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vertex-based approaches.

frontal cortices.

Background: Transforming growth factor B (TGFB) is a cytokine having multiple functions in the central nervous
system such as promoting repair mechanisms in degenerative diseases and stroke. To date, however, its
neuroprotective effects in non-disease conditions have not been studied

Methods: With the aim of exploring the relationship between peripheral TGF-B1 expression and brain structural
integrity, 70 healthy participants underwent high-resolution structural T1-weighted magnetic resonance imaging
scans and blood sampling. Data were processed to obtain brain cortical thickness and serum concentrations of
TGF-B1. We investigated the correlation between TGF1 and cortical thickness using both region-of-interest- and

Findings: Region-of-interest-based analysis of the cortical mantle showed a correlation between TGF1 serum
concentrations and cortical thickness bilaterally in cingulate and right frontal and temporal areas. Similar results
emerged in the vertex-based analysis, where significant correlations were found bilaterally in cingulate and right

Conclusions: These results suggest that TGF-B1, through its role in down-regulating inflammatory processes, might
have a beneficial effect on the structural integrity of the brain in physiological states.
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Background

In mammals, transforming growth factor § (TGF-B) is a
multifunctional cytokine which exists as three closely
related isoforms (TGF-B1, TGF-B2 and TGF-B3) that
bind to the same receptors and exert similar functions
but with different spatiotemporal control of their expres-
sion patterns [1].

Interestingly, TGF-f effects are prominent in brain
development [2] and its signaling might control the size
of a specific brain area by modulating self-renewal of
neural stem cells [3]. In addition, an ongoing and potent
trophic role for this anti-inflammatory cytokine has been

* Correspondence: fpiras@hsantalucia.it
'Fondazione IRCCS Santa Lucia, via Ardeatina 306, 00179 Rome, Italy
Full list of author information is available at the end of the article

( BioMVed Central

identified in TGF-B1-deficient unlesioned as well as
injured adult brain [4].

TGE-B is also involved in down-regulating inflamma-
tory reactions to injury and in promoting repair mechan-
isms [5], and has been implicated in the pathophysiology
of chronic neurodegenerative disorders and stroke [6].
Indeed, it has been shown that a reduction of TGF-f sig-
naling increases amyloid deposition and degeneration in
transgenic Alzheimer’s Disease (AD) mice [7], although
negative effects of TGF-B in neurodegeneration have also
been described [8,9]. In the vasculature, TGF-B modu-
lates atherosclerosis and restenosis [10]. There is also a
great deal of evidence, primarily from animal studies,
that TGFE-B plays a crucial protective role in reducing
infarct size following cerebral ischemia [11,12].
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Although TGF-B has been recognized as a neuropro-
tective factor, the mechanisms underlying the protective
effects have yet to be clarified. In vivo evidence for a ben-
eficial role of TGF-B in human brain is scarce or limited
to pathological conditions such as ischemia and neurode-
generative diseases, and the pattern of such protection in
physiological conditions has not yet been thoroughly
investigated. It could be that individual TGF-B pheno-
types exert different levels of protection from brain
pathologies such as neurodegenerative diseases, vascular
deficits and aging.

Following this line of reasoning, the hypothesis of a
relationship between TGF-B expression and brain struc-
tural integrity would not be unjustified. Thus, the aim of
the present pilot study was to determine whether there is
an association between peripheral TGF-B1 expression
(i.e. concentrations in serum samples) and structural
integrity of the brain (i.e. cortical thickness) in healthy
human subjects.

Methods
Subjects
Seventy healthy subjects (27 males, 43 females; mean age +
sd = 31 + 8.5 years, range 18-48; mean education + sd =
15.6 + 2.8 years, range 8-18) were recruited from universi-
ties, community recreational centres and hospital person-
nel by local advertisement. The inclusion criteria were age
between 18 and 50 years and suitability for MRI scanning.
Exclusion criteria included: i) suspicion of cognitive
impairment or dementia based on a Mini Mental State
Examination (MMSE) [13] score < 24, and confirmed by
clinical neuropsychological evaluation using the Mental
Deterioration Battery [14] and NINCDS-ADRDA diagnos-
tic criteria for dementia [15], ii) subjective complaints of
memory difficulties or of any other cognitive deficits, iii)
major medical illnesses, iv) current or reported psychiatric
or neurological disorders, v) known or suspected history
of alcoholism or drug dependence, vi) MRI evidence of
focal parenchymal abnormalities or cerebrovascular dis-
eases, and vii) presence of systemic inflammatory diseases
and/or treatment with anti-inflammatory drugs at the
time of the assessment.

The study was approved and undertaken in accor-
dance with the guidance of our local Ethics Committee
and written consent was obtained from all participants.

