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Involvement of PPAR-y in the neuroprotective
and anti-inflammatory effects of angiotensin type
1 receptor inhibition: effects of the receptor
antagonist telmisartan and receptor deletion in a
mouse MPTP model of Parkinson’s disease
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Abstract

Background: Several recent studies have shown that angiotensin type 1 receptor (AT1) antagonists such as
candesartan inhibit the microglial inflammatory response and dopaminergic cell loss in animal models of
Parkinson'’s disease. However, the mechanisms involved in the neuroprotective and anti-inflammatory effects of AT1
blockers in the brain have not been clarified. A number of studies have reported that AT1 blockers activate
peroxisome proliferator-activated receptor gamma (PPAR ). PPAR-y activation inhibits inflammation, and may be
responsible for neuroprotective effects, independently of AT1 blocking actions.

Methods: We have investigated whether oral treatment with telmisartan (the most potent PPAR-y activator among
AT1 blockers) provides neuroprotection against dopaminergic cell death and neuroinflammation, and the possible
role of PPAR-y activation in any such neuroprotection. We used a mouse model of parkinsonism induced by the
dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and co-administration of the PPAR-y
antagonist GW9662 to study the role of PPAR-y activation. In addition, we used AT1a-null mice lesioned with MPTP
to study whether deletion of AT1 in the absence of any pharmacological effect of AT1 blockers provides
neuroprotection, and investigated whether PPAR-y activation may also be involved in any such effect of ATT
deletion by co-administration of the PPAR-y antagonist GW9662.

Results: We observed that telmisartan protects mouse dopaminergic neurons and inhibits the microglial response
induced by administration of MPTP. The protective effects of telmisartan on dopaminergic cell death and microglial
activation were inhibited by co-administration of GW9662. Dopaminergic cell death and microglial activation were
significantly lower in AT1a-null mice treated with MPTP than in mice not subjected to AT1a deletion. Interestingly,
the protective effects of AT1 deletion were also inhibited by co-administration of GW9662.

Conclusion: The results suggest that telmisartan provides effective neuroprotection against dopaminergic cell
death and that the neuroprotective effect is mediated by PPAR-y activation. However, the results in AT1-deficient
mice show that blockage of AT1, unrelated to the pharmacological properties of AT1 blockers, also protects against
dopaminergic cell death and neuroinflammation. Furthermore, the results show that PPAR-y activation is involved
in the anti-inflammatory and neuroprotective effects of AT1 deletion.
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Background

In recent years, evidence has accumulated for a major role
of oxidative stress and neuroinflammation in the patho-
genesis and progression of Parkinson’s disease (PD) [1,2].
The peptide angiotensin II (AII), via type 1 receptors
(AT1), is one of the most important known inducers of
inflammation and oxidative stress, produces reactive oxy-
gen species (ROS) by activation of the reduced nicotina-
mide adenine dinucleotide phosphate (NADPH)-oxidase
complex [3-5] and plays a major role in the pathogenesis
of several age-related degenerative diseases [6-8]. There is
a local renin-angiotensin system (RAS) in the brain [9,10],
and NADPH oxidase, AT1 and AT2 receptors have been
located in dopaminergic (DA) neurons, nigral microglia
and astrocytes [11-13].

We have previously shown that the DA cell loss induced
by DA neurotoxins is enhanced by All via AT1, activation
of the microglial NADPH-complex and exacerbation of
the glial inflammatory response [11,13,14]. This is consis-
tent with more recent studies, in which we have shown
hyperactivation of the nigral RAS in several animal models
of increased vulnerability of DA neurons to degeneration
(that is, models of humans at higher risk for PD), such as
aged male rats [15] or menopausal rats [16]. The increased
glial inflammatory response and DA neuron vulnerability
were found to be inhibited by the AT1 antagonist cande-
sartan. It is well-known that AT1 antagonists block AT1
receptor function and increase AT2 receptor expression
and function with no significant changes in angiotensin
converting enzyme (ACE) activity [17,18]. However, the
mechanisms involved in the brain anti-inflammatory
effects of AT1 blockers (ARBs) have not been clarified.

Previous studies in different tissues have suggested that
peroxisome proliferator-activated receptor gamma
(PPAR-y) is involved in the anti-inflammatory effects of
AT1 antagonists [19-21]. PPAR-y belongs to a group of
nuclear receptors (PPARs) that control lipid and glucose
metabolism, energy homeostasis and adipocyte and
macrophage differentiation. More recently, macrophage
PPAR-y receptors have been shown to be involved in the
down-regulation of expression of several inflammatory
cytokines and inhibition of inflammation [22-24]. Inter-
estingly, PPAR-y has been detected in neurons and glial
cells [24-26], and participates in mechanisms that control
microglial activation and lead to suppression of the acti-
vated phenotype [25,27]. In accordance, it has been
shown that PPAR-y agonists protect against DA cell
death in animal models of PD [28,29]. However, the
potential relationship between the anti-inflammatory
effects of ARBs and PPAR-y stimulation is not clear.

