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TNFR1-JNK signaling is the shared pathway of
neuroinflammation and neurovascular damage
after LPS-sensitized hypoxic-ischemic injury in the
immature brain

Lan-Wan Wang'**, Ying-Chao Chang®, Shyi-Jou Chen® Chien-Hang Tseng’, Yi-Fang Tu’, Nan-Shih Liao®,
Chao-Ching Huang>*”" and Chien-Jung Ho’

Abstract

Background: Hypoxic-ischemia (HI) and inflammation are the two major pathogenic mechanisms of brain injury
in very preterm infants. The neurovascular unit is the major target of Hl injury in the immature brain. Systemic
inflammation may worsen HI by up-regulating neuroinflammation and disrupting the blood-brain barrier (BBB).
Since neurons and oligodendrocytes, microvascular endothelial cells, and microglia may closely interact with each
other, there may be a common signaling pathway leading to neuroinflammation and neurovascular damage after
injury in the immature brain. TNF-a is a key pro-inflammatory cytokine that acts through the TNF receptor (TNFR),
and c-Jun N-terminal kinases (JNK) are important stress-responsive kinases.

Objective: To determine if TNFR1-JNK signaling is a shared pathway underlying neuroinflammation and neurovascular
injury after lipopolysaccharide (LPS)-sensitized HI in the immature brain.

Methods: Postpartum (P) day-5 mice received LPS or normal saline (NS) injection before HI. Immunohistochemistry,
immunoblotting and TNFR1- and TNFR2-knockout mouse pups were used to determine neuroinflammation,
BBB damage, TNF-a expression, JNK activation, and cell apoptosis. The cellular distribution of p-JNK, TNFR1/TNFR2
and cleaved caspase-3 were examined using immunofluorescent staining.

Results: The LPS + HI group had significantly greater up-regulation of activated microglia, TNF-a and TNFR1 expression,
and increases of BBB disruption and cleaved caspase-3 levels at 24 hours post-insult, and showed more cortical
and white matter injury on P17 than the control and NS+ HI groups. Cleaved caspase-3 was highly expressed
in microvascular endothelial cells, neurons, and oligodendroglial precursor cells. LPS-sensitized HI also induced
JNK activation and up-regulation of TNFR1 but not TNFR2 expression in the microglia, endothelial cells, neurons,
and oligodendrocyte progenitors, and most of the TNFR1-positive cells co-expressed p-JNK. Etanercept (@ TNF-a
inhibitor) and AS601245 (a JNK inhibitor) protected against LPS-sensitized HI brain injury. The TNFR1-knockout
but not TNFR2-knockout pups had significant reduction in JNK activation, attenuation of microglial activation,
BBB breakdown and cleaved caspase-3 expression, and showed markedly less cortical and white matter injury
than the wild-type pups after LPS-sensitized HI.

(Continued on next page)

* Correspondence: huangped@mail.ncku.edu.tw

’Department of Pediatrics, College of Medicine, Taipei Medical University,
#250, Wu-Hsing Street, Taipei 11031, Taiwan

Department of Pediatrics, Wan-Fang Hospital, Taipei Medical University,
Taipei 110, Taiwan

Full list of author information is available at the end of the article

- © 2014 Wang et al; licensee BioMed Central. This is an Open Access article distributed under the terms of the Creative
( B|°Med Centra| Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article,
unless otherwise stated.


mailto:huangped@mail.ncku.edu.tw
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/

Wang et al. Journal of Neuroinflammation (2014) 11:215

Page 2 of 15

(Continued from previous page)

Conclusion: TNFR1-JNK signaling is the shared pathway leading to neuroinflammation and neurovascular

damage after LPS-sensitized HI in the immature brain.
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Background

Human studies and animal models have provided evidence
on the detrimental roles of hypoxic-ischemia (HI) and in-
flammation to the brain of very preterm infants [1-3]. Pre-
term infants experience various HI and infectious insults
during the neonatal period, with such infections predispos-
ing to or aggravating HI. Clinical studies have shown that
increased levels of systemic cytokines in premature infants
with chorioamnionitis are associated with hemodynamic
disturbances leading to cerebral HI, whereas co-morbid
chorioamnionitis and placental perfusion defects put pre-
term infants at higher risk of abnormal neurologic out-
comes than either insult alone [4-6]. HI and infectious
events across the perinatal and neonatal periods have
cumulative effects on the risk of cerebral palsy in very
preterm infants [7]. Animal studies also show that pre-
exposure to systemic lipopolysaccharide (LPS) sensitizes
HI injury in the immature brain [8,9].

