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Transiently lowering tumor necrosis factor-α
synthesis ameliorates neuronal cell loss and
cognitive impairments induced by minimal
traumatic brain injury in mice
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Abstract

Background: The treatment of traumatic brain injury (TBI) represents an unmet medical need, as no effective
pharmacological treatment currently exists. The development of such a treatment requires a fundamental understanding
of the pathophysiological mechanisms that underpin the sequelae resulting from TBI, particularly the ensuing neuronal
cell death and cognitive impairments. Tumor necrosis factor-alpha (TNF-α) is a cytokine that is a master regulator of
systemic and neuroinflammatory processes. TNF-α levels are reported to become rapidly elevated post TBI
and, potentially, can lead to secondary neuronal damage.

Methods: To elucidate the role of TNF-α in TBI, particularly as a drug target, the present study evaluated (i)
time-dependent TNF-α levels and (ii) markers of apoptosis and gliosis within the brain and related these to
behavioral measures of ‘well being’ and cognition in a mouse closed head 50 g weight drop mild TBI (mTBI) model in
the presence and absence of post-treatment with an experimental TNF-α synthesis inhibitor, 3,6′-dithiothalidomide.

Results: mTBI elevated brain TNF-α levels, which peaked at 12 h post injury and returned to baseline by 18 h. This was
accompanied by a neuronal loss and an increase in astrocyte number (evaluated by neuronal nuclei (NeuN) and glial
fibrillary acidic protein (GFAP) immunostaining), as well as an elevation in the apoptotic death marker BH3-interacting
domain death agonist (BID) at 72 h. Selective impairments in measures of cognition, evaluated by novel object recognition
and passive avoidance paradigms - without changes in well being, were evident at 7 days after injury. A single systemic
treatment with the TNF-α synthesis inhibitor 3,6′-dithiothalidomide 1 h post injury prevented the mTBI-induced TNF-α
elevation and fully ameliorated the neuronal loss (NeuN), elevations in astrocyte number (GFAP) and BID, and cognitive
impairments. Cognitive impairments evident at 7 days after injury were prevented by treatment as late as 12 h
post mTBI but were not reversed when treatment was delayed until 18 h.

Conclusions: These results implicate that TNF-α in mTBI induced secondary brain damage and indicate that
pharmacologically limiting the generation of TNF-α post mTBI may mitigate such damage, defining a time-dependent
window of up to 12 h to achieve this reversal.
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Introduction
Traumatic brain injury (TBI) is a common cause of
morbidity and mortality across both the civilian and
military populations, with a reported worldwide annual
incidence of some ten million cases [1]. Indeed, within the
US alone, TBI accounts for some 1.7 million emergency
department visits - a number that likely underestimates its
true incidence [2] - and is credited with some 30% of all
injury-related deaths [3]. In essence, TBI is elicited
following the unexpected application of an external
force to the head. Patients who survive such injury
often present with persistent long-term disabilities
that require rehabilitation - a costly 52 billion dollars
annual expense in the US alone [4-6]. The severity of
ensuing disabilities varies and often may be associated
with the severity of the injury itself [7]. Mild TBI
(mTBI) accounts for some 80% to 90% of cases, and
arising common disabilities include sensory-motor
problems, learning and memory deficits, anxiety, and
depression [8,9]. Of significant additional concern,
mTBI may predispose long-term survivors to age-related
neurodegenerative disorders by providing a risk factor for
the development of Alzheimer’s disease, Parkinson’s
disease, and post-traumatic dementia [10-14], with the
older people being most vulnerable [15,16]. Despite
significant ongoing research and advancements in our
understanding of the molecular and cellular changes that
occur after TBI, no effective pharmacological treatment is
currently available [17,18].
mTBI-associated brain damage can be subdivided into

two phases: an initial primary phase that is immediate and
results from the mechanical force(s) applied to the skull
and brain at the time of impact, potentially inducing
shearing and compression of neuronal and vascular tissue
that results in brain contusion, axonal injury, blood vessel
rupture, and hemorrhage. This is followed by an extended
second phase that involves cascades of biological
processes initiated at the time of injury that may persist
over subsequent days, weeks, and possibly months, conse-
quent to ischemia, neuroinflammation, glutamate toxicity,
altered blood-brain barrier permeability, oxidative stress,
astrocyte reactivity, cellular dysfunction, and apoptosis
[19-22]. As secondary brain injury may be reversible, in
order to develop an effective treatment, it is imperative to
understand the biological cascades that drive the delayed
secondary phase that occurs following TBI [23-25].
It is widely recognized that inflammatory cytokines,