A number of studies have reported that some ARBs
such as telmisartan and irbesartan, and more controver-
sially losartan and candesartan (but not valsartan or
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olmesartan), have PPAR-y activating properties that are
independent of any AT1 blocking actions [19-21].
Therefore, the pharmacological PPAR-y activating prop-
erties of ARBs may be responsible for the neuroprotec-
tive effects. However, it has also been reported that the
pharmacological PPAR-y-activating potency of ARBs
(including telmisartan, the most potent PPAR-y activator
among ARBs) is rather modest compared with that of
conventional PPAR-y ligands, and that the PPAR-y acti-
vating potency may be even less effective in vivo [30,31].

In the present study, we aimed to determine whether
telmisartan provides neuroprotection against DA cell
death in a mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydro-
pyridine (MPTP) model of parkinsonism, and whether
PPAR-y activation plays a major role in any such neuro-
protection. Secondly, we studied whether the pharmacolo-
gical PPAR-y-activating properties of telmisartan are
responsible for the neuroprotective effects, and if the AT1
blocking actions do not actually play any significant role in
neuroprotection; we used AT1la-null mice lesioned with
the DA neurotoxin MPTP to study whether deletion of
AT1 in the absence of any pharmacological effect of ARBs
provides neuroprotection. Thirdly, we investigated
whether PPAR-y activation may also play a major role in
any such neuroprotective effect of AT1 deletion.

Methods

Experimental design

Male C57BL-6 mice weighing 20 to 25 g (that is, seven
weeks old) were used. Mice were wild type (WT; Charles
River, L’Arbresle, France) or homozygous mice deficient
for AT1a (the major mouse AT1 isoform and the closest
murine homolog to the single human AT1 [32]; Jackson
Laboratory, Bar Harbor, ME, USA). Mice were main-
tained in the animal facility at the University of Santiago
de Compostela in accordance with the institutional
guidelines. In a first series of experiments, the WT mice
were divided into seven groups (Al to G1). Mice in
group Al (n = 14) were used as normal (that is, non-
lesioned) controls, and were treated with vehicle (see
below). Mice in group Bl (n = 11) were injected with
MPTP (Free base, Sigma, St Louis, MO, USA; 30 mg/kg/
day in saline, by intraperitoneal injection for five days)
and intraperitoneal and oral vehicle. Mice in group C1 (n
= 6) were injected with MPTP as group-B1 mice, but
received oral treatment with telmisartan (5 mg/kg/day;
Sigma) from two weeks before MPTP treatment until
they were killed. The powered drug was administered
orally to the mice mixed with peanut butter; animals in
control groups were given only peanut butter. The dose
of telmisartan was chosen on the basis of previous
results. Telmisartan has been detected in cerebral spinal
fluid after repeated oral treatment at 1 to 30 mg/kg [33].
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However, the dose was selected according to several
recent reports showing that 5 mg/kg provided neuropro-
tection against brain injury [34,35]. Mice in group D1 (n
= 8) were injected with MPTP and telmisartan as above,
as well as the PPAR-y antagonist GW9662 (4 mg/kg by
intraperitoneal injection in dimethyl sulfoxide 4% PBS for
four weeks; that is from two weeks before MPTP injec-
tion until killed). Additional control mice were injected
with telmisartan alone (group E1; n = 5), or GW9662
alone (group F1; n = 5), or telmisartan + GW9662 (group
G1; n = 5) as described above.

In a second series of experiments, the AT1la-null mice
were divided into four groups (A2 to D2). AT1a-null mice
in group A2 (n = 8) were treated with vehicle and used as
normal non-lesioned controls. Mice in group B2 and C2
(n = 8) were injected with MPTP as above. AT1a-null
mice in group D2 (n = 8) were injected with MPTP and
the PPAR-y antagonist GW9662 (4 mg/kg by intraperito-
neal injection for four weeks before killed). Finally, an
additional group of ATla-null mice was treated with
GW9662 alone (group E2; n = 5). The mice were killed
one week after treatment with MPTP or vehicle and then
processed for histology or high performance liquid chro-
matography (HPLC; see below).

In a third series of experiments (n = 20), different
groups of mice were injected with a single dose of
MPTP (30 mg/kg) after treatment with vehicle or telmi-
sartan as above (that is, WT mice + vehicle + MPTP, n
=7; WT mice + telmisartan + MPTP, n = 7; and AT1la-
null mice + vehicle + MPTP, n = 6), and finally killed
90 min after the MPTP injection to quantify striatal
levels of MPP* (see below) [36,37].