The major target of ischemia-reperfusion injury is
the neurovascular unit, which is composed of neurons,
oligodendroglia and microvessels [9,10]. Neuronal or
oligodendroglial apoptosis, microvascular damage, that is
blood—brain barrier (BBB) disruption, and microglial acti-
vation have been linked to the severity of HI injury in the
immature brain [8,9,11,12]. For very premature infants,
the O4-positive pre-myelinating oligodendrocyte progeni-
tors are the target cells of white matter injury [13]. Acti-
vated microglia are the hallmark of neuroinflammation
and may exacerbate brain injury through damage to the
neurovascular unit [14,15]. During detrimental insults, ac-
tivated microglia may induce gray matter and white mat-
ter injury through the production of pro-inflammatory
cytokines, such as TNF-« [1]. The damaged microvessels
may recruit activated leukocytes into the injured brain
through the disrupted BBB, resulting in sustained activa-
tion of microglia, which in turn cause further damage
through prolonged production of pro-inflammatory cyto-
kines [15]. Since neurons and oligodendrocyte progeni-
tors, microvascular endothelial cells, and microglia may
closely interact with each other, there may be a common
signaling pathway leading to neuroinflammation and neu-
rovascular damage after insults. Therefore, blocking such
common signal transduction to reduce neuroinflamma-
tion and attenuate neurovascular damage may effectively
provide neuroprotection to the immature brain.

c-Jun N-terminal kinases (JNK) are important stress-
responsive kinases [16]. Our previous study has shown that
JNK signaling is the shared pathway linking neuroinflam-
mation, BBB disruption, and oligodendroglial apoptosis in
the white matter injury of the immature rat brain [9].
However, the upstream pathway leading to JNK activation
in neuroinflammation and in the cells of the neurovascular
unit remains unclear. TNF-« is a key pro-inflammatory
cytokine in the pathogenesis of brain injury in premature
infants [1,17,18], TNF-a and JNK activation precede cell
death by inflammation and apoptosis [16,19]. TNF-a sig-
naling triggers inflammatory gene expression and JNK-
mediated intrinsic/extrinsic apoptotic cascades, while JNK
activation can further stimulate TNF-a synthesis through
AP-1 transcription [16,19]. TNF-a exerts its biologic ef-
fects by signaling through two receptors, the TNF receptor
(TNFR) 1 and TNFR2, which are detected in affected
brain areas in preterm infants with periventricular leuko-
malacia [18]. Constitutively expressed in various neural
and endothelial cells, TNFR1 are involved in inflammatory
and apoptotic processes, while TNFR2 expression is often
induced by injury and may have the opposite effects
[19,20]. TNF-a and JNK activation have been respectively
reported to play roles in microglia-mediated neuroinflam-
mation or BBB permeability [1,9,21]. Inhibition of either
TNEF-a-TNFR1 or JNK signaling exerts neuroprotective
effects against HI brain injury in animal experiments
[22,23]. Therefore, TNF-a and JNK signal transduction
may have cross-talk in the pathogenesis of HI-induced
neuroinflammation and neurovascular injury in the imma-
ture brain.

Our studies have demonstrated that JNK activation
plays important roles in LPS-sensitized HI injury in the
neurovascular unit of the immature rat brain [8,9]. How-
ever, it remains unclear whether TNFR1-JNK signaling is
the shared pathway linking neuroinflammation and neu-
rovascular damage after LPS-sensitized HI. Thus, using
pharmacologic and genetic approaches in postpartum
(P) day-5 mouse pups (brain maturation status equiva-
lent to human gestation <30 weeks), this study tested
the hypothesis that TNFR1-JNK signaling is a shared
pathway leading to neuroinflammation, microvascular
damage, and neuronal and oligodendrocyte progenitor
apoptosis in LPS-sensitized HI injury of the immature
brain.
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Methods

Establishing a mouse model of LPS-sensitized hypoxic-
ischemic injury in the immature brain

This animal study was approved by the Animal Care
Committee of National Cheng Kung University. The ex-
perimental paradigm adapted from Vannucci’s HI method
[24] was modified to include LPS sensitization in P5 mice.
The brain maturation of P5 mice developmentally corre-
sponds to very preterm infants, and has apoptotic and cell
death mechanisms characteristic of the immature brain
after HI [25]. P5 mouse pups (C57BL/6) were first injected
intraperitoneally (ip) with LPS (Escherichia coli 055:B5;
Sigma-Aldrich, St Louis, MO, USA) or pyrogen-free nor-
mal saline (NS). The pups were then randomly assigned
to 3 different groups: control (NS injected without HI),
NS + HI (NS injected 3 hours before HI), and LPS + HI
(LPS 0.05 mg/kg injected 3 hours before HI). To avoid
LPS-induced body temperature changes, the mouse pups
were returned to their dams after LPS or NS injection,
and housed in an incubator to maintain body temperature
at 33 to 34°C before HI.

The HI was induced by right carotid artery ligation
followed by hypoxia [8,9]. The right common carotid artery
was permanently ligated under 2.5% halothane anesthesia.
The average length of surgery to occlude the artery was
2 minutes. After surgery, the pups were put into an incu-
bator for a 1-hour recovery. They were then placed in air-
tight 500-mL containers partially submerged in a 36°C
water bath, with humidified 8% oxygen kept at a flow rate
of 3 L/minute for 30 minutes. Following hypoxia, the pups
were returned to their dam. Technicians performed the
experiments, while investigators blinded to the grouping
performed the quantitative measurements.

Pharmacological inhibition of TNF-a

Etanercept is a non-selective TNF-a inhibitor that pre-
vents TNF-« binding to TNFR by neutralizing the actions
of soluble and transmembrane TNF-« [26]. The P5 mouse
pups were randomly assigned to the control group (with-
out exposure to LPS + HI), and the 3 LPS + HI groups that
received ip injection of 5 or 15 mg/kg of etanercept
(Enbrel, Wyeth Europa Ltd., Maidenhead, Berkshire, UK)
or vehicle (NS) at 30 minutes before, immediately, and
3 hours after LPS + HL. The etanercept doses used were
modified from Aden’s study [27].

