gisadenafil. All
PDE assay reactions were started by adding the substrate
into premixed other components. Reactions were incu-
bated at 30°C for 15 minutes, and then terminated by
boiling for 1 minute. After cooling, 2.5 mg/mL snake
venom (Sigma, St. Louis, MO, USA) (with 5'-nucleotidase
activity) was added to each reaction, and reactions were
incubated at 30°C for 10 minutes. Hydrolyzed pro-
ducts were then separated by DEAE-sepharose anionic
exchange columns, eluted from columns, and measured
via liquid scintillation counter. Enzymatic activity was
calculated as percentage total radioactivity minus back-
ground, and was established in a linear range prior to
initiation of each experiment.

Statistical analysis

Given the relatively small number of subjects (mice) in
each group, it’s difficult to justify the normality assump-
tion of the data distribution. Therefore we used the non-
parametric permutation test to compare maximum CBF
values reached after exposure to CO, in different groups.
To compare arteriole diameters before and after expos-
ure to CO,, a two-tailed ¢-test was used.

Results

Tat-induced neuroinflammation attenuates the
cerebrovascular response to 5 minute and 30 second
hypercapnic challenges

The brain vasculature is exquisitely sensitive to changes
in tissue and blood levels of carbon dioxide (pCO,) [36].
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Increased pCO,, or hypercapnia, induces a potent global
vasodilation in the surface pial arterioles of the neocor-
tex without the need for sensory or motor stimulation
[37]. Therefore, we used this dilatory responsiveness as a
model to determine whether Tat exposure induces path-
ology within the vessel itself.

We initially examined responses in Tat-tg mice. Cerebral
blood flow was measured by laser Doppler flowmetry,
with unilateral placement of the laser Doppler probe
(since both hemispheres expressed Tat). Baseline was
established for 1 minute after which animals were
exposed to 6% CO, for 5 minutes (Figure 1A, the shaded
area on the time line shows the period during which
animals were exposed to CO,). The peak vasodilatory
response to hypercapnia was significantly attenuated
(P = 0.01; nonparametric permutation test) in Tat-tg
(21.5% increase in CBF) compared to WT mice (40.3%
increase in CBF) (Figure 1B).

Since long hypercapnic challenges have the potential to
cause acidosis [18] and resulting hemodynamic changes
[16,17], we measured physiologic parameters before and
after the 5-minute exposure to 6% CO, (Table 1). There
were no differences between Tat-tg, non-tg littermates
(WT) or Tat-tg mice not induced with DOX (Tat-tg UI).
However, after a 5 minute exposure to 6% CO, mice
developed moderate acidosis. We therefore next assessed
whether a more transient exposure to CO, would pro-
duce a similar CBF response without causing signifi-
cant physiological changes. Table 1 shows that short
(30 seconds) exposure minimized the magnitude of
acidosis, while still eliciting a robust increase in cortical
flow (Figure 1C). Comparison of the peak response of
Tat-tg (11.6% increase in CBE, above baseline) and WT
(20.8% increase in CBF, above baseline) mice to a brief