High performance liquid chromatography

Seven days after the last MPTP injection, mice were
killed by decapitation and brains rapidly removed. The
striata were dissected on an ice-cold plaque, and the
striatal tissue frozen on dry ice and stored at -80°C until
analysis. Striatal tissue was homogenized and then centri-
fuged at 14,000 g for 20 min at 4°C. The supernatant
fractions were decanted, filtered (0.22 um) and injected
(20 uL/injection) into the HPLC system (Shimadzu LC
prominence, Shimadzu Corporation, Kyoto, Japan).
Dopamine and its metabolites 3,4-dihydroxyphenylacetic
acid (DOPAC) and homovanillic acid (HVA) were sepa-
rated with a reverse phase analytical column (Waters
Symmetry300 C18; 150 x 3.9 mm, 5 um particle size;
Waters, Milford, MA, USA). The mobile phase (70 mM
KH,PO,4, 1 mM octanesulfonic acid, 1 mM ethylenedia-
minetetraacetic acid (EDTA) and 10% MeOH, pH 4) was
delivered at a rate of 1 mL/min. Detection was performed
with a coulometric electrochemical detector (ESA Coulo-
chem III, Chelmsford, MA, USA). The first and second
electrode of the analytical cell were set at +50 mV and
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+350 mV, respectively; the guard cell was set at -100 mV.
Data were acquired and processed with the Shimadzu
liquid chromatography solution software. Results were
expressed in nanogram per microgram wet weight tissue
and presented as mean * standard error of the mean
(SEM) (n = 5 per group).

Estimation of 1-methyl-4-phenylpyridinium levels by mass
spectrometry

Brains were removed from the mice, the striata dissected
on an ice-cold plaque and the striatal tissue frozen on dry
ice and stored at -80°C until analysis. On the day of the
assay [36], striata were weighed and sonicated in a solution
of 0.4 M perchloric acid containing (w/v): 0.1% sodium
metabisulphite, 0.01% EDTA and 0.1% L-cysteine. Samples
were centrifuged at 13,000 rpm for 20 min at 4°C and the
supernatant was used to determine 1-methyl-4-phenylpyr-
idinium (MPP¥) levels. HPLC separation was accom-
plished in a Waters Alliance 2795 system (Waters,
Milford, MA, USA), with an Atlantis dC18 column (2.1 x
50 mm, 3 pm). The mobile phase consisted of solvent A
(0.1% formic acid) and solvent B (acetonitrile). We
employed an elution profile from 95% solvent A for 1 min,
followed by a linear gradient from 95% solvent A to 100%
solvent B from minute 1 to minute 1.5, and 100% solvent
B was maintained until minute 5. A re-equilibration time
of 5 min was allowed between injections and chromato-
graphy was carried out at a flow-rate of 0.2 mL/min. Elu-
ates were detected with a Quattro MicroTM API ESCI
triple-quadrupole mass spectrometer fitted with Z-spray
(Waters, Milford, MA, USA). Electrospray ionization was
set in positive ion polarizing mode (ESI+) for acquisition
of mass spectrometry data, with the following fragments
(m/z): 170.2 > 128.0, 170.2 > 154.4, and 170.2 > 115.1. The
capillary voltage was set at 3 kV, the desolvation tempera-
ture at 450°C, the cone voltage at 45 V, and the desolva-
tion gas flow rate was set at 550 L/h. All parameters were
adjusted to obtain optimum operating conditions for max-
imum intensity of the selected fragments, with Masslynx
4.1 software (Waters, Milford, MA, USA). MPP" standards
were prepared in the homogenization solution and used
for calibration purposes.

Immunohistochemistry, lectin histochemistry and cresyl
violet staining of mouse brains

The animals were killed and perfused, firstly with 0.9%
saline, and then with cold 4% paraformaldehyde in 0.1 M
phosphate buffer, pH 7.4. The brains were removed,
washed and cryoprotected in the same buffer containing
20% sucrose, and finally cut on a freezing microtome
(30 pm thick). To prevent any possible unspecific labeling
due to the use of primary mouse monoclonal antibodies
with mouse tissue, sections were processed with rabbit
polyclonal antibodies to tyrosine hydroxylase (TH; as a
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marker of DA terminals) and rat monoclonal antibodies
against CD45 (to identify reactive microglia/macro-
phages), as follows. Sections were incubated for 1 h in
10% normal serum with 0.25% Triton X-100 in 20 mM
potassium PBS containing 1% BSA (KPBS-BSA), then
incubated overnight at 4°C with rabbit polyclonal anti-
serum to TH (Chemicon, Millipore Temecula, CA; 1:500)
or at 4°C with rat monoclonal antiserum to CD45 (rat
immunoglobulin G, 1:1000, AbD Serotec, Kidlington,
Oxford, UK) in 20 mM KPBS containing 1% BSA, 2%
normal serum and 0.25% Triton X-100. The sections
were subsequently incubated, firstly for 90 min with the
corresponding biotinylated secondary antibodies (1:200),
and then for 90 min with an avidin-biotin-peroxidase
complex (Vector, 1:50, Burlingame, CA, USA). Finally,
the labeling was visualized with 0.04% hydrogen peroxide
and 0.05% 3-3’ diaminobenzidine (Sigma), containing
0.1% nickel sulfate to intensify the microglial staining.
For negative control staining, sections were incubated in
media lacking primary antibodies.

Activated microglial cells were also stained histochemi-
cally with Griffonia simplicifolia isolectin B4 (GSI-B4) as
follows. Sections were pre-incubated in PBS containing
0.1 mM of CaCl,, MgCl,, MnCl, and 0.3% Triton X-100
for 20 min. The sections were then rinsed with PBS and
incubated overnight at 4°C with biotinylated GSI-B4
(Sigma; 20 pg/mL) in PBS containing cations and 0.3%
Triton X-100. After rinsing with PBS, the sections were
incubated with an avidin-biotin-peroxidase complex (Vec-
tor; 1:100) for 90 min. Finally, labeling was visualized with
0.04% hydrogen peroxide and 0.05% diaminobenzidine
with 0.1% nickel sulfate to intensify the staining. For nega-
tive control staining, sections were incubated in media
lacking GSI-B4.