TNFR1/TNFR2 knockout mice

TNEFR1- and TNFR2-knockout (KO) mice were bought
from the Jackson Laboratory (Bar Harbor, ME, USA).
The donor strains of TNFR1- and TNFR2-KO mice were
from 129S2 via D3 ES cell line with a homozygous x
homozygous mating system with a C57BL/6 genetic
background.
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Pharmacological inhibition of JNK

AS601245, a highly specific JNK inhibitor, blocks JNK activ-
ity by binding to its ATP-binding site [28]. The P5 pups
were randomly assigned to the control group (without ex-
posure to LPS + HI) and the 3 LPS + HI groups that re-
ceived ip injection of 20 or 40 mg/kg of AS601245 (Alexis
Biochemicals, Lausen, Switzerland) or vehicle (dimethyl sulf-
oxide (DMSO), Sigma-Aldrich, St Louis, MO, USA) at
30 minutes before and immediately after LPS + HIL. The
doses of AS601245 used were modified from Carboni’s
study [28].

Western blot analysis

The ipsilateral hemisphere was homogenized in cold lysis
buffer and the protein concentrations were determined
using a Bio-Rad Protein Assay kit (Bio-Rad Laboratories,
Hercules, CA, USA). Samples (50 pg) were separated
using 10% SDS-PAGE and blotted onto polyvinylidene
fluoride membranes. The membranes were incubated
with primary antibodies. Immunoreactivity was detected
by horseradish-conjugated secondary antibodies and visu-
alized by enhanced chemiluminescence. The primary anti-
bodies used were anti-TNF-a (1:500; Biolegend, San Diego,
CA, USA), anti-phospho-JNK (p-JNK) (Thr183/Tyr185,
1:1,000; Cell Signaling, Danvers, MA, USA), anti-cleaved
caspase 3 (1:1,000; Cell Signaling, Danvers, MA, USA),
and anti-B-actin (1:5,000; Invitrogen, Carlsbad, CA, USA).
The band signals were quantified using an imaging soft-
ware (ImagePro Plus 6.0; Media Cybernetics, Bethesda,
MD, USA).

Immunohistochemistry
Mouse pups were sacrificed and perfused for cryosec-
tions on P6 (24 hours post-insult). The brains were post-
fixed, dehydrated using 30% (w/v) sucrose in PBS, and
coronally sectioned (20-um thick) from the genu of the
corpus callosum to the end of the dorsal hippocampus.
Three sections per brain, one at the level of the striatum
(0.14 mm anterior to the bregma) and another 2 at the
levels of the dorsal hippocampus (1.94 mm and 2.54 mm
posterior to the bregma) according to a mouse brain atlas
[29], were selected for immunohistochemical staining.
Immunohistochemistry was performed for microglial
activation (ionized calcium-binding adaptor molecule-1,
Iba-1), immunoglobulin G (IgG) extravasation, cleaved
caspase-3, p-JNK, TNFR1 and TNFR2. IgG extravasation
was used as an indicator of BBB permeability [30]. After
eradication of endogenous peroxidases and blocking of
non-specific binding, brain sections were incubated at
4°C overnight with one of the following primary anti-
bodies: anti-Iba-1 (1:1,000, Wako, Richmond, VA, USA),
horseradish peroxidase-conjugated anti-mouse IgG
(1:100; Pierce, Rockford, IL, USA), anti-cleaved caspase-3
(1:100; Cell Signaling, Danvers, MA, USA), anti-p-
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JNK (1:100; Cell Signaling, Danvers, MA, USA), anti-
TNEFR1 (1:200; Abcam, Cambridge, MA, USA), and anti-
TNFR2 (1:100; Abnova, Walnut, CA, USA). After incuba-
tion with biotinylated secondary antibodies (anti-rabbit IgG
1:200; Pierce, Rockford, IL, USA), biotin-peroxidase signals
were detected using 0.5 mg/mL 3’'3’-diaminobenzidine
(DAB)/0.003% H,O, as a substrate. The results were re-
corded using a microscope (BX51; Olympus, Tokyo, Japan).

Assessment of cortical and white matter injury

On P17 (12 days post-insult), the brains were post-fixed,
dehydrated and embedded in paraffin, and then coron-
ally sectioned (10-pm thick) from the genu of the corpus
callosum to the end of the dorsal hippocampus. Three
sections per brain as described above were assessed.

Cortical damage

Nissl-stained sections were scanned and the cortical areas
were measured using ImagePro Plus 6.0 (Media Cybernetics,
Bethesda, MD, USA). The percentage of area loss in the
cortex of the ipsilateral versus the contralateral hemi-
sphere was calculated [8].