chemokines, and growth factors play significant roles in
the pathophysiology of TBI. Albeit that initiation of an
inflammatory response can be essential to promote
neuroreparative mechanisms in response to a physiological
insult [26-28], if this is excessive or unregulated, it can aug-
ment neuronal dysfunction and degeneration by inducing a
self-propagating pathological cascade of neuroinflammation
[29-31]. Shortly following TBI, substantial synthesis and re-
lease of proinflammatory cytokines occur from astrocytes
and microglia, particularly tumor necrosis factor-α (TNF-α)
with mRNA and protein levels becoming acutely elevated
within as little as 17 min after injury seen in post-mortem
brains from patients who died shortly after TBI [32]. A
parallel rapid sequence has been described in rodent TBI
animal models in which a TNF-α rise precedes the
appearance of ensuing cytokines [33-35]. Depending
on its signaling pathway, TNF-α can exacerbate trauma
and oxidative stress within the brain and contribute to
glutamate release and blood-brain barrier dysfunction that
can lead to further influx of inflammatory factors from
blood to brain [36].
Inhibiting the generation of TNF-α may thus reinforce

its role in mTBI and define its value as a potential treatment
target, as it is considered a master regulator of the inflam-
matory response. Sudden and substantial rises in TNF-α
can induce a diverse array of cell death processes, including
NF-kB activation, apoptosis, and necrosis [37]. In addition,
an increase in TNF-α levels trigger glutamate release from
astrocytes, which can lead to glutamate excitotoxicity [38].
Although the elevation of TNF-α levels in the early hours
post TBI can be harmful [39-41], cytokine balance has been
reported as essential for long-term recovery from injury
[40-42]. In this current study, rather than utilizing a TNF-α
antibody approach to capture and clear it before it can
potentially reach its target, as is effectively achieved in the
treatment of rheumatoid arthritis, the experimental drug
3,6′-dithiothalidomide was employed to reduce TNF-α
synthesis [43] and thereby maintain but dramatically lower
its physiological release pattern. In our previous studies, we
effectively used 3,6′-dithiothalidomide to ameliorate
cognitive deficit following mTBI [44]. However, our
previous work did not define the therapeutic window
for 3,6′-dithiothalidomide, the extended time course
of TNF-α overproduction, and the histochemical changes
in neurons and glia correlated with injury. We extend our
previous finding in the present study, correlating the
potential role of mTBI-induced TNF-α release with
neuronal loss, apoptosis, and astrocyte elevation, and
defining a window of opportunity for potential treatment.

Materials and methods
Animals
Male ICR mice (30 to 40 g of weight and 6 to 8 weeks
of age) were bred and raised within the vivarium of
Tel Aviv University, Israel, originally derived from
breeding pairs purchased from HSD Jerusalem, Israel.
They were housed four to six per cage, maintained at
a constant 22 ± 1°C, had ad libitum access to food
and water, and kept on a 12:12 h light/dark cycle.
Lighting during the light phase remained constant,
and all experimental manipulations were undertaken
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during this light phase of the cycle. A minimum number
of animals were included into studies, and all efforts were
made to minimize potential suffering. Each animal was
used for only a single experiment, and all experimental
procedures and housing conditions were approved by
the Institutional Animal Care and Use Committee of
Tel Aviv University (M-10-006).

Mild traumatic brain injury
Mice were subjected to mTBI using a weight drop device
that has previously been described [44-46]. Mice were
anesthetized with isoflurane (Merck & Co., Inc.,
Whitehouse Station, NJ, USA) and then placed under
the device. The weight drop apparatus comprised of a
cylindrical-shaped 50-g piece of metal with a rounded
spherical tip, which was dropped through a vertical
metal guide tube (diameter 13 mm × length 80 cm).
Anesthetized mice were carefully positioned with their
head supported and immobilized by a sponge so that
the right temporal side of the head, between the corner of
the eye and the ear, was directly below the guide tube
opening. The sponge allowed anterior/posterior motion of
the head without rotational movement at the moment of
impact following weight drop [44-46]. Sham mice were
submitted to the same procedure as described for mTBI,
but without release of the weight.

Drug administration
Synthesis of 3,6′-dithiothalidomide (Merck & Co., Inc.,
Whitehouse Station, NJ, USA) was achieved by a pub-
lished synthetic route [43], and chemical characterization
confirmed the structure of the final product with a
chemical purity of 99.8%. The agent was prepared as
a suspension in 1% carboxymethyl cellulose (formulated
in isotonic saline; Merck & Co., Inc., Whitehouse Station,
NJ, USA) immediately prior to daily use in each study to
provide a final dose of 28 mg/kg (0.1 ml/10 g) body
weight. Either 3,6′-dithiothalidomide or similarly prepared
vehicle was administered by the intraperitoneal (i.p.) route
from 1 to 18 h post injury or sham procedure, depending
on the measures evaluated (whether for ELISA, immuno-
histochemistry, or behavioral studies).