The total numbers of TH-immunoreactivity (TH-ir)
neurons in the substantia nigra compacta (SNc) were esti-
mated by an unbiased stereology method (that is, the opti-
cal fractionator). Stereological analysis was carried out
with the Olympus CAST-Grid system (Computer Assisted
Stereological Toolbox; Olympus, Ballerup, Denmark). Uni-
form, randomly chosen sections through the substantia
nigra (every third section) were analyzed for the total
number of TH-ir cells by means of a stereological grid
(fractionator), and the nigral volume was estimated
according to Cavalieri’s method [38]. Penetration by the
antibody was determined by registration of the depth of
each counted cell that appeared in focus within the count-
ing frame. This analysis revealed incomplete penetration
by the antibody, leaving 8 to10 pm in the center poorly
stained [39]. The total number of cells was therefore cal-
culated by excluding the volume corresponding to this
portion of the sections.

In order to confirm that MPTP induces cell death and
not only phenotypic down-regulation of TH activity,
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series of sections through the entire substantia nigra of
control mice and mice treated with MPTP were coun-
terstained with cresyl violet, and the total number of
neurons in the SNc was estimated by the unbiased
stereology method described above for TH-ir cells. Neu-
rons were distinguished from glial cells on morphologi-
cal grounds, and neurons with visible nuclei were
counted as above. The number of reactive microglial
cells was estimated with the Olympus CAST-Grid sys-
tem and the unbiased stereological method described
above for counting TH-ir neurons. The density of reac-
tive microglial cells (cells/mm?®) was determined by
dividing the number of labeled cells by the volume that
they occupied.

The density of striatal DA terminals was estimated as
the optical density of the striatal TH-ir with the aid of
National Institutes of Health (NIH)-Image 1.55 image ana-
lysis software (Wayne Rasband, National Institute of Men-
tal Health, USA) on a personal computer coupled to a
video camera (CCD-72, Imaging Research Inc, Linton,
UK) and a constant illumination light table (Northern
Light, St. Catharines, Canada). At least four sections
through the central striatum of each animal were mea-
sured (both the right and left striatum), and for each sec-
tion the optical densities were corrected by subtraction of
background as observed in the corpus callosum.

Statistical analysis

All data were obtained from at least three independent
experiments and were expressed as means + SEM. Multi-
ple comparisons were analyzed by one-way analysis of var-
iance (ANOVA) followed by the Student-Newman-Keuls
post-hoc test. The normality of populations and homoge-
neity of variances were tested before each ANOVA. Differ-
ences were considered statistically significant at P < 0.05.
Statistical analyses were carried out with SigmaStat 3.0
from Jandel Scientific (San Rafael, CA, USA).

Results

In control mice (those not injected with MPTP; group A1)
the DA neurons in the SNc were intensely immunoreac-
tive to TH, and a dense evenly distributed TH-ir was
observed throughout the striatum, indicating the presence
of a dense network of nigrostriatal DA terminals (Figure
1A, B). In mice treated with MPTP and vehicle (group B1)
there was a bilateral reduction in the number of TH-ir
neurons in the substantia nigra and a marked reduction in
the TH-ir in both striata relative to control mice (Figures
1C, D and 2A, B). The functional effects of the MPTP
lesion were confirmed by determination of the striatal
levels of dopamine and its metabolites with HPLC in con-
trol mice (group Al, n = 5) and mice treated with MPTP
(group B1, n = 5). Levels (nanogram per milligram wet
weight tissue) of dopamine (3.447 + 0.243), DOPAC
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Figure 1 Changes in TH-ir in the substantia nigra and striatum in WT mice. TH-ir at central levels of the substantia nigra (A, C, E, G) and
striatum (B, D ,F, H) in WT mice injected with vehicle (controls; A, B), with MPTP alone (C, D), or with MPTP + telmisartan (E, F), or with MPTP +

telmisartan + the PPAR-y antagonist GW9662 (G, H). More TH-ir neurons were observed in the nigra and terminals in the striatum (that is, spared
DA neurons and terminals) of mice treated with telmisartan (E, F) than in mice that did not receive telmisartan (C, D) or mice treated with

telmisartan and GW9662 (G, H). Scale bar: 250 um (A, C, E, G) and 560 um (B, D, F, H).
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Figure 2 DA (TH-ir) neurons and terminals in WT mice. TH-ir neurons in the (A) SNc and (B) TH-ir terminals in the striatum one week after
treatment with vehicle, telmisartan alone, GW9662 alone, telmisartan + GW9662, MPTP alone, telmisartan + MPTP, or telmisartan + MPTP +

GW9662. The DA neurons were quantified as the total number of TH-ir neurons in the SN¢, and density of striatal DA terminals was estimated as
optical density and expressed as a percentage of the value obtained in the group treated with vehicle. Data are presented as mean + SEM. *P <
0.05 compared with mice treated with vehicle, P < 005 compared with mice treated with MPTP alone,
with MPTP + telmisartan, °P < 0.05 compared with mice treated with MPTP + telmisartan + GW9662 (one-way ANOVA and Student-Newman-
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(0.257 + 0.012) and HVA (0.336 + 0.041) in control mice
were significantly higher than those observed in lesioned
mice (dopamine, 1.418 + 0.112; DOPAC, 0.136 + 0.012;
HVA, 0.192 + 0.024).