White matter injury

White matter injury was evaluated by myelin basic pro-
tein (MBP) staining for myelination and glial fibrillary
acidic protein (GFAP) staining for astrogliosis. After per-
mealization and blocking of non-specific binding, sections
were first incubated at 4°C overnight with the primary rat
monoclonal anti-MBP antibody (1:100; Millipore, Billerica,
MA, USA) or rabbit polyclonal anti-GFAP antibody
(1:800; Millipore, Billerica, MA, USA), rinsed, and then in-
cubated with biotinylated goat anti-rat (1:200; Santa Cruz
Biotechnology, Santa Cruz, CA, USA) or anti-rabbit (1:300;
Pierce Biotechnology, Rockford, IL, USA) IgG. Positively-
stained cells were visualized using avidin-biotin-peroxidase
complex amplification (Pierce Biotechnology, Rockford, IL,
USA) with diaminobenzidine tetrahydrochloride detec-
tion. The MBP expression was assessed in 3 regions
within the white matter in each hemisphere of each sec-
tion at 100x magnification per visual field (0.579 mm?),
and graded using a 4-point scoring system: 0, loss of pro-
cesses and complete loss of the capsule; 1, loss of pro-
cesses with thinning or breaks in the capsule; 2, complete
loss of processes with intact capsule; 3, partial loss of pro-
cesses; and 4, no MBP loss [8,9]. The scores of each region
were summed up to obtain a total score (range, 0 to 12)
for each hemisphere.

Quantitative analysis of immunohistochemical staining

Measurements of the numbers of Iba-1 and cleaved caspase-3
positive cells, and of the integrated optical density (IOD)
of IgG, GFAP, p-JNK, TNFR1 and TNFR2 signals,
were performed at 200x magnification per visual field
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(0.145 mm?) and analyzed using ImagePro Plus 6.0 [8,9].
Three visual fields in the medial, middle, and lateral areas
of the ipsilateral cortex per section, and three sections per
brain as described above were analyzed. Ibal-positive cells
with amoeboid morphology were counted as activated
microglia for analysis. The mean IOD values in the ipsilat-
eral hemisphere of each experimental group were com-
pared to those of the control group to obtain the relative
IOD ratios.

Immunofluorescence

Mouse pups in the LPS+HI group were perfused at
24 hours post-insult. After blocking, the sections were
incubated overnight at 4-°C with a mixture of 2 of the
following primary antibodies: anti-mouse NeuN (1:100;
Millipore, Billerica, MA, USA,), mouse monoclonal anti-
04 immunoglobulin M (IgM) (1:100; Millipore, Billerica,
MA, USA), anti-isolectin IB4 Alexa Fluor 594 (1:200;
Invitrogen, Carlsbad, CA, USA), anti-Iba-1 (1:1,000; Wako,
Richmond, VA, USA), anti-cleaved caspase-3 (1:100; Cell
Signaling, Danvers, MA, USA), anti-TNF-a (1:100;
Biolegend, San Diego, CA, USA), anti-p-JNK (1:100;
Cell Signaling, Danvers, MA, USA), and anti-TNFR1
(1:100; Santa Cruz Biotechnology, Santa Cruz, CA, USA).
The sections were washed and then incubated with Alexa
Fluor 594 or 488 secondary antibodies (1:400; Invitrogen,
Carlsbad, CA, USA). The slides were photographed for
red (Alexa Fluor 594) and green (Alexa Fluor 488) fluores-
cence with a fluorescent microscope (E400; Nikon Instech,
Kawasaki, Japan).

Statistical analysis

Statistical significance (P <0.05) was determined using
the Kruskal-Wallis test, and Dunn’s method was used
for post-hoc comparisons. Continuous data were pre-
sented as means + standard errors of mean (SEM).

Results
LPS sensitized hypoxic-ischemic injury in the immature brain
The cortical and white matter injuries in P5 mouse pups
exposed to different HI durations (30 and 40 minutes)
were first determined. Neuropathologic examinations
performed on P17 showed that the pups exposed to 40-
minute (40% mortality) HI, but not to 30-minute (5.6%
mortality) HI, had significant brain area loss (Figure 1A,
upper panel) and reduced MBP expression (Figure 1A,
middle panel) in the ipsilateral hemisphere compared to
the control pups without HI exposure. The 30- and 40-
minute HI and the control groups had similar MBP ex-
pression in the contralateral hemispheres (Figure 1A,
lower panel). Thus, 30-minute HI was used for the LPS-
sensitized HI experiments.

Next, we determined whether LPS injection alone in-
duced brain injury. Neuropathologic examinations on
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Figure 1 Effects of hypoxic-ischemia (HI) or lipopolysaccharide (LPS) alone on brain injury. Mouse pups were exposed to different duration

of HI or different doses of LPS on P5, and neuropathological examinations were performed on P17. (A) Compared to the control groups (n = 6), pups
exposed to 40 minute-HI (n = 9), but not to 30-minute HI (n = 10), had significant injury in the cortex (upper panel) and decreased myelin basic protein
(MBP) expression in the white matter of the ipsilateral hemispheres (middle panel). There were no significant differences in MBP expression in the
contralateral white matter among the control, 30-minute HI and 40-minute HI groups (lower panel). (B) Compared to the normal saline (NS) group
(n=5), the 0.05-mg/kg LPS (n=5) and 0.5-mg/kg LPS (n=5) groups showed no evident cortical (Niss! staining, upper panel) or white matter injury
(MBP staining, middle and lower panels). Scale bar =200 pm. Values are means + SEM. **P < 0.01, ***P < 0.001.