TNF-α analysis by ELISA
To verify the occurrence of TNF-α elevation in our mTBI
model and define its time dependence, mice were
subjected to mTBI and brains were removed at specific
times thereafter (1 to 18 h; n = 4 to 5 per time). The right
cortex was immediately frozen in liquid nitrogen and
homogenized with appropriate protease inhibitors
(Halt Protease Inhibitor Cocktail; Sigma-Aldrich, St.
Louis, MO, USA). The samples were then quantified
for TNF-α levels by ELISA assay (BioLegend, San Diego,
CA, USA).
Physiological parameters of well-being
Rectal temperature was recorded with a mouse
thermometer. Baseline values (°C) were evaluated 30 min
before 3,6′-dithiothalidomide administration and at 1 and
4 h following mTBI or sham procedure.
Anxiety-like behavior and motor activity were evaluated

by elevated plus maze. The maze was elevated 60 cm
above the floor level and comprised of 4 arms (30 × 5 ×
15 cm) along which mice could walk that formed a ‘+’
shape [47]. Two conjoined arms were open (without walls)
and the other two were closed (with walls but no ceiling).
On evaluation days, mice were placed at the center of the
plus-maze, facing one of the open arms and their time
spent within the open arms was recorded over a 5-min
period. The maze was cleansed with 70% ethanol (ETOH;
v/v) between animals.

Cognitive behavioral tests
Two behavioral paradigms were evaluated: Y-maze and
novel object recognition (NOR).

Y-maze test
Spatial memory was evaluated by Y-maze, as initially
described by Dellu and colleagues [48], and is a task that
takes advantage of a preference of rodents to explore
novel rather than familiar places. The Y-maze was
erected from black Plexiglas and comprised of three
alike arms (30 × 8 × 15 cm length, set at an angle of 120°
from one another). Evaluation comprised of two trials
separated by a 2-min interval (during which the mouse
was returned to its home cage). The initial ‘familiarization’
trial was of 5-min duration with only two arms open
(one termed the ‘start’ arm and the other the ‘old’
arm), with the third (‘novel’) arm blocked by a door.
The second trial was of 2-min duration, and all three
arms were open. The time spent in each of the arms
was recorded, and discrimination of spatial novelty
was determined as a preference index [49] calculated
as (time in the novel − time in the old arm)/(time in
the novel + time in the old arm). The apparatus was
cleansed between trials with 70% ETOH (v/v).

NOR test
An object recognition test to evaluate short-term recogni-
tion memory [50] was undertaken within an open field that
comprised a black Plexiglas arena (59 × 59 cm size)
surrounded by 20-cm black walls. The task takes advantage
of a predisposition for rodents to explore new objects and
included three trials of 5-min duration separated by a 24-h
interval. On the initial day of evaluation, mice were indi-
vidually placed within the empty arena for habituation.
The following day, mice were placed into the same arena
that had two identical objects, A and B, positioned 40 cm
from one another and 10 cm from the walls. On the third
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day, mice were again placed into the arena; however,
object A remained the same as the preceding day and
new object C replaced prior object B. The arena and
objects were thoroughly cleansed (70% ETOH v/v)
between each trial. Object exploration (defined as
rearing on the object or sniffing it at a distance of
less than 2 cm and/or nose touching it) was recorded
and discrimination of recognition novelty was deter-
mined as a preference index [49]: (time exploring the
new object − time exploring the old object)/(total time
exploring an object). Mice that explored objects for
less than 10% of the total available time were excluded
from analyses.