In order to confirm that MPTP induced DA cell death
and not TH-down-regulation and the corresponding
decrease in DA levels, we counted neurons in cresyl vio-
let stained sections. In control mice, the total number of
neurons counted in cresyl violet stained sections (13,701
+ 1140) was slightly higher than that of TH-ir neurons
as some non-DA neurons located in the SNc were also
counted. However, sections from mice treated with
MPTP (group B1) showed significant fewer cresyl violet
stained neurons in the SN¢ (8370 + 1112) than in the
control mice, confirming that MPTP induced cell death
and not TH-down-regulation in the present experimen-
tal conditions.

Mice treated with telmisartan and injected intraperito-
neally with MPTP (group C1) showed a bilateral reduc-
tion in the number of TH-ir neurons in the substantia
nigra and density of striatal TH-ir terminals, relative to
control mice, although the reduction was significantly
lower than that observed in group Bl mice not treated
with telmisartan (Figures 1E, F and 2A, B). However,
the protective effects of telmisartan were inhibited by
co-administration of the PPAR-y antagonist GW9662
(group D1; Figures 1G, H and 2A, B). No significant
changes were observed in mice treated with telmisartan
alone, or GW9662 alone, or telmisartan + GW9662.

In control AT1la-null mice (those not injected with
MPTP; group A2) DA neurons in the SNc were intensely
immunoreactive to TH and a dense evenly distributed
TH-ir was observed throughout the striatum (Figure 3A,
B). In AT1a-null mice injected with MPTP (group B/C2)
there was a bilateral reduction in the number of TH-ir
neurons in the substantia nigra and their striatal term-
inals relative to vehicle-injected mice (Figures 3C, D and
4), although this reduction was lower than that observed
in group B1 mice injected with MPTP and not subjected
to AT1a deletion (that is, mice in which brain endogen-
ous AlI can act synergistically with MPTP on the DA sys-
tem via AT1). However, the protective effects of AT1
deletion were inhibited by co-administration of the
PPAR-y antagonist GW9662 (group-D2 mice; Figures 3E,
F and 4). No significant changes were observed in AT1a-
null mice treated with GW9662 alone in comparison
with mice treated with vehicle.

In order to determine if treatment with telmisartan or
AT1la deletion acts by modifying MPTP pharmacoki-
netics such as penetration into the brain, biotransforma-
tion of MPTP to MPP* or MPP* removal from the brain,
we measured striatal levels of MPP" in mice. There were
no significant differences in striatal levels of MPP*
between mice treated with telmisartan and MPTP (3.116
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+ 0.196 ng/mg wet weight striatal tissue), AT1-null mice
treated with vehicle and MPTP (3.100 + 0.211 ng/mg wet
weight striatal tissue) and WT mice treated with vehicle
and MPTP (3.045 + 0.157 ng/mg wet weight striatal tis-
sue). The protective effect of telmisartan and AT1a dele-
tion (that is, the absence of possible changes in the
MPTP biotransformation to the active metabolite MPP™)
was also supported by the results observed after treat-
ment of mice with the PPAR-y antagonist GW9662. In
the presence of telmisartan or AT1 deletion (MPTP +
telmisartan or MPTP + AT1 deletion), treatment with
the PPAR-y antagonist GW9662 reverted DA cell death
and microglial activation (see below) to levels similar to
those observed after treatment with MPTP alone, which
would have not been possible without the presence of
similar levels of MPP" in the mice striatum.

In several recent studies, we have observed that the
enhancing effect of AIl on DA cell loss is mediated by
microglial activation and exacerbation of the inflammatory
response (for details, see [11,13]). In order to confirm that,
in the present experiments, neuroprotection by telmisar-
tan or AT1a deletion in mice is also associated with the
same mechanism (inhibition of MPTP-induced microglial
response), we analyzed the expression of the microglial
markers isolectin B4 and CD45 in the substantia nigra.
Control mice treated with vehicle showed minimal and
non-significant microglial activation. In WT mice injected
with MPTP (group B1), microglial activation was much
higher than in WT mice injected with vehicle (group Al),
and higher than mice injected with MPTP + telmisartan
(group C1). However, WT mice injected with MPTP + tel-
misartan showed lower microglial activation than WT
mice injected with MPTP + telmisartan + GW9662.
No significant difference was observed between mice trea-
ted with vehicle and mice treated with telmisartan alone,
or GW9662 alone, or telmisartan + GW9662 (Figures 5
and 6A).