TGF- measurement

Peripheral blood samples were obtained in the early morn-
ing from all subjects by venipuncture of an upper limb.
Serum TGF-B1 levels were measured by a quantitative
enzyme immunoassay (ELISA) technique using a specific
TGEF-B1 kit (Human TGF- CytoSet, Biosource, Camarillo,
CA, USA) according to the manufacturer’s instructions.
The calibrator consisted of recombinant human TGF-f1.
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All samples were measured in duplicate and respective
mean values were calculated. The limit detection of the
assay was 30 pg/ml and the intra- and inter-assay coeffi-
cients of variability were 2.8% and 12.5%, respectively.

MRI acquisition and cortical thickness analysis

All 70 participants underwent the same imaging proto-
col, which included standard clinical sequences (FLAIR,
DP-T2-weighted) and a whole-brain high resolution T1-
weighted sequence obtained using a modified driven
equilibrium Fourier transform (MDEFT) sequence (TE/
TR = 2.4/7.92 ms, flip angle: 15°, voxel-size: 1 x 1 x 1
mm3) with a 3T Allegra MR imager (Siemens, Erlangen,
Germany).

MRI-based quantification of cortical thickness was per-
formed using the Freesurfer (v. 4.05) software package
http://surfer.nmr.mgh.harvard.edu. This method has
already been described in detail [16,17]. Images were first
corrected for intensity of non-uniformity and registered
via affine transformation (12 parameters) to Montreal
Neurological Institute (MNI) space [18]. Then, images
underwent a further intensity normalization using a differ-
ent automated algorithm and were automatically skull
stripped [16]. Next, the entire cortex was visually
inspected prior to analysis. The data from 70 subjects
were deemed to require manual correction, which
included: a) setting intensity normalization control points
where brain matter was erroneously skull stripped, b)
adjusting watershed parameters of the skull strip, and c)
visual inspecting and correcting of the automatic subcorti-
cal segmentation. All processes (i.e. skull stripping and
segmentation) were inspected by an expert neuroradiolo-
gist who was blinded to the aim of the study.

For each subject, thickness measurements across the
cortex were computed by finding the point on the gray-
white matter boundary surface that was closest to a given
point on the estimated pial surface (and vice versa) and
obtaining the average of these two values [19]. The accu-
racy of the thickness measures derived from this techni-
que was validated by direct comparisons with manual
measurements on postmortem brains and direct compar-
isons with manual measurements on MRI data [20,21].
The surface representing the gray-white matter border
was “inflated” [22]. Differences among individuals in the
depth of gyri-sulci were normalized, and each subject’s
reconstructed brain was then morphed and registered to
an average spherical surface representation that optimally
aligned sulcal and gyral features across subjects [21].
Finally, cortical maps were smoothed with a 10-mm full-
width at half maximum Gaussian kernel.

For each subject mean thickness values were then cal-
culated for 33 regions of interest (ROIs) in each hemi-
sphere, using the Destrieux atlas [23], implemented in
the Freesurfer software.
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Statistical analyses

Association between TGF-B1 and cortical thickness was
investigated using both a ROI-based and a vertex-based
approach. The former was performed by calculating
Pearson’s r correlation coefficients between TGF-B1
serum levels and each ROI mean thickness. As this is a
pilot study, we accepted the false-positive risk with an
uncorrected level of significance set at p < .05. The ver-
tex-based analysis was performed using the Qdec mod-
ule, implemented in Freesurfer. For each hemisphere,
estimation of statistical effects was generated by comput-
ing a general linear model (GLM) of the effects of TGF-3
1 on cortical thickness at each vertex. We modeled corti-
cal thickness data using a linear regression analysis with
TGE-B1 as the variable of interest and age as the nui-
sance variable. In this case, the threshold of statistical sig-
nificance was increased at p < .001, which has been
reported as a reasonable threshold for reporting results
of neuroimaging studies when no corrections for multiple
comparisons are made [e.g. [24]].

Results and discussion

As shown in Table 1 ROI-based analyses revealed several
brain areas (primarily in frontal and cingulate cortices of
both hemispheres) in which there was a significant corre-
lation between TGF-B1 serum values and cortical thick-
ness. Specifically, correlations were found bilaterally in
caudal anterior cingulate (r = .363, p = .0018 for left
hemisphere; r = .330, p = .005 for right hemisphere) and
bilaterally in the rostral anterior cingulate cortices (r =
.247, p = .039 for left hemisphere; r = .439, p < .001 for
right hemisphere); in the pars opercularis of the inferior
frontal cortex (r = .273, p = .021) and in the rostral por-
tion of the middle frontal area (r = .243, p = .043) and in
the superior temporal cortex (r = .278, p = .019) of the
right hemisphere only.

Results of the vertex-based analysis are summarized in
Figure 1 and Table 2. In particular, significant results
were found in rostral and caudal portions of bilateral
anterior cingulate cortices, in the pars opercularis and
triangularis of the right inferior frontal cortex and in the
rostral part of the right middle frontal area.

Thus, the results in this study, in which we analyzed
TGEF-B1 serum levels and brain cortical thickness in a
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large sample of healthy subjects, showed positive corre-
lations in several brain areas, particularly the bilateral
cingulate cortices and right frontal areas. Although
these results are observational, they provide the first in-
vivo support for the hypothesis that this cytokine has a
putative protective effect in physiological conditions.