Immunohistochemistry/immunofluorescence brain slice
studies
A cohort of mTBI and sham mice were anesthetized at
72 h following the procedure by excess ketamine + xyla-
zine administration and were immediately perfused trans-
cardially with PBS followed by 4% paraformaldehyde
((PFA) in 0.1 M phosphate buffer, pH 7.4). Their brains
were removed, fixed overnight (4% PFA in 0.1 M phos-
phate buffer, pH 7.4), and then placed in 30% sucrose for
48 h. Coronal sections (30 μm) were cut on a cryostat,
placed in cryoprotectant, and stored at −20°C until use.
Thereafter, 5 sections of cortex and 5 of hippocampus
were blocked by incubation with 0.1% Triton X-100 in
phosphate-buffered saline (PBST) and 10% normal horse
serum for 1 h at 25°C. The primary antibodies, mouse
anti-neuronal nuclei (NeuN; 1:50, Millipore, Danvers,
MA, USA, Cat#MAB3377), mouse anti-glial fibrillary
acidic protein (GFAP; 1:10,000, Millipore, Cat#MAB3402),
and rabbit anti-BH3-interacting domain death agonist
(BID; 1:50, Cell Signaling, Danvers, MA, USA, Cat#9942),
were then dissolved in PBST and 2% normal horse serum
and incubated with the sections for 48 h at 4°C. Following
rinsing in PBST, sections were incubated for 1 h at 25°C
with DyLight™ 594-conjugated AffinityPure Donkey
Anti-rabbit IgG and DyLight™ 488-conjugated AffinityPure
Donkey Anti-mouse IgG (1:300; Jackson Laboratories,
Bar Harbor, ME, USA). After rinses in PBST, sections
were mounted on dry gelatin-coated slides and evalu-
ated for fluorescence with a Zeiss LSM 510 confocal
microscope with × 20 and × 63 lens (Carl Zeiss, Jena,
Germany). For each brain, three to five sections were
taken and the average numbers of cells within the
hippocampus and the temporal cortex were calculated
within defined fields of either 1402 or 4402 μM. Evaluation
of immunohistochemical slides for immunofluorescence
was undertaken in a blinded manner, and the omission of
primary antibodies was routinely undertaken in the
generation of negative control sections. Analyses were
performed by Imaris program for color quantification
(Bitplane AG, Zurich, Switzerland).
Data analyses
Results throughout are presented as mean ± SEM values
and were analyzed by SPSS 18 software (Genius Systems,
Petah Tikva, Israel). One-way ANOVAs were performed
to compare between all groups, followed by least significant
difference (LSD) post hoc tests. ANOVA-repeated measures
were performed to compare rectal temperatures.

Results
Evaluation of well-being
‘Basic well-being,’ a concept that underlies the combined
health and wellness of an animal [51], was evaluated
across all mice groups and combined subjective measures,
such as the grooming and appearance, righting skills,
ambulation, and blinking reflex, with objective ones that
included the parameters of weight, body temperature,
anxiety-like behavior, and motor skills.
Subjectively and in accord with prior studies [45], mice

subjected to this type of mTBI were indistinguishable
from those subjected to the sham procedure when
evaluated at 1 or 24 h later, irrespective of 3,6′-
dithiothalidomide or vehicle administration. Rectal
temperature measurements were used to monitor
potential core temperature changes induced by either
brain injury or 3,6′-dithiothalidomide administration,
and no significant difference (NS) was found either
between animal groups [F(2,12) = 0.084, NS] or across
measurement times (30 min before injury and 1 and 4 h
post-mTBI/injection) [F(2,12) = 3.630, NS] (data not shown).
The elevated plus maze was used to examine anxiety-like

behavior and motor activity. No differences were found
between any groups in anxiety-like behavior at 72 h and
7 days post-injury [F(5,56) = 0.791, NS] [F(5,47) = 0.765,
NS], respectively (data not shown). Likewise, no differences
were evident between any groups in relation to motor skills
evaluated at 72 h and 7 days post-injury [F(5,56) = 1.13 NS]
[F(5,47) = 0.798, NS], respectively (data not shown).
Together these result indicate that mice were healthy and
that neither mTBI nor 3,6′-dithiothalidomide impacted
their well-being.

Time-dependent changes in TNF-α levels in brain tissue
As illustrated in Figure 1, mice challenged with mTBI
demonstrated a time-dependent rise in brain protein
levels of TNF-α that were increased by 2.5-fold,
peaked at 12 h post injury, and returned to baseline
by 18 h [F(3,13) = 30.529, p < 0.0001]. LSD post hoc
analyses confirmed that the 12-h mTBI group was sig-
nificantly different from all other groups (p < 0.0001). Levels
were elevated to 132.9 pg/ml at 12 h versus a baseline value
of 53.4 pg/ml. In animals subjected to mTBI and adminis-
tered 3,6′-dithiothalidomide 1 h post injury, the elevated
TNF-α 12 h post injury response was ameliorated.
Specifically, mice treated with 3,6′-dithiothalidomide post