In AT1-null mice injected with MPTP (group B/C2),
microglial activation was higher than in AT1-null mice
injected with vehicle, but significantly lower than in AT1-
null mice treated with MPTP and the PPAR-y antagonist
GW9662. No significant difference was observed between
AT1-null mice treated with vehicle and AT1-null mice
treated with GW9662 alone (Figures 5F, H and 6B).

Discussion

The present results show that, in mice, oral treatment
with the ARB telmisartan protects nigral DA neurons
against the DA neurotoxin MPTP as previously reported
for other ARBs, such as candesartan and losartan [11,12].
This suggests that brain endogenous AlI increases the
neurotoxic effect of MPTP on the DA system, as
observed in several previous studies, and that the AT1
blocker telmisartan inhibits the enhancing effect of AIl
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Figure 3 Changes in TH-ir in the substantia nigra and striatum in AT1a-null mice. TH-ir at central levels of the (A, C, E) substantia nigra
and (B, D, F) striatum in AT1a-null mice (AT1a”) injected with vehicle (controls; A, B), with MPTP alone (C, D), or with MPTP + the PPAR-y
antagonist GW9662 (E, F). The number of TH-ir cells in the nigra and TH-ir terminals in the striatum (that is, spared dopaminergic neurons and
terminals) was higher in the untreated group (C, D) than in mice treated with GW9662 (E, F). Scale bar: 250 um (A, C, E) and 560 um (8, D, F).
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Figure 4 DA (TH-ir) neurons and terminals in AT1a-null mice. TH-ir neurons in the (A) SNc and (B) TH-ir terminals in the striatum one week
after treatment with vehicle, GW9662 alone, MPTP alone, or MPTP + GW9662 in AT1a-null mice (AT1a”). The DA neurons were quantified as the
total number of TH-ir neurons in the SNc, and density of striatal DA terminals was estimated as optical density and expressed as a percentage of
the value obtained in the group treated with vehicle. Data are presented as mean + SEM. *P < 0.05 compared with mice treated with vehicle, *P
< 0.05 compared with AT1a-null mice treated with MPTP alone, ®P < 0.05 compared with mice treated with MPTP + GW9662 (one-way ANOVA
and Student-Newman-Keuls post-hoc test).
. J
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Figure 5 Photomicrographs showing changes in microglial activation in the substantia nigra. Activated microglial cells at central levels of
the substantia nigra stained with (A, B, E-H) isolectin B4 or (C, D) immunostained for CD45 and higher magnification. Photomicrographs show
microglia in WT mice treated with vehicle (controls; A, C), with MPTP alone (B, D), with MPTP + telmisartan (E), or with MPTP + telmisartan +
GW9662 (G). Microglial activation in AT1a-null mice (AT1a7") treated with MPTP alone or MPTP + GW9662 is shown in F and H, respectively.
Microglial activation was significantly higher in mice treated with MPTP alone (B, D), and in mice treated with the neurotoxin, AT1 inhibition and
GW9662 (G, H). Scale bar: 100 pm.




Garrido-Gil et al. Journal of Neuroinflammation 2012, 9:38
http://www.jneuroinflammation.com/content/9/1/38

Page 11 of 16

>

WT

25000 -

20000

15000

10000

GSI-B4-positive cells/mm’ in SNc

Student-Newman-Keuls post-hoc test).

5000
0
o o 5 5
$ E : 5 E 3 3
= = + ¥ + F ¥
o = & = = P 5
T & o = s = =
+ + +
= = = a =
= & = =
o
= =
+
.—
=
B AT1a-/-
20000 -
18000 - *#
0 T
Z 16000 4
£
o 14000 -
£
= 42000 -
% *
© 10000 T
[+H]
2
S 8000 -
3
2 6000 - T #o
3 T
& 4000
0]
2000
0
4] o
3 5 3 3
= ¥ ¥
© = +
> + & o
+ "o o =
“m - = <
c 2 i
< 3
'—
<

Figure 6 Activated microglial cells in the SNc. Density of GSI-B4-positive cells one week after treatment with (A) vehicle, telmisartan alone,
GW9662 alone, telmisartan + GW9662, MPTP alone, MPTP + telmisartan, or MPTP + telmisartan + GW9662 in WT mice, and (B) vehicle, GW9662
alone, MPTP alone, or MPTP + GW9662 in AT1a-null mice (AT1a'/'). The microglial cells were quantified as the number of cells per mm?, and the
data are presented as mean + SEM. *P < 0.05 compared with WT mice (A) or ATTa-null mice (B) treated with vehicle, *P < 0.05 compared with
WT mice (A) or AT1a-null mice (B) treated with MPTP alone, ®P < 0.05 compared with WT mice treated with MPTP + telmisartan (A) or AT1a-null
mice (B) treated with MPTP + GW9662, P < 0.05 compared with WT mice treated with MPTP + telmisartan + GW9662 (one-way ANOVA and
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on DA cell death. However, the protective effects of tel-
misartan were inhibited by co-administration of the
PPAR-y antagonist GW9662, which suggests that PPAR-y
activation is necessary for the neuroprotective effects of
telmisartan to occur. This neuroprotective effect may be
expected since telmisartan has been shown to be a potent
AT1 blocker and to penetrate the blood-brain barrier to
inhibit centrally mediated effects of AII [33,40]. However,
the mechanism responsible for this neuroprotection has
not been clarified. A first possibility is that the pharmaco-
logical PPAR-y activating properties of ARBs are the only
mechanism involved in the neuroprotective effect. Sev-
eral studies have shown PPAR-y activating properties of
candesartan and losartan, and that among ARBs, telmi-
sartan is the most potent agonist of PPAR-y [19-21]. The
present results are consistent with a major role of PPAR-
y activation as the data show that the protective effect of
telmisartan was inhibited by co-administration of the
PPAR-y antagonist GW9662.