Table 1 Physiological parameters in mice before and after exposure to 6% CO,

MAP, mm Hg Arterial blood pH PaCO,, mm Hg PaO,, mm Hg
Group (N) Exposure to CO, Before After Before After Before Before
WT (4) 5 min 7472 + 448 7552 £ 3.85 7.36 + 0.02 7.9 £ 0.04 3633+ 1.25 96.5 + 2.65
Tat-tg (7) 5 min 72.86 = 345 71.94 £ 3.66 7.34 £ 0.01 7.19 £ 0.03 3768 £ 1.79 100.88 + 2.65
WT (15) 30 sec 7329 £ 167 7119 = 1.65 7.35 £ 0.01 7.27 £0.02 3521 + 065 1037 + 1.84
Tat-tg (16) 30 sec 7563 £ 1.74 76.09 £ 1.79 7.35 £ 0.01 7.28 £ 0.01 3569 £+ 1.19 10298 + 2.65
Tat+BH4 (3) 30 sec 732+ 293 730+ 248 7.34 +0.02 7.28 £ 0.01 369 + 225 103.36 + 10.7
Tat+PDEi (12) 30 sec 75.74 £ 2.39 74.72 £ 201 7.36 £ 0.03 7.25 £0.03 3552 + 083 104.1 £ 193
Tat+Combo (3) 30 sec 7503 £ 587 7343 £4.72 7.35 £ 0.02 7.26 £ 0.02 3777 £1.27 108.7 + 5.27
WT+Combo (3) 30 sec 742 +1.01 7127 £0.74 7.34 + 001 721 £0.04 3857 £ 265 104.57 £ 10.19
Tat-tg+Vehicle (4) 30 sec 733 £ 087 74.58 £ 1.04 7.36 £ 0.02 7.28 £ 0.01 3490 £ 1.7 10145 + 1.96
Tat-tg Ul (6) 30 sec 81.35 + 2.69 784 £ 234 7.35 £ 0.03 7.27 £0.02 4055 £ 454 99.73 £ 1.94
Tat-injected (4) 30 sec 79.95 + 466 7823 £ 4.70 7.38 £ 0.02 725+ 003 3715+ 1.67 101.25 + 140
gp140-injected (4) 30 sec 74.33 £ 4.70 72.78 £ 442 7.36 £ 0.01 7.26 £ 0.01 36.03 £ 1.56 106.05 + 542

PDEi, gisadenafil; Combo, combined PDEi and BH4; MAP, mean arterial pressure; PaCO,, partial arterial pressure of CO,;
Pa0,, partial arterial pressure of O; Ul, Uninduced. Data shown as mean + SEM.
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hypercapnic challenge (Figure 1D) revealed a statistically
significant difference (P = 0.01; nonparametric permuta-
tion test). The peak response of Tat-tg UI mice to a brief
hypercapnic challenge (20.7% increase in CBE, above
baseline) was not different from response of WT mice.

Tat-induced neuroinflammation attenuates the
cerebrovascular response in intracranially injected
¢57BL/6 mice

To determine whether the vascular response to hyper-
capnia was altered in an acute model of HIV-induced
neuroinflammation [15], ¢57BL/6 mice age 8to 12 weeks,
were anesthetized and administered one of the following
by stereotactic intracerebral injection to the cortex of
the right hemisphere (RH): 1) 3 pl of saline (0.9% NaCl),
2) 3 pl (1 mg/ml) of recombinant HIV-1 Tat in saline, 3)
the same amount of heat-inactivated Tat in saline, or 4)
3 ul (1 mg/ml) of recombinant oligomeric HIV-1 Env in
saline (HIV-1yy, gpl140). The cortex of the left hemi-
sphere (LH) was not injected. Two days later, the re-
sponse to hypercapnia was evaluated using flowmetry
with bilaterally placed laser Doppler probes. Each animal
served as its own control, by comparing flow on the
manipulated right hemisphere (RH) to that on the
unmanipulated LH. Figure 2A shows data for c57BL/6
mice injected with saline (RH), challenged with 6% CO,
for 30 seconds and recorded over a 5- minute period.
This brief exposure to hypercapnia led to a brisk in-
crease in CBF. The peak increase in CBF was not statis-
tically different in the unmanipulated LH (30.6%) and
saline-injected RH (21.3%) of these animals (Figure 2B)
(P = 0.3; nonparametric permutation test). Figure 2C
shows data for mice injected with Tat (RH) and chal-
lenged for 30 seconds with 6% CO,. The magnitude of
the induced change in CBF was significantly lower in the
Tat-injected RH (7.3%) versus the non-injected LH
(26.3%) (P = 0.01; nonparametric permutation test)
(Figure 2D). Figure 2E shows data for control mice
injected with heat-inactivated Tat (RH) and challenged
for 30 seconds with 6% CO,. The magnitude of the
induced change in CBF was similar in the RH (24.6%)
and the unmanipulated LH (29.5%) (Figure 2F). Finally,
Figure 2G shows data for mice injected with oligomeric
HIV-1 Env (RH) and challenged for 30 seconds with 6%
CO,. The magnitude of the induced change in CBF was
similar in the RH (29.3%) and the unmanipulated LH
(32.1%) (Figure 2H).