Figure 1 mTBI induces a time-dependent rise in brain TNF-α levels. Right (ipsilateral to mTBI) cerebral cortex protein extracts were prepared
from sham or mTBI mice at the indicated time points post injury. (A) Time-dependent brain levels of TNF-α at baseline (sham) and post injury. At
12 h post mTBI, TNF-α levels peaked (132.8 vs. 53.4 (sham) pg/ml, p < 0.0001). By 18 h post injury, TNF-α levels returned to baseline (50.5 pg/ml).
(B) Treatment with 3,6′-dithiothalidomide (3,6-DT) at 1 h after mTBI prevented the TNF-α elevation evident at 12 h post mTBI (3,6′-DT +mTBI
67.1 pg/ml vs. mTBI 132.8 pg/ml, p < 0.0001). In both (A) and (B), **** was significantly different from all other groups (p < 0.0001).
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injury had similar brain TNF-α levels as the sham
group, 67.0 and 53.4 pg/ml, respectively, F(4,17) = 14.579,
p < 0.0001, Figure 1B. LSD post hoc analyses confirmed
that the mTBI 12-h group was significantly different from
all other groups (p < 0.0001).

mTBI- and treatment-induced changes in cognitive
function
When evaluated by Y-maze at 7 days post procedure,
vehicle-treated mTBI-challenged mice demonstrated a
significant impairment in spatial memory, as compared
to sham control animals. This mTBI-induced deficit was
ameliorated by a single dose of 3,6′-dithiothalidomide
administered either 1 or 12 h post injury. However, when
3,6′-dithiothalidomide administration was withheld until
18 h, mice displayed impairment and, together with the
mTBI vehicle group, their preference index was signifi-
cantly reduced compared to sham controls [F(4,57) = 6.462,
p < 0.01] (Figure 2A). LSD post hoc analyses confirmed
that the mTBI + vehicle and the mTBI + 18 h 3,6′-
dithiothalidomide groups were significantly different
from all other groups (p < 0.05).
As illustrated in Figure 2B, the spatial deficit evident

in vehicle-treated mTBI mice in the Y-maze was also seen
with the NOR paradigm. Here too, the administration of a
single dose of 3,6′-dithiothalidomide to mTBI mice 1 or
12 h following injury fully mitigated the deficit, but delaying
administration to 18 h post injury did not. Specifically, the
mTBI vehicle and mTBI + 18 h 3,6′-dithiothalidomide
groups displayed a significantly reduced index preference
versus sham controls [F(4,57) = 8.975, p < 0.001]. LSD post
hoc analyses established that the mTBI + vehicle and the



Figure 2 mTBI induces impairments in performance in both a Y-maze and novel object recognition (NOR) preference index paradigms that
are ameliorated by 3,6′-dithiothalidomide when administered up to 12 but not 18 h post injury. (A) Performance of mice was quantitatively
assessed in a Y-maze and (B) in a NOR paradigm at 7 days following mTBI as a preference index that was calculated as (time associated with the
novel − time with the old arm or object)/(time with the novel + time with the old arm or object). Values are mean ± SEM values; a one-way ANOVA
indicates that mTBI animals had a deficit in spatial (Y-maze) and visual (NOR) memory performance compared with all the other groups (*p < 0.05) with
the exception of animals dosed with 3,6′-dithiothalidomide at 18 h post injury. No differences were found between any of the other groups (control
(sham) 1 and 12 h 3,6′-dithiothalidomide dosing), suggesting complete amelioration by 3,6′-dithiothalidomide when administered within 12 h of injury.
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mTBI + 18 h 3,6′-dithiothalidomide groups were signifi-
cantly different from all other groups (p < 0.05).
Together these results extend the work of Baratz and

colleagues [44] and define a therapeutic window of up to
12 h post mTBI to mitigate cognitive deficits by lowering
TNF-α generation, as well as documenting the time course
of TNF-α elevation.

Immunofluorescence
To evaluate the impact of mTBI at the cellular level,
particularly in relation to the described amelioration of
cognitive deficits imparted by lowering TNF-α generation,
immunohistochemical analyses were undertaken at 72 h
post injury. These focused on two key brain areas ipsilateral
to injury: the cerebral cortex, as the area closest to impact,
and the dentate gyrus, a region of the hippocampal
formation considered to contribute to the formation
of new episodic memory [52,53], the spontaneous ex-
ploration of novel environments, and other mnemonic
functions [53,54].
Illustrated in Figures 3A and 4A are brain regions