However, the present study shows that pharmacologi-
cal PPAR-y activating properties of ARBs are not the
only factor responsible for neuroprotection; the results
obtained with mice deficient in AT1 show that, indepen-
dently of any pharmacological effect of ARBs, AT1 inhi-
bition induces significant neuroprotection of DA neurons
against neurotoxins such as MPTP. In fact, the neuropro-
tective effect of telmisartan against MPTP did not appear
higher than that previously observed with candesartan
[11], which has a less potent AT1-independent PPAR-y
agonistic effect [19-21]; this also suggests that there is no
significant ‘additional effect’ of AT1 blockage and phar-
macological PPAR-y activating properties of ARBs. It is
possible that the present experimental design was not
able to reveal any possible additional effect. However, it
may be also related to the PPAR-y activating effect of the
AT1 deletion observed in the present study; we observed
that administration of GW9662 significantly increased
the MPTP-induced DA neuron death in AT1 deficient
mice, which suggests that PPAR-y activation plays a
major role in the neuroprotective effects of AT1
inhibition.

The results therefore suggest that inhibition of AT1
with ARBs, and with telmisartan in particular, leads to
activation of PPAR-y by a double mechanism that
involves a pharmacological AT1-independent PPAR-y
agonistic effect (with more or less activation potency
depending on the type of ARB) and a direct effect of the
blockage of the AT1 itself, which also induces PPAR-y
activation. An important degree of crosstalk between
RAS and PPAR-y has been suggested in several studies
carried out in different tissues [41,42]. It has been
observed that treatment with AIIl inhibited PPAR-y
expression and the anti-inflammatory defense mechan-
isms in the artery wall [43,44]. In addition, inhibition of
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ACE led to enhanced expression of PPAR-y in adipose
tissue and skeletal muscle cells [45,46]. It has been sug-
gested that AII inhibits PPAR-y activation via AT1 and
enhances PPAR-y activation via AT2 receptors [42,47],
and that AT2 receptors may gain functional importance
during selective AT1 blockage by a redirection of the
available AII to the AT2 receptor [47,48]. Conversely, a
number of studies have suggested that PPAR-y may mod-
ulate RAS and AII signaling at multiple levels [43].
PPAR-y activators have been observed to induce down-
regulation of AT1 expression [49-51] and ACE activity
[52], and up-regulation of AT2 receptors [53].

Furthermore, other studies have shown that PPAR-y
and other PPARs may inhibit NADPH oxidase activity
and other signaling pathways involved in All-induced
oxidative stress and inflammation [54,55]. This may
explain not only the complete inhibition of the neuro-
protective effect of telmisartan by the PPAR-y antagonist
GW9662, observed in the present study, but also the
GW9662-induced inhibition of the neuroprotective
effect of AT1 deletion in the AT1la-null mice. It is
known that AII, via the AT2 receptor, exerts actions
directly opposed to those mediated by AT1, thus antag-
onizing many of the effects of the latter [56,57]. In
AT1la-null mice, AIl may act via AT2 receptors activat-
ing PPAR-y and contribute to inhibition of inflammation
and oxidative stress, which has been observed to pro-
mote longevity and inhibit progression of degenerative
diseases in AT1-null mice [58-60]. The present results,
which showed that the protective effects of AT1 inhibi-
tion were blocked by the treatment with the PPAR-y
antagonist GW9662, are consistent with the latter
findings.

In the present study, we have also confirmed that the
mechanism involved in the observed neuroprotection is
similar to that observed in previous studies on neuropro-
tective properties of ARBs. In previous studies in animal
models of PD, we have shown that inhibition of micro-
glial activation plays a major role in the protective effects
of ARBs against DA cell death induced by DA neurotox-
ins [11,13,15]. The present results, which suggest that
both AT1 inhibition with telmisartan and AT1a deletion
inhibit the microglial response induced by MPTP in the
substantia nigra, are consistent with this. Furthermore,
the present results show a major role for the PPAR-y
activity in this effect, since treatment with the PPAR-y
antagonist GW9662 led to inhibition of the protective
effect of telmisartan or AT1 deletion, as well as exacerba-
tion of the microglial response induced by MPTP in the
presence of AT1 inhibition. The present results are con-
sistent with previous findings that showed that PPAR-y
activation down-regulates brain inflammation by inhibit-
ing several functions associated with microglial activation
[25,61], and that PPAR-y agonists such as pioglitazone
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and rosiglitazone protect against MPTP-induced DA cell
death by inhibition of microglial activation [28,29,62].