The data presented in Figure 2 show that, consistent
with what was observed in the chronic model, animals
acutely exposed to Tat also had a diminished increase in
CBF, following exposure to brief hypercapnia. Physio-
logical parameters remained consistent during the 30 sec-
ond administration of CO, between the WT and Tat-tg
mice (Table 1), suggesting that observed increases from
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baseline CBF (Figure 2) were a result of cerebrovascular
responses rather than peripheral hemodynamic accom-
modations such as increased mean arterial pressure
(MAD).

Cortical capillaries do not show significant changes in
length, radius, volume or branching in a model for
chronic HIV-associated neuroinflammation

It is generally accepted that cortical blood flow is gov-
erned by surface pial arterioles [38], which run along the
surface of the cortex, and then dive deeply into the par-
enchyma of the brain where they form an extensive cor-
tical capillary network. Intracranial delivery of HIV-1 Tat
is known to upregulate the release of inflammatory cyto-
kines such as tumor necrosis factor o, interleukin 1B
and interleukin-6 within the CNS [39-41]. By doing so,
Tat creates a highly inflammatory, and potentially pro-
angiogenic, environment (reviewed in [42,43]). This sug-
gests the possibility that chronic HIV-associated neu-
roinflammation might lead to increased microvascular
density and/or increased vessel tortuosity in Tat-exposed
mice, which could potentially modulate CVR, and there-
fore confound the interpretation of our data.

To assess whether perturbations of cerebrovascular re-
activity might be due to changes in microvessel morph-
ology and density (resulting in impaired flow), we
imaged the cortical microvasculature using multiphoton
microscopy in Tat-tg, and WT animals. Three- dimen-
sional (500 pm x 500 um x 100 um) image stacks were
then quantitatively analyzed using Amira software. For
each image stack (Figure 3A) a three-dimensional vascu-
lar ‘skeleton’ was created by manually tracing vessels in
three-dimensional space using the Amira filament tool.
Then vessel length, radius, volume and branching para-
meters (including the numbers of nodes and segments)
were extracted. Vessel branching was defined as seg-
ments between two nodes where a node is either an end-
point of a vessel or point at which multiple segments
arise (Figure 3B). There was no statistically significant
difference in the number of nodes and segments be-
tween WT and Tat-tg animals (Figure 3C; P = 0.120 and
P = 0.483, respectively; t-test). Mean segment length
(Figure 3D) was also found to be statistically indistin-
guishable in the two groups (P = 0.279; t-test). To deter-
mine whether vessel density within the cortex was
altered in Tat-tg animals, mean radius (Figure 3E) and
total vessel volume (Figure 3F) were calculated. No sig-
nificant difference between WT and Tat-tg mice was
detected (P = 0.490, and P = 0.431, respectively; ¢-test).

PDES5 inhibition restores vasodilatory function in the
context of chronic HIV-associated neuroinflammation
Hypercapnia is thought to induce vasodilation through the
NO-cGMP pathway between perivascular neurons and/or
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Figure 2 Acute exposure to Tat dysregulates cerebrovascular response to hypercapnic challenge. In all panels, cerebral blood flow (CBF)
change in response to 30-second exposure to 6% CO,, was measured by bilateral laser Doppler flowmetry (BLDF), in c57BI mice. (A) CBF change
48 hours after injection with saline into right hemisphere (RH). Intact left hemisphere (LH) serves as a control. Results represent mean values from
three mice. (B) Maximum CBF reached in response to 6% CO,, for the data in (A). n.s.: not significant; nonparametric permutation test. (C) CBF
change 48 hours after injection with Tat into RH. Intact LH serves as a control. Results represent mean values from four mice. (D) Maximum CBF
reached in response to 6% CO,, for the data in (C). **P <0.01, nonparametric permutation test. (E) CBF change 48 hours after injection with heat-
inactivated Tat into RH. Intact LH serves as a control. Results represent mean values from four mice. (F) Maximum CBF reached in response to 6%
CO,, for the data in (E). (G) CBF change in mice 48 hours after injection with recombinant HIV-1 Env into RH. Intact LH serves as a control. Results
represent mean values from four mice. (H) Maximum CBF reached in response to 6% CO,, for the data in (G). (A, C, E, F) Values are expressed as a
percentage change from baseline CBF, defined as the mean CBF measured during the one- minute period immediately preceding delivery of
CO,. The shadowed area along the X-axis represents the duration of the hypercapnic challenge. All data represent mean + SEM.
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endothelial cells and vascular smooth muscle [19-23].
To test whether this pathway might be dysregulated in
the context of HIV-associated neuroinflammation, we
conducted hypercapnic challenge experiments in Tat-tg
mice that were treated with either 1) tetrahydrobiopterin
(BH4), an essential and potentially limiting cofactor
in the production of NO [26,27] or 2) an inhibitor of
PDES5, which regulates cellular cGMP levels [44]. Physio-
logical parameters were not changed by these treat-
ments (Table 1).