(cerebral cortex and dentate gyrus, respectively) displaying
immunofluorescence associated with (i) NeuN, a neuronal
nuclear protein that is widely used as a marker of adult
neurons, and with (ii) BID, a proapoptotic Bcl-2 protein.
Quantification of NeuN staining revealed a neuronal loss
in both the cortex [F(3,13) = 7.198, p < 0.005, Figure 3B]
and dentate gyrus [F(3,15) = 5.641, p < 0.05, Figure 4B].
Post hoc analyses revealed that the mTBI alone group was
different from all other groups (p < 0.05) in both brain
regions and was reduced by 42.5% and 22.3% versus
sham values in cortex and dentate gyrus, respectively.
Correlated with this was an elevation in apoptotic cell
number, as revealed from BID staining in the cortex
[F(3,13) = 23.067, p < 0.0001, Figure 3C] and in dentate
gyrus [F(3,13) = 6.301, p < 0.05, Figure 4C]. Likewise, post
hoc analyses demonstrated that the mTBI group was
different from all other groups (p < 0.0001, p < 0.05,
respectively; and 2.76- and 1.91-fold compared to their
respective sham values). In addition and illustrated in
Figures 5A and 6A, mTBI-challenged mice had an elevation
in astrocyte number (3.37- and 1.39-fold, respect-
ively), as revealed by GFAP staining, within the cortex
[F(3,13) = 37.641, p < 0.0001, Figure 5B] and dentate



Figure 3 Neuronal loss and apoptosis is induced by mTBI in cerebral cortex ipsilateral to injury and mitigated by 3,6′-dithiothalidomide.
At 72 h post injury, cerebral cortex ipsilateral to mTBI was assessed for cellular changes. (A) and (B) A decline in neuronal number indicative of
neuronal loss (NeuN - green) was evident post mTBI (p < 0.01). Treatment with 3,6′-dithiothalidomide at 1 h post-injury prevented such a change.
(A) and (C) An elevation in BID (a marker for apoptosis - red) was evident within mTBI brains (p < 0.001). No changes in apoptotic cell death were
found in animals that were treated with 3,6′-dithiothalidomide (as compared to sham animals). Within (A) (representative sections within the cerebral
cortex), the bar is equal to 20 μm in length.
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gyrus [F(3,13) = 13.284, p < 0.001, Figure 6B]. The adminis-
tration of 3,6′-dithiothalidomide 1 h post injury amelio-
rated all mTBI-induced changes in neuron, BID, and
astrocyte number as, notably, no differences were found
between the mTBI + 3,6′-dithiothalidomide and the sham
groups. Finally, no changes were evident between any
groups (sham, mTBI, and mTBI + drug) in the total cell
numbers, as revealed from DAPI staining, within the
cortex and dentate gyrus [F(3,15) = 1.009, NS, Figure 5C;
F(3,15) = 2.251, NS, Figure 6C].
In conclusion, the early administration (1 h post injury)

of a single dose of the TNF-α synthesis inhibitor 3,6′-
dithiothalidomide inhibited cellular changes induced
by mTBI in two key brain regions evaluated, cerebral
cortex and dentate gyrus.

Discussion
TNF-α has been implicated in the pathogenesis of a wide
number of neurological disorders that develop both acutely,
as in TBI and stroke, and chronically, as in Alzheimer’s
disease and Parkinson’s disease [29-36,40-42,55,56]. The
current study confirms the rapid generation and release of
TNF-α in a mouse closed head 50 g weight drop
mTBI model, emulating a concussive head injury in
humans, which led to neuronal loss and specific cog-
nitive deficits. The inhibition of TNF-α synthesis
blocked the mTBI-induced rise in brain TNF-α and
protected against neuronal loss and cognitive deficits with
a therapeutic window of 12 h. These results underline a
role for TNF-α as a key regulator of cascades leading to
neuronal loss and cognitive impairment in mTBI and
highlights TNF-α as an amenable drug target for future
mTBI treatment.
In light of (i) the high incidence of mTBI (approximately

600 per 100,000 people); (ii) the increased risk of dementia
resulting from mTBI, particularly in the older people [15];
(iii) the upregulation of pathways leading to chronic
neurodegenerative disorders induced by mTBI [12,20,57,58];
(iv) the long-term care, suffering, and economic debt
associated with mTBI patients [59]; and (v) the lack
of any available therapeutic [60], it is important to
understand the mechanisms that underlie head injury.



Figure 4 Neuronal loss and apoptosis is induced by mTBI in the dentate gyrus ipsilateral to injury and mitigated by 3,6′-dithiothalidomide.
At 72 h post injury, the dentate gyrus of the hippocampus ipsilateral to mTBI was evaluated for cellular changes. (A) and (B) Neuronal
loss (NeuN - green) was found post mTBI (p < 0.05). Treatment with the 3,6′-dithiothalidomide at 1 h post-injury prevented this loss. (A)
and (C) An increase in BID (a marker for apoptosis in red) was evident in the mTBI brains (p < 0.01). No change in apoptotic cell death
was apparent in animals treated with 3,6′-dithiothalidomide (as compared to sham animals). Within (A) (representative sections within the dentate
gyrus), the bar is equal to 100 μm in length.