The present results are also consistent with studies that
have observed that ARBs decreased the infiltration of
CNS [63,64] and peripheral organs [65] by inflammatory
cells, although some conflicting results have been also
reported [66]. In accordance with their inhibitory effect
on brain inflammation, beneficial effects of PPAR-y ago-
nists or AT1 inhibition have also been observed in a
number of processes mediated by microglial activation
and neuroinflammation, including animal models of
Alzheimer’s disease [67-69], brain ischemia [40,70,71],
multiple sclerosis [63,64,72], traumatic brain injury [73]
and aging [15,59,74].

In several previous studies we have shown the presence
of AT1, AT2 receptors and NADPH oxidase in microglia
and also in DA neurons [11,13]. In accordance with these
findings, inhibition of neuronal AT1 receptors may
decrease NADPH oxidase activity and NADPH oxidase-
derived ROS in neurons, which may lead to direct inhibi-
tion of DA neuron death, followed by a subsequent
reduction in microglial activation. However, our data do
not suggest this possibility. In microglia and other
inflammatory cells, NADPH oxidase produces ROS with
dual functions. Firstly, high concentrations of ROS are
released extracellularly to kill invading microorganisms
or cells [75]. Secondly, low levels of intracellular ROS act
as a second messenger in several signaling pathways
involved in the inflammatory response [76,77]. In non-
inflammatory cells, such as neurons, activation of
NADPH oxidase stimulates production of low levels of
intracellular ROS, which act as a second messenger in
several signaling pathways, including those involved in
triggering the inflammatory response and the migration
of inflammatory cells into the lesioned area; NADPH oxi-
dase-derived ROS may also modulate neuronal levels of
ROS by interaction with mitochondrial derived ROS, and
with ROS from other sources, such as neurotoxins or
activated microglia. Cross-talk signaling between the
NADPH oxidase and mitochondria has been observed in
several types of cells. This includes not only an upstream
role of NADPH oxidase in modulating of mitochondrial
superoxide [78,79] but also that mitochondrial superox-
ide stimulates extramitochondrial NADPH oxidase activ-
ity in a feed-forward fashion [80,81]. This interaction was
recently confirmed in a DA cell line treated with MPP*
and angiotensin [82]; MPP" induced mitochondrial
release of ROS, which induced a second wave of NADPH
oxidase-derived ROS, which was reduced by treatment
with the AT1 antagonist candesartan [82]. Using primary
cultures of mesencephalic cells, we have previously
shown that mitochondrial ATP-sensitive potassium
channels play a major role in the interaction between
NADPH-derived ROS and mitochondria after treatment
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with AII and/or DA neurotoxins such as MPP" or 6-
hydroxydopamine [83,84].

However, we have also observed that only high doses of
neurotoxins can induce DA neuron death in neuron-
enriched primary mesencephalic cultures [11,13,83-85].
This was confirmed in a recent study using a DA cell line
[82], in which significant DA cell death was only observed
after treatment with very high doses of MPP* (300 uM).
Interestingly, we observed that the effect of very low or
sub-lethal doses of neurotoxins (0.25 uM MPP* or 10 pM
6-hydroxydopamine; in other words, more similar to the
possible effect of environmental neurotoxins or other fac-
tors involved in PD) was enhanced by AIl and induced sig-
nificant DA cell death in mixed neuron-glia cultures but
not in pure neuronal cultures (that is, in the absence of
microglia) [11,13,83-85]. This suggests that although AII
and ARBs may contribute to the modulation of intraneur-
onal ROS and neuronal release of pro-inflammatory sig-
nals, the microglial response plays a major role in the DA
neuron death induced by low doses of neurotoxins, or
other deleterious factors. The major role of ARBs inhibi-
tion of microglial reaction in reducing DA neuron death
(rather than an ARBs-induced reduction in DA cell death
resulting in a decreased microglial response) was also con-
firmed in vivo by the observation of an intense microglial
response soon after a single injection of MPTP or 6-
hydroxydopamine (that is, prior to significant DA neuron
death), which was inhibited by treatment with ARBs
[11,13,86,87]. The present study shows that ARBs-induced
PPAR-y activation plays a major role in this effect.

Conclusion

The results of the present study show that oral adminis-
tration of telmisartan produces effective neuroprotection
against DA cell death induced by MPTP, as previously
observed for candesartan, and that the neuroprotective
effect is mediated by PPAR-y activation. Furthermore,
the results in AT1-deficient mice show that the deletion
of AT1, which is unrelated to the pharmacological prop-
erties of ARBs, protects against the DA neurotoxin, and
that the protective effects of AT1 deletion are also
inhibited by PPAR-y blockage. The results suggest that
inhibition of AT1 with ARBs, and with telmisartan in
particular, leads to activation of PPAR-y by a double
mechanism that involves a pharmacological AT1-inde-
pendent PPAR-y agonistic effect (with more or less acti-
vation potency depending on the type of ARB) and a
direct effect of the blockage of the AT1 itself, which
also induces PPAR-y activation.
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