Since some PDES5 inhibitors can also interact with
PDE1 isotypes found within the cerebral vasculature,
we first confirmed the specificity of gisadenafil for PDE5.
This was directly tested with recombinant PDE5A and
PDE1A overexpressed in COS-7 cells (Figure 4A). Using
this approach, we found the IC;y of gisadenafil for
PDE5A to be 3.6 nM, similar to its reported ICs, of
1.23 nM [24]. In contrast, we found the ICs, of gisa-
denafil for PDE1A to be 9.1 puM, an approximately
2500-fold difference in specificity. Thus, gisadenafil at
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Figure 3 Cortical capillary morphology is not changed in Tat-transgenic (Tat-tg) mice. (A) Representative image of three-dimensional
stacks of cortical tissue capillaries (10x magnification) used for skeletonization with the filament tool in Amira software. (B) Schematic of vessel
branching used for quantification of morphological features in the skeletonized images. (C) The number of nodes and segments in wild type
(WT) and Tat-tg mice. (D) Mean length of segments. (E) Mean radius of vessels. (F) Total volume of vessels in one 3-dimensional image stack
(500 pm x 500 pm x 100 um). (C-F) Data extracted from same animals, seven WT and seven Tat-tg. Data represent mean + SEM. Comparison of
cortical capillary parameters from WT and Tat-tg failed to reach statistical significance.

the concentrations used in this study should be specific
to PDE5.

Tat-tg animals were treated with BH4 or gisadenafil besy-
late (UK-369,003; [24,25]) by intraperitoneal injection
2 hours before measurement of the cerebrovascular re-
sponse to brief hypercapnia. BH4 supplementation did not
restore the normal cerebrovascular response to brief
hypercapnic challenge (Figure 4B). In contrast, Tat-tg
animals treated with the PDES5 inhibitor gisadenafil showed
a marked restoration of the normal cerebro-
vascular response to 30 second hypercapnic challenge
(17.5% peak increase in CBF), relative to untreated

Tat-tg mice (11.6% peak increase in CBF) (Figure 4B).
Combination treatment with both BH4 and gisadenafil
had a slightly lesser (15.7%) effect compared to gisadena-
fil alone (Figure 4B). Longer (5 minute) exposures to
CO, were also performed in animals treated with gisade-
nafil to determine if these changes to CVR were
repro ducible under extended hypercapnia. Tat-tg
animals treated with gisadenafil showed marked im-
provement (P = 0.003, nonparametric permutation test)
in CVR (42.9% peak increase in CBF) compared to non-
treated Tat-tg animals (21.5% peak increase in CBF)
(Figure 4C).
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Figure 4 Phosphodiesterase 5 inhibition restores vasodilatory
function in Tat-transgenic mice. (A) Specificity of gisadenafil as
demonstrated by measuring phosphodiesterase (PDE) activity in
lysates of Cos7 cells overexpressing either PDETA or PDE5SA. (B).
Maximum cerebral blood flow (CBF) reached in response to
30-second exposure to 6% CO,, as measured by laser Doppler
flowmetry. The data for the untreated wild type (WT) and Tat-tg and
WT mice are taken from Figure 1 (C, D); they are included here for
comparison purposes. Number of animals: three for Tat-tg+BH4, five
for Tat-tg + PDE5 inhibitor gisadenafil (PDEi), three for WT treated
with combination of BH4 and PDEi, three for Tat-tg treated with
drug combination, four for Tat-tg injected with vehicle. (C).
Maximum CBF reached in response to 5-minute exposure to 6%
CO,. The data for the untreated WT and Tat-tg and WT mice are
taken from Figure 1 (A, B); they are included here for comparison
purposes. **P <0.01, *P <0.05; n.s., not significant, nonparametric
permutation test. All data represent mean + SEM.

Dilatory capacity of pial arterioles is decreased in a model
for chronic HIV-associated neuroinflammation

Since the morphology and gross structure of pial arter-
ioles was unchanged in our model for HIV-associated
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neuroinflammation, we reasoned that the physical re-
sponse of pial arterioles to pCO, could be changed due
to vessel pathology, and underlie the attenuated cerebro-
vascular reactivity in Tat-tg mice. We therefore mea-
sured changes in the diameter of these vessels in
response to brief hypercapnia, by performing in vivo
two-photon microscopy in both WT and Tat-tg mice,
during CO, administration.

A thinned skull window was prepared over the right
somatosensory cortex [34], and Texas Red-dextran was
then administered intravenously. Each animal was
imaged for 1-minute baseline, then 6% CO, was then
delivered for 30 seconds via nose cone and imaging was
continued for a total of 5 minutes. Representative images
for the peak responses of WT and Tat-tg mice to inter-
mittent hypercapnia are shown in Figure 5. In WT mice,
cerebral arterioles, of all sizes dilated as expected in re-
sponse to brief hypercapnia (Figure 5A,B), whereas in
Tat-tg mice, this dilatory response was more attenuated
(Figure 5C,D) in larger vessels (>25 pm). Treatment of
Tat-tg mice with gisadenafil largely restored the normal
vasodilatory response to hypercapnia (Figure 5E,F) by re-
storing small vessel (<25 pm) dilatory capacity.

These findings were quantitated by measuring the per-
cent change of vessel diameter after exposure to CO,, as
compared to baseline, using Image] software (NIH).
Increases in pial vessel diameters (1 to 50 pum) were sig-
nificantly different (P <0.0001; ¢-test) in WT (19.6%) and
Tat-tg (10.0%) animals, showing compromise of the nor-
mal vasodilatory response to hypercapnia in Tat-tg
model (Figure 5G). Interestingly, greater attenuation was
observed in the dilation of larger caliber vessels
(Figure 5I; >25 pm) (20.5% in WT mice, versus 6.7% in
Tat-tg mice; P <0.0001; ¢-test) compared to smaller cali-
ber vessels (Figure 5H; <25 pm) (19.1% in WT mice, ver-
sus 13.8% in Tat-tg mice; P = 0.0251; t-test).

We next examined individual arterioles in Tat-tg mice
that were treated with gisadenafil. Comparison of all ves-
sels (Figure 5G; 1 to 50 pum diameter) from untreated
Tat-tg (10.0% peak increase in vessel diameter) and Tat-
tg animals treated with gisadenafil (14.3% peak increase
in vessel diameter), showed a significant improvement in
dilatory capacity (P = 0.0135; ¢-test). However, vessel
dilation failed to achieve levels observed for WT mice
(19.6% increase in vessel diameter; P = 0.0069, t-test).
Interestingly, smaller arterioles (1 to 25 pm diameter) in
Tat-tg mice treated with the PDE5 inhibitor exhibited a
robust dilatory response (20.6% increase in vessel diam-
eter) to brief hypercapnia (Figure 5H), which was statis-
tically equivalent (P = 0.5447; t-test) to the dilatory
response of comparably sized vessels in WT animals
(19.1% increase in vessel diameter). The dilation of lar-
ger arterioles (26 to 50 pm diameter) in Tat-tg mice was
also enhanced by treatment with the PDES5 inhibitor
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Figure 5 Dilatory capacity of pial arterioles of Tat-transgenic mice is decreased. (A-F) Representative images of dilatory response of pial
arterioles in wild type (WT), Tat-transgenic (Tat-tg), and Tat-tg mice treated with PDE5 inhibitor gisadenafil (PDEI), taken before (A, C, E) and after
(B, D, F) exposure to 30 seconds of 6% CO,. 25X magnification. Arrows point to representative arterioles. Scale bar is 50 micrometers (um).