Baratz et al. Journal of Neuroinflammation  (2015) 12:45 Page 8 of 14
TNF-α is a well-characterized protein that regulates
numerous cellular processes, including inflammation and
cell death as well as cellular differentiation and survival, by
binding to and activation of two cognate receptors: TNF-α
receptor 1 (TNFR1) (p55) and TNFR2 (p75) [29-31,61].
TNFR1 is expressed ubiquitously, including neurons,

astrocytes, and microglia throughout the brain. With its
intracellular death domain, it contributes to neuronal
dysfunction and death and primarily is activated by soluble
TNF-α [62]. TNFR2, on the other hand, is principally
expressed on hematopoietic cells but also is present on
other cell types, including neurons, has been associated
with cell survival [61,63-65] and chiefly responds to
membrane-bound TNF-α [66,67]. The engagement of
homotrimeric TNF-α (either soluble or membrane bound)
to either receptor can activate three major signaling
pathways: an apoptotic cascade initiated via the TNF-α
receptor-associated death domain, a nuclear factor kappa
B (NFκB) signaling a pro-survival pathway implemented
via NFκB-mediated gene transcriptional actions, and a
c-Jun N-terminal kinase (JNK) cascade involved in
cellular differentiation and proliferation that is generally
proapoptotic [38,68]. In large part, the contrasting pro-
survival versus death-induced actions of TNF-α plausibly
rely on which TNF-α receptor subtype is activated, the
target cell types involved and their expression ratio of
TNFR1/2 and associated coupling proteins, and the
temporal concentrations of available soluble and membrane-
bound TNF-α [64]. However, cross talk between the
different signaling pathways and the degree and duration of
neuroinflammation combine in determining the eventual
physiological consequences of TNF-α receptor activation
[69]. Consequent to the diverse actions of TNF-α and the
influence of the brain microenvironment in which they
occur, it is not always clear under which conditions TNF-α
promotes beneficial versus deleterious neuronal effects.
This explains the sometimes contradictory literature in the
TNF-α neuroscience field [29-31,36,38,55,69] and its
involvement in cascades promoting neuronal dysfunction
and loss in both acute and long-term neurodegenerative
disorders. In the present study, no differences were evident
across the sham and mTBI groups in relation to the broad
measure of ‘well being’ or in the evaluation of body
temperature, anxiety-related behavior, and motor activity,



Figure 5 mTBI induces an elevation in astrocyte number in ipsilateral cerebral cortex that is inhibited by 3,6′-dithiothalidomide. At
72 h post injury, cerebral cortex ipsilateral to mTBI was assessed for cellular changes. (A) and (B) Astrocyte number (GFAP - red) was increased
post mTBI (p < 0.001). Treatment with 3,6′-dithiothalidomide at 1 h post-injury prevented this. (A) and (C) No difference in total number of cells
was evident between groups, as revealed from DAPI (blue) staining. Within (A) (representative sections within the cerebral cortex), the bar is equal
to 100 μm in length.
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which is in accord with previous results in rodents [51] and
humans [70]. Although indistinguishable across a wide
number of measures, importantly, deficits in cognitive
performance were apparent in mTBI mice in accordance
with past studies in mice [24,44-46] and humans [71]. In
evaluating potential mechanisms responsible for these
cognitive changes, a mTBI-triggered inflammatory cascade
mediated by the generation of proinflammatory cytokines
appears likely [72]. In this regard, the proinflammatory
cytokine TNF-α is considered essential for both initiating
and regulating an inflammatory response to trauma, and
early transient elevations in brain mRNA expression of
TNF-α as well as rises in IL-1β and IL-6 have been
described in rodent closed head TBI, and associated adverse
events [33,35,73]. In the current study, a time-dependent
elevation in brain TNF-α protein levels was apparent in
mTBI-challenged mice that peaked at 12 h and declined to
baseline by 18 h. In line with this, elevated brain protein
levels of TNF-α, IL-1β, and IL-6 have been reported in
rodent mTBI models as well as within human CSF within
hours of injury [74-78], as they have in other neurological
disorders [79-81]. Inhibiting such an elevation in brain
TNF-α in this model allowed the evaluation of the role of
this transient TNF-α rise in neuronal cell loss, neuroinflam-
mation, and cognitive deficits known to accompany mTBI.
To define the relationship between the mTBI-induced

elevation in TNF-α and cognitive impairment evident
7 days later, 3,6′-dithiothalidomide was administered 1,
12, and 18 h following mTBI, extending our initial
concentration-dependent studies of the compound in
this same mTBI model [44]. Notably, mTBI-induced
impairments in both the Y-maze and NOR paradigms
were blocked by a single drug dose either at 1 or 12 h
post injury, the peak of TNF-α generation in brain, but
were not mitigated when administration was delayed to
18 h, thereby defining a treatment window of opportunity.
To evaluate the basis of the mTBI-induced cognitive

impairment, brain regions ipsilateral to the side of injury
were evaluated at 72 h, as this time coincides with the
substantial occurrence of markers of neuronal apoptosis
[24,82]. Assessment of the cerebral cortex, the area closest
to the site of impact, and dentate gyrus of the hippocampus
was performed, as dysfunction in the former and latter
might explain the decline in performance in visual memory
evaluated by NOR [83] and in spatial learning as assessed
by the Y-maze [48], respectively. Neuronal loss (NeuN), an