In this view, the role of TGF-f1 could be central in
down-regulating inflammatory processes, because con-
verging evidence suggests that peripheral levels of
inflammation are associated with activation of central
inflammatory mechanisms (through direct penetration
of blood-brain barrier or via activation of the afferent
vagus nerve) and might adversely affect cognition and
brain structure. Indeed, Yaffe and colleagues [25] found
that serum markers of inflammation, especially IL-6,
likely predict cognitive decline in well-functioning
elderly individuals. Along these lines, Marsland and
coworkers [26] used a computational structural neuroi-
maging method (optimized voxel-based morphometry)
to evaluate the relationship between plasma IL-6 levels
and hippocampal grey matter volume in a sample of 76
relatively healthy community volunteers. They found a
strong inverse correlation between IL-6 levels and hip-
pocampal gray matter and argued that low-grade sys-
temic inflammation might presage subclinical cognitive
decline in part via structural neural pathways. This
result has been confirmed in a more recent study [27]
which showed a pattern of cortical thinning associated
to levels of systemic inflammation in older persons with-
out dementia.

Thus, we can speculate that if systemic inflammatory
markers have a detrimental effect on the structural
integrity of the brain (i.e. reduced cortical thickness),
TGF-B1 might have a neuroprotective effect through its
role in down-regulating inflammation.

Interestingly, the positive correlations between TGF-$1
levels and cortical thickness found in the present study
were mainly located in brain areas involved in high-level
cognitive processes (i.e. executive functions) such as the
frontal areas and the cingulate cortex. Moreover, in ani-
mal studies the latter area was associated to a 37%
increase of TGF-f1 mRNA 12 h after occlusion of the
middle cerebral artery [28] and an increased expression
of brain-derived neurotrophic factor (BDNF) 2 h after

Table 1 Relationships between region of interest (ROI) mean cortical thicknesses and TGF-B1 serum levels for the 70

healthy participants

Left hemisphere ROIs

Right hemisphere ROIs

Pearson’s r p-value Pearson'’s r p-value
Caudal anterior cingulate 363 0018 Rostral anterior cingulate 439 0001
Rostral anterior cingulate 247 0393 Caudal anterior cingulate 330 0051
Superior temporal 278 0194
Inferior frontal opercular 273 0217
Rostral middle frontal 243 0428
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Figure 1 Whole-brain vertex-wise analysis of correlation between cortical thickness and TGF-B1 serum levels. Maps are superimposed
on the pial cortical surface. Statistical results are reported in a -log p scale. For each subject, mean cortical thickness values of the clusters where
significant results emerged were extracted. Scatterplots of cortical thickness and TGF-31 levels are also reported, including Pearson’s r coefficients
and p values (linear fits are shown in red).

transient focal ischemia [29]. Therefore, the cingulate  diseases. Nevertheless, the data presented here cannot
cortex might be a key area in which putative neuropro- completely address this issue because the study was
tective effects of TGF-Bloccur, thus preventing negative  cross-sectional and the participants were free from brain
agents such as aging, degeneration or cerebrovascular  pathology.

Table 2 Vertex-based relationships between TGF-B1 and cortical thickness.

Left hemisphere

Anatomical region Extent (mm?) p t X,¥,z {mm}
Caudal anterior cingulate 40 .0005 329 -6, 22, 23
Rostral anterior cingulate 11 0009 3.04 -1,32,7
Right hemisphere

Anatomical region Extent (mm?) p t X,¥,z {mm}
Inferior frontal lobe, pars triangularis 83 00003 448 44, 33,8
Rostral anterior cingulate 153 0001 3.97 5,29, -3
Caudal anterior cingulate 218 00014 3.84 3,25, 16
Rostral middle frontal 145 0003 3.54 21, 58, -11
Inferior frontal lobe, pars opercularis 53 0004 333 50, 25, 19

Coordinates are reported in MNI space
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A limitation of the present study is that we measured
serum level of TGF-B1, which might not accurately
reflect levels in the cerebrospinal fluid (CSF) or in brain
regions. However, cytokines readily cross the blood-brain
barrier, suggesting that serum levels should correlate well
with levels in the CSF [30]. Further, there is evidence of a
correlation between TGF-f levels in serum and CSF of
patients with advanced AD [31].

Conclusion

Overall, the results of the present study show that TGF-
1 serum concentrations are associated with greater cor-
tical thickness in bilateral cingulate and right frontal
areas in subjects without neuropsychiatric diseases. This
suggests that TGF-B might also have a beneficial effect
on the structural integrity of the brain even in physiolo-
gical states.

Future studies should take on the challenge of longi-
tudinally studying the role of TGF-f in protecting the
brain from degeneration and injury, possibly by collect-
ing data to analyze brain microstructural integrity (i.e.
diffusion tensor imaging).

Abbreviations
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