(G) Average magnitude of vessel dilation after exposure to CO, (all vessels; initial diameters 1 to 50 pm). Data shown were collected from seven
WT mice (a total of 23 arterioles were analyzed), seven Tat-tg mice (a total of 36 arterioles), and seven Tat-tg mice treated with PDEi (a total of
45 arterioles). (H) Average magnitude of vessel dilation after exposure to CO, (small vessels only; initial diameters 1 to 25 pm). These data are a
subset of those shown in (G). (I). Average magnitude of vessel dilation after exposure to CO, (larger vessels only; initial diameters 26 to 50 pum).
These data are a subset of the data shown in (G). G-l. Data are plotted as box- plots. Maximum and minimum outliers are represented by whisker
endpoints. Box segmentation represents lowest datum within 1.5 interquartile range of lower quartile, median and highest datum within 1.5
interquartile range of the upper quartile. Statistical significance denoted as *P <0.05; **P <0.01; ***P <0.001; or n.s,, no significant difference; t-test.
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(10.6% increase in vessel diameter), compared to un-
treated Tat-tg mice (6.7% increase in vessel diameter)
(P = 0.0187; t-test). However, the dilatory response of
these treated larger vessels was not fully restored when
compared to WT mice (20.5%) (Figure 7I; P <0.0001;
t-test).

Discussion

We used hypercapnia as an experimental tool to exam-
ine the regulation of cerebrovascular reactivity in the
context of HIV-induced neuroinflammation. Our initial
experiments used a relatively extended (5 minute) ex-
posure to moderate hypercapnia, consistent with previous
studies in other mouse and rat models of cerebrovascular
reactivity (6% CO, stimulus with 9-minute evaluation of
CBF) [45-47]. These studies demonstrated a significant

loss of normal vascular responsiveness to hypercapnia in
Tat-exposed mice, relative to controls (Figure 1). How-
ever, we noted that there was considerable acidemia in
the animals at the end of this CO, administration period
(Table 1). Respiratory acidosis of this kind [18] can stimu-
late systemic hemodynamic change through B-adrenergic
signaling [16,17]. To avoid this, we therefore explored
the administration of a 30-second CO, challenge. This
shorter hypercapnic exposure recapitulated our initial
long exposure findings (compare Figures 1A with 1C),
while minimizing the potential confounder of moderate
respiratory acidosis (Table 1).

We proceeded to use this hypercapnic challenge model
to examine the regulation of CBF in the context of two
experimental animal models for HIV-induced neuroin-
flammation. In both models, mice were exposed to HIV-
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1 Tat (either by direct intracranial injection or through
enforced transgene expression within the CNS), in order
to induce a neuroinflammatory state mimicking that
found in persons with HIV-associated neurocognitive
disorders. In both models, we detected significant reduc-
tions in cerebrovascular reactivity to brief hypercapnia,
suggesting an underlying cerebrovascular pathology that
was induced by exposure to HIV-1 Tat. Mice exposed
acutely to intracranial Tat showed a more profound de-
pression in the cerebrovascular response to hypercapnia
compared to Tat-tg mice. This difference might be
explained by a robust inflammatory response to acutely
injected Tat, compared to a more slowly developing,
chronic inflammation produced in the Tat-tg mouse dur-
ing three weeks of DOX-induced Tat expression. Since
HIV-associated neuroinflammation is also a chronic dis-
ease, all remaining experiments were conducted in the
Tat-tg model.

Tat-tg mice showed a 50% attenuation of the normal
increase in CBF, following exposure to hypercapnia. This
suggests that the dysregulation of CBF in persons living
with HIV-1 may be a direct result of virally-induced
neurovascular inflammation, and not secondary to per-
ipheral inflammation or peripheral vascular disease asso-
ciated with HIV-1 infection. Additionally, these findings
suggest that decreased resting CBF in persons living with
HIV [12] might be explained not only as a result of
reduced neuronal demand (due to neuronal damage),
but also as the consequence of an HIV-1 induced vascu-
lar dysfunction.. Clinically, the failure to regulate CBF in
the face of changing metabolic demand, such as
increased CO, levels, may in turn lead to transient epi-
sodes of cerebral ischemia, further perpetuating neur-
onal damage and inflammation.

In addition to examining regional cerebral blood flow
using laser Doppler flowmetry, we also conducted experi-
ments to look at the response of individual vessels to
brief hypercapnia. To do this, we conducted in vivo two-
photon imaging of cerebral blood vessels, using a thin-
skull window (intact cranium). This allowed preservation
of normal intracranial pressure, CSF dynamics and
hemodynamics. We found that Tat-induced neuroinflam-
mation reduced the overall magnitude of CO,-induced
vasodilation, with an especially profound effect on larger
vessels (>25 um diameter) (Figure 5).