Figure 6 mTBI induces an elevation in astrocyte number in ipsilateral dentate gyrus that is inhibited by 3,6′-dithiothalidomide. At 72 h post
injury, dentate gyrus ipsilateral injury was assessed for cellular changes. (A) and (B) Astrocyte number (GFAP - red) was elevated post
mTBI (p< 0.001). Treatment with 3,6′-dithiothalidomide at 1 h post-injury inhibited this. (A) and (C) No difference in total number of cells was apparent
between groups, as evaluated by DAPI (blue) staining. Within (A) (representative sections within the dentate gyrus), the bar is equal to 100 μm in length.
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increase neuronal apoptosis (BID), and an elevation in
astrocyte number (GFAP) were evident in both brain
regions, which is in accord with prior studies in this
mTBI model describing elevations in apoptotic proteins
(p53, c-Jun, and Bcl-2) as well as TUNEL-positive and
silver stain-impregnated degenerating neurons [82,84], as
well as other animal models of brain injury [20,60,85,86].
Importantly, early post injury treatment with 3,6′-
dithiothalidomide fully prevented these changes. In line
with this, this same agent has recently been reported to
ameliorate neuroinflammation and alleviate cognitive
deficits arising from intracerebral administration of
LPS or amyloid-β peptide [79,87,88]. 3,6′-Dithiothalidomide
is also reported to attenuate inflammatory markers,
Alzheimer’s disease pathology, and behavioral deficits
evident in aged Alzheimer transgenic mice [79,80], as
well as mitigate neuroinflammation and apoptosis within
the penumbra of focal ischemic stroke in mice [81].
Additionally, 3,6′-dithiothalidomide has recently been
described to lower TNF-α and cerebral aneurysm forma-
tion and progression to rupture in mice [89,90].
Taken together, these studies support an important

role for TNF-α in neuroinflammation and the modulation
of neuronal function and viability across a broad range of
neurological disorders. Consequent to the availability of
both biological and small molecular weight TNF-α
inhibitors in preclinical and clinical research, there is
growing evidence that whereas physiological TNF-α
levels are critical in normal brain physiology [37,38,55],
excess TNF-α plays a key role in brain dysfunction
[29-31,69]. In relation to the former, among a host of
functions in brain, TNF-α serves as a gliotransmitter that,
when secreted from glial cells surrounding synapses, can
regulate synaptic communication between neurons as well
as neuronal networks [36-38]. With respect to the latter,
TNF-α reductions achieved with the clinical TNF-α binding
protein etanercept, when administered i.p. following fluid
percussion injury-induced TBI, attenuated TBI-induced
contusion, ischemia, and resulting motor and cognitive
deficits [91]. As in our studies, this brain TNF-α lowering
approach also mitigated TBI-induced elevations in [91].
Albeit that these animal studies utilized a far higher
etanercept dose than achievable in humans [91], in an
open-label analysis of 12 TBI patients given perispinal
etanercept up to more than 10 years following injury,
motor impairment and spasticity were reported significantly
reduced [55], supporting both clinical and translational
relevance. Additionally, in rat studies using a TBI weight
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drop paradigm with some parallels to our studies in mice,
immediate i.v. administration of a TNF-α binding protein
or the competitive nonselective phosphodiesterase inhibitor,
pentoxifylline, that lowers TNF-α at a transcriptional level,
has been reported to mitigate mTBI-induced brain edema
at 24 h and neurological dysfunction evaluated up to
14 days [75]. Finally, in other animal models that include
ischemic and spinal cord injury, thalidomide has been
reported to effectively reduce inflammation and improve
the injury outcome when administered either before [92],
immediately after [93], or within an hour of injury [94] in
doses that varied between 20 and 300 mg/kg.
The single dose of 3,6′-dithiothalidomide used in the

current study (28 mg/kg in mouse) compares favorably
with former studies of thalidomide (20 to 300 mg/kg)
and equates to a dose of 150 mg in a 65 kg human
(2.3 mg/kg), following normalization of body surface
area in accord with FDA guidelines [95]. Prior cellular
[