P17 showed that the 0.05-mg/kg and 0.5-mg/kg LPS  examined the LPS effect on HI mortality. After HI, the
groups had no significant injury in the cortex (Figure 1B,  0.5-mg/kg LPS group had significantly higher mortal-
upper panel) and white matter (Figure 1B, middle and ity than the 0.05-mg/kg LPS group (32.3% versus 13.1%,
lower panels) compared to the NS group. Then, we P<0.05).
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Therefore, 0.05-mg/kg LPS was chosen for the follow-
ing LPS-sensitized HI experiments on brain injury. On
P17, the LPS + HI group had significantly more cortical
damage, white matter injury with decreased MBP ex-
pression, and increased astrogliosis than the control and
NS + HI groups (Figure 2A).

LPS-sensitized hypoxic-ischemia up-regulated
neuroinflammation and TNF-a, and worsened neurovascular
damage

At 24 hours post-insult, the LPS + HI group, rather than
the NS + HI group, had significantly increased Ibal-positive
activated microglia and BBB damage (IgG extravasa-
tion) (Figure 2B). The effects of LPS and LPS+ HI on
TNF-a expression were examined using immunoblotting.
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Compared to NS, LPS injection before HI did not increase
TNEF-a levels (Figure 2C, upper panel). In contrast, after
LPS-sensitized HI, the TNF-a levels were significantly in-
creased at 3 hours, and especially at 24 hours after HI
(Figure 2C, lower panel). The LPS + HI pups also had sig-
nificantly more up-regulation of TNF-a (Figure 2D, upper
panel) and cleaved caspase-3 levels (Figure 2D, lower
panel) at 24 hours post-insult compared to the NS + HI
pups. Further immunofluorescence study in the LPS +
HI group showed that Ibal-positive microglia highly
expressed TNF-a (Figure 3). Cleaved caspase-3 was highly
expressed in the IB,-positive microvascular endothelial
cells, NeuN-positive neurons, and O4-positive oligo-
dendroglial precursor cells, indicating that these cells were
undergoing apoptosis (Figure 3).
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Figure 2 Lipopolysaccharide (LPS)-sensitized hypoxic-ischemic (HI) injury induced up-regulation of neuroinflammation, blood-brain
barrier damage and cell apoptosis. (A) P5 mouse pups received normal saline (NS) or LPS (0.05 mg/kg) injection before 30-minute HI.
Neuropathology was performed on P17. Compared to the control group (n=6), the LPS + HI group (n=10) but not the NS+ HI group
(n=10) had significantly increased cortical damage (Nissl staining, upper panel), markedly reduced myelination (MBP, middle panel), and
increased astrogliosis in the ipsilateral hemisphere (GFAP, lower panel). (B) At 24 hours post-insult, immunohistochemistry revealed that
the LPS+HI group (n=10) had significant increases in Ibal-positive microglia and IgG extravasation than the NS+ HI (n=10) and control
(n=6) groups. (C) LPS injection before HI did not up-regulate TNF-a expression compared to NS injection (upper panel). TNF-a levels
were significantly increased at 3 hours, and especially at 24 hours after LPS-sensitized HI (lower panel). n=4 experiments. (D) The LPS +
HI group had significantly higher levels of TNF-a (upper panel) and cleaved caspase-3 (lower panel) than the NS + HI group at 24 hours post-insult.
n =6 experiments. Scale bar =200 pum for MBP and = 100 pum for others. Inset scale bar=10 um in (B). Values are means + SEM. *P < 0.05,

**P <001, ***P<0.001. GFAP, glial fibrillary acidic protein; Iba-1, ionized calcium-binding adaptor molecule-1; MBP, myelin basic protein.
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Figure 3 TNF-a up-regulation, and apoptosis of endothelial cells, neurons, and oligodendrocyte progenitors after lipopolysaccharide
(LPS)-sensitized hypoxic-ischemia (HI). Immunofluorescence in the LPS + HI group 24 hours post-insult showed that many Ibal-positive
activated microglia co-expressed TNF-a, whereas [B4-positive endothelial cells, NeuN-positive neurons, and O4-postive oligodendrocytes
precursor cells co-expressed cleaved caspase-3. Scale bar =50 um for IB4 and 25 um for others. Inset scale bar=5 um.

LPS-sensitized hypoxic-ischemia induced JNK activation in
microglia, microvascular endothelial cells, neurons, and
oligodendrocyte progenitors

Immunoblotting demonstrated persistent JNK activation
at 6 and 24 hours post-insult in the LPS + HI group, but
not in the NS + HI group (Figure 4A). Immunofluorescence
study in the LPS + HI group further revealed up-regulation
of p-JNK expression in activated microglia, microvascular
endothelial cells, neurons, and oligodendrocyte progenitors
at 24 hours post-insult (Figure 4B). In addition, there
were many p-JNK-positive cells (green light) attached to
or located around the IB,-positive microvessels (arrow-
heads in Figure 4B).

TNF-a inhibition protected against LPS-sensitized
hypoxic-ischemic brain injury

Compared to vehicle, etanercept significantly attenuated
cortical injury at a dose of 15 mg/kg but not at 5 mg/kg
treatment in the LPS+ HI group, and preserved MBP
expression and reduced astrogliosis in the white matter
on P17 (Figure 5A).