Cerebrovascular responses to hypercapnia are believed
to occur through an NO-cGMP pathway between peri-
vascular neurons and smooth muscle cells [19-23]. This
pathway is highly susceptible to dysregulation by reactive
oxygen species produced during inflammation [48,49].
Moreover, HIV-1 Tat has also been shown to signifi-
cantly decrease endothelial NOS (eNOS) expression in
porcine coronary arteries [50]. We therefore conducted
experiments to examine the role of the NO-cGMP axis
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in contributing to the diminished vascular response to
brief hypercapnia in mice with HIV-1 associated
neuroinflammation.

First, we tested whether increasing the supply of NO
might correct the vascular response to CO,. NO produc-
tion by NOS is dependent on its cofactor tetrahydrobiop-
terin (BH4) [26,27]. When BH4 levels are inadequate,
the reduction of O, by NOS is no longer coupled to
L-arginine oxidation, resulting in generation of super-
oxide rather than NO. To test whether this uncoupling
of NOS was responsible for impaired CVR in our model,
we supplemented Tat-tg and WT mice with BH4 and then
exposed them to brief hypercapnia. BH4 had no effect on
the cerebrovascular responses to brief hypercapnia, which
remained attenuated in the Tat-tg mice. In contrast,
when Tat-tg mice were treated with a PDE5 inhibitor
(gisadenafil), expected to prevent degradation of cGMP
in arterial smooth muscle cells [24,25], their cerebrovas-
cular response to brief hypercapnia was normalized. This
indicates that CO, chemosensing was not impaired in the
Tat-tg mice, and suggests that HIV-associated neuroin-
flammation may cause cerebrovascular pathology, through
effects on cGMP metabolism and possibly PDE5. Interest-
ingly, while gisadenafil produced significant recovery of
the normal CBF response to brief hypercapnia in both
small and large diameter vessels (Figure 5H, I, respect-
ively), it showed selectivity for smaller vessels (<25 pm).
One possible explanation is that the dilatation of the larger
vessels is more reliant on NO [51,52], which may not have
been adequately replenished with BH4 supplementation.
An alternative explanation is that PDE5 expression may
be limited to the smaller vessels, whereas other PDE
family members exist within the larger arterioles. Future
studies will need to address the large vessel responsive-
ness to different PDE inhibitors. More importantly, how-
ever, inhibition of PDE5 was sufficient to restore the
normal increase in CVR. This suggests that responses in
the smaller vasculature may be of greater importance,
compared to larger arterioles (>25 pum), in overall control
of CBF following brief hypercapnic stimulation. Add-
itionally, it is possible that already available PDE5 inhibi-
tors could be used to limit further neuroinflammation
initiated by transient episodes of tissue ischemia, due to
decreased CVR to CO, or other CBF regulators signaling
through the NO-cGMP pathway.

Overall, this study reports three major findings.
First, HIV-associated neuroinflammation (induced by
either acute or chronic exposure to HIV-1 Tat) pro-
duced a cerebrovascular pathology, that was uncov-
ered upon brief exposure to moderate hypercapnia.
Second, this cerebrovascular pathology may select-
ively affect larger vessels (>25 um) and finally, inhib-
ition of PDE5 by gisadenafil besylate restored the normal
cerebrovascular response to transient hypercapnia in mice
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with underlying HIV-associated neuroinflammation by fully
restoring the dilatory capacity of the smaller pial arterioles.
These findings may have important implications for per-
sons living with HIV-1 especially because impaired vasor-
eactivity to hypercapnia has been associated with
increased risk of ischemic stroke, elevated overall cardio-
vascular risk and cognitive impairment [53-58].

Conclusions

This study shows that HIV-associated neuroinflam-
mation can directly result in cerebrovascular path-
ology. This may explain the dysregulation of cerebral
blood flow and cerebrovascular reactivity in persons
living with HIV. Our findings also implicate PDE5 as a
key mediator of this process, and suggest that pharma-
cologic inhibition of this enzyme may restore normal
cerebrovascular responses. This could have important
therapeutic implications for the treatment of HIV-
associated neurocognitive disorders.
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