TNFR1 was up-regulated in microglia, microvascular
endothelial cells, neurons, and oligodendrocyte progenitors
after LPS-sensitized hypoxic-ischemia

We further investigated which of the two TNF-a recep-
tors (TNFR1 and TNFR2) played a predominant role in
LPS-sensitized HI brain injury. Immunohistochemistry
in the LPS + HI group showed significant up-regulation of
TNFR1 but not of TNFR2 expression in the cortex and
white matter 24 hours post-insult (Figure 5B). Immuno-
fluorescence showed that TNFR1 was expressed mainly in
the microglia, endothelial cells, neurons and oligodendro-
cyte progenitors, and most of the TNFR1-positive cells
also co-expressed p-JNK (Figure 6).

TNFR1 but not TNFR2 down-regulation reduced JNK
activation, attenuated neuroinflammation and neurovascular
damage, and ameliorated brain injury after LPS-sensitized
hypoxic-ischemia

The TNFR1-KO pups, but not the TNFR2-KO pups, had
significantly reduced p-JNK expression, with decreased ac-
tivated microglia, BBB breakdown, and cleaved caspase-3-
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Figure 4 Up-regulation of c-Jun N-terminal kinase (JNK) activation in microglia, endothelial cells, neurons, and oligodendrocyte progenitors
after lipopolysaccharide (LPS)-sensitized hypoxic-ischemia (HI). (A) Immunoblotting showed that the LPS + HI group (n = 4), but not the NS + HI
group (n=4) had increased p-JNK expression at 6 and 24 hours post-insult compared to the control group (n=3). (B) Immunofluorescence in the
LPS + HI group 24 hours post-insult showed up-regulation of p-JNK expression in Ibal-positive microglia, IB4-positive microvascular endothelial
cells, NeuN-positive neurons, and O4-positive oligodendrocyte progenitors. Arrowheads indicate many p-JNK-positive cells attached to or
were located around the IB4-positive microvessels. Scale bar=50 um for Ibal and IB4, and 25 pum for others. Inset scale bar=2.5 pm.

NS+HI LPS+HI

positive cells compared to the wild-type pups at 24 hours
post-insult (Figure 7A). On P17, the TNFR1-KO mice, but
not the TNFR2-KO mice, had significant attenuation of
cortical and white matter injury with decreased astroglio-
sis compared to the wild-type mice (Figure 7B).

Suppression of JNK activation protected against
LPS-sensitized hypoxic-ischemic brain injury

The effect of JNK inhibition on LPS-sensitized HI injury
was then examined using AS601245, an ATP-competitive

inhibitor of JNK. Compared to vehicle, AS601245 treat-
ment in the LPS + HI group at a dose of 20 mg/kg was
more effective than a dose of 40 mg/kg in attenuating cor-
tical damage, preserving MBP expression, and reducing
astrogliosis on P17 (Figure 8).

Discussion

Neonatal pre-exposure to systemic inflammation may
affect cerebral vulnerability and thereby act concomitantly
with HI insult to aggravate brain injury [31]. The present
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Figure 5 TNF-a inhibition protected against lipopolysaccharide (LPS)-sensitized hypoxic-ischemic (HI) brain injury. (A) Etanercept at a
dosage of 15 mg/kg (n=16), but not 5 mg/kg (n=12), significantly attenuated cortical injury (Nissl staining, upper panel), preserved myelination
(MBP, middle panel), and reduced astrogliosis (GFAP, lower panel) compared to the vehicle-treated group (n = 14) after LPS-sensitized Hl on P17.
(B) The LPS + HI groups (n = 8) had significantly increased immunoreactivity of TNFR1 but not TNFR2 in the cortex (upper panel) and white matter
(lower panel) 24 hours post-insult compared to the control groups (n=6). The up-regulated TNFR1 was expressed in blood vessels (arrows) and
non-vascular cells. Scale bar =200 um for MBP and 100 um for others. Values are means + SEM. ***P < 0.001, **P < 0.01, *P < 0.05. GFAP, glial fibrillary
acidic protein; MBP, myelin basic protein; TNFR, tumor necrosis factor receptor.

study demonstrated that P5 mouse pups, equivalent to
very preterm infants in brain maturation status, subjected
to the combination of LPS and HI had cortical and white
matter injury on P17. The damage was characterized by
apoptosis of neurons and oligodendrocyte progenitors,

BBB disruption, and microglial activation in association
with the selective up-regulation of TNFR1 and activation
of INK. Furthermore, the up-regulated TNFR1 and p-JNK
were co-localized in the cellular component of the neuro-
vascular unit (neurons, oligodendroglial precursors, and
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04, and 50 um for others. Inset scale bar=5 pm.

Figure 6 Up-regulation of tumor necrosis factor receptor 1 (TNFR1) expression in microglia, endothelial cells, neurons, and
oligodendrocyte progenitors after lipopolysaccharide (LPS)-sensitized hypoxic-ischemia (HI). Immunofluorescence of the LPS+HI
group 24 hours post-insult showed up-regulated TNFR1 expression in Ibal-positive microglia, I1B4-positive microvascular endothelial cells,
NeuN-positive neurons, and O4-positive oligodendrocyte progenitors. TNFR1 also co-localized with p-JNK. Scale bar=25 um for NeuN and

microvascular endothelial cells) and microglia. Inhibition
of TNF-a or JNK activity exerted significant neuroprotec-
tion. More importantly, genetic deficiency of TNFR1, but
not TNFR2, suppressed JNK activation, reduced neuronal
and oligodendroglial apoptosis, attenuated BBB break-
down and microglial activation, and protected against cor-
tical and white matter injury. These findings suggest that
TNEFR1-JNK signaling is a shared pathway linking neuro-
vascular damage and neuroinflammation that contribute
to LPS-sensitized HI injury in the immature brain.
Neurons and vascular cells are closely related develop-
mentally and functionally [32]. Communication between
the nervous and vascular systems is required to maintain

the integrity of the BBB and promote neural function
in the developing brain [33]. Neurons, oligodendrocyte
progenitors, and microvascular endothelial cells form a
close, inter-related neurovascular unit in the cortex and
white matter, which may be the major targets of injury
in the immature brain [8,9,11,12]. Damage to the neurons
and microvasculature may occur progressively after HI
[34]. After insults, damaged microvessels may recruit acti-
vated leukocytes into the injured brain through the
disrupted BBB, leading to sustained neuroinflammation,
which in turn further damages the brain and microvascu-
lature through prolonged production of pro-inflammatory
cytokines [15]. As such, neurovascular damage and
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Figure 7 Tumor necrosis factor receptor 1 (TNFR1) deficiency reduced c-Jun N-terminal kinase (JNK), microglial activation and blood-brain
barrier (BBB) damage, and attenuated injury after lipopolysaccharide (LPS)-sensitized hypoxic-ischemia (HI). (A) At 24 hours post-insult, the
TNFR1- (n = 12) but not the TNFR2-KO (n = 12) pups had significant reduction in p-JNK expression and decreased Iba1-positive microglia, IgG
extravasation, and cleaved caspase 3-positive cells than the WT pups (n = 10). (B) The TNFR1-KO but not the TNFR2-KO mice also had significantly
reduced cortical injury (Nissl stain, upper panel), preserved myelination (MBP, middle panel), and decreased astrogliosis (GFAP, lower panel) than the
WT mice on P17. GFAP, glial fibrillary acidic protein; Iba-1, ionized calcium-binding adaptor molecule-1; KO, knockout; MBP, myelin basic protein; WT,
wild-type. Scale bar =100 um in (A), and 200 um for MBP, 100 um for GFAP in (B). Inset scale bar= 10 pm. Values are means + SEM. ***P < 0,001,

**P <001, *P<005.
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neuroinflammation are two mutually-potentiating mecha-
nisms leading to injury in the developing brain.

Previous studies have found that inflammation alone,
even at moderate levels (repeated 0.01-mg/kg IL-B or
0.3-mg/kg LPS injection), caused injury in the develop-
ing brain [35,36]. The present study showed that a single
LPS injection alone at a lower dose (0.05 mg/kg) did not
induce brain injury. However, the low-dose LPS can
sensitize neurovascular damage and worsen brain injury
after HI via the TNFa-TNFR1-JNK pathway. Studies in-
vestigating the mechanisms of LPS sensitization demon-
strate early up-regulation of genes that are associated with
stress-induced inflammatory response and cell death in
the neonatal brain several hours after peripheral expos-
ure to LPS, with the priming effect contributing to
increased vulnerability of the immature brain to subse-
quent insults [37,38]. The TNF-a pathway plays a key role
in inflammation-sensitized excitotoxic brain injury in neo-
natal mice [27]. TNF-a gene cluster deletion abolishes
LPS-mediated sensitization of the neonatal brain to HI
insult [38]. Similarly, an in vitro study has shown that
TNER1 signaling is essential for LPS-induced sensitization
to oxygen-glucose deprivation in murine neonatal organo-
typic hippocampal slices [39]. Another in vitro study also
found that oxygen-glucose deprivation enhanced TNF-a/

IFN-y toxicity via up-regulation of TNF-related apoptosis-
inducing ligand signaling in both neuronal and oligo-
dendrocyte progenitor cell cultures [40].

Our previous study showed that JNK activation is in-
volved in LPS-sensitized HI injury in the immature brain
[9]. However, the upstream pathway leading to JNK acti-
vation remains unclear. Nijboer’s work showed JNK in-
hibition protected against HI brain injury in P7 rat pups
[23]. They revealed that JNK inhibition did not reduce
HI-induced cytokine expression including TNF-qa, sug-
gesting JNK might not only be one of the downstream
pathways of TNF-a signaling but also involved in HI injury
of the neonatal brain [23]. Our present study on the re-
spective role of TNF-a, TNFR and JNK in LPS-sensitized
HI injury of P5 mice demonstrates that TNF-a-triggered
TNFR1-JNK activation is a critical shared pathway leading
to neuroinflammation and neurovascular injury after LPS-
sensitized HI in the immature brain.

Activated microglia play a central role as a converging
point for upstream HI/inflammation and downstream
cytotoxicity in the pathogenesis of neurovascular injury in
the immature brain [1,14]. The present study demon-
strates TNF-o, TNFR1, and JNK up-regulation, and micro-
glial activation post-insult, with co-localization of TNFR1
and p-JNK in the activated microglia. A previous study
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has shown that JNK activation in microglia triggered by
LPS-sensitized HI is associated with nuclear translocation
of the downstream molecule c-Jun, suggesting the neu-
roinflammatory role of microglia [9]. p-INK-positive acti-
vated microglia then release TNF-o, which may not only
exert cytotoxic effects on endothelial cells, neurons, and
oligodendrocyte progenitors, but also facilitate prolonged
microglial activation by promoting JNK synthesis through
TNEFRI1 in an autocrine loop [41].

Systemic application of LPS alone induces up-regulation
of pro-inflammatory cytokines in P7 mouse forebrain in
association with strong activation of microglia and micro-
vessels [38]. Deletion of the entire TNF gene cluster not
only greatly attenuates endotoxin-mediated increase in
cerebral infarct volume after HI, but also prevents micro-
glial and endothelial activation following application of
LPS alone [38], suggesting the potential involvement of
microglia and microvascular endothelial cells in LPS-
mediated sensitization to neonatal brain injury.

The TNF-a and JNK signaling may contribute to
leukocyte- and microglia-driven BBB disruption [42].
Animal experiments demonstrate that stroke and sub-
arachnoid hemorrhage can up-regulate TNF-a or JNK
signaling for BBB permeability [21,43]. In vitro studies
also show the involvement of TNFR and JNK activation
in the apoptosis of cerebral microvascular endothelial
cells [44,45]. In this study, LPS-sensitized HI induced
perivascular aggregation of p-JNK-positive cells, which
may be endogenous brain cells or peripheral leukocytes
infiltrating through the disrupted BBB. During detrimental
insults, p-INK-positive activated leukocytes migrating into
the brain may not only cause sustained BBB disruption by
enhancing TNFa-mediated matrix metalloproteinase-9
activity [46], but also result in prolonged activation of
microglia, which in turn further damage the BBB through
TNER1 signaling by lasting TNF-a production and
chemokine secretion to attract more leukocytes into the
brain [15,47]. Therefore BBB breakdown may act in con-
cert with activated microglia to worsen LPS-sensitized
HI injury.

Autopsy studies of periventricular leukomalacia have
shown enhanced TNF-a expression in cortical neurons
and that pre-myelinating oligodendrocytes are the major
apoptotic cells in the white matter [13,48]. TNFR1 is sig-
nificantly up-regulated in apoptotic oligodendrocytes fol-
lowing hypoxia in neonatal rats [49]. In vitro studies also
have shown that oligodendrocyte progenitors obtained from
TNFR1/TNFR2-KO mice are resistant to LPS-induced
microglial toxicity [50], and TNFR1 is necessary for apop-
tosis of oxygen-glucose deprived cortical neurons [51].
Moreover, JNK activation plays an important role in
stress-induced apoptosis of oligodendrocyte progeni-
tors and HI neuronal death [23,52]. In this neonatal
mouse model, we showed that neurons, O4-positive
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oligodendrocyte precursor cells, and endothelial cells
are the target of injury in the neurovascular unit after
LPS-sensitized HI.

The co-localization of p-JNK and TNFRI in apoptotic
cells implicated the key role of TNFR1-JNK signaling in
triggering death events in the neurovascular unit. The cyto-
toxic effects of TNF-a may be mediated directly through
TNER1 by formation of death-inducing signaling complex,
or indirectly, via intrinsic/extrinsic apoptotic pathways in-
duced by TNFR1-JNK activation [16,19]. In addition to cell
death, surviving oligodendrocyte progenitors may be de-
terred from proliferation and differentiation by microglial
activation and reactive astrocytes [1]. Our findings of re-
active astrogliosis and hypomyelination on P17 after LPS-
sensitized HI may imply the effects of neuroinflammation
on impairment of oligodendroglial maturation.

Conclusion

In summary, TNFR1-JNK signaling is up-regulated after
LPS-sensitized HI and acts as a shared pathway leading
to neurovascular damage and neuroinflammation, which
may potentiate with each other to worsen cortical and
white matter injury in the immature brain (Additional
file 1: Figure S1). Blocking the loop of TNFR1-JNK signal-
ing effectively protects against inflammation-sensitized HI
injury in the immature brain. Thus, TNFR1-JNK signaling
may emerge as a potential therapeutic target for brain in-
jury in very preterm infants.

Additional file

Additional file 1: Figure S1. A proposed diagram showing the
self-potentiating loop of TNFR1-JNK signaling in the pathogenesis
of inflammation-sensitized hypoxic-ischemic neurovascular injury in
the immature brain. Lipopolysaccharide-sensitized hypoxic-ischemia
may damage the neurovascular units (neurons, oligodendrocyte
progenitors, microvascular endothelial cells) and activate microglia
in the immature brain via a shared TNFR1-JNK signaling pathway
leading to sustained neuroinflammation, blood-brain barrier disruption
and cell apoptosis in a vicious cycle. The white arrows indicate possible
roles of TNF-a in triggering microglial activation, blood-brain barrier
breakdown and cell apoptosis in a self-augmenting loop. JNK, c-Jun
N-terminal kinases; TNF-a, tumor necrosis factor-alpha; TNFR1, TNF-a
receptor 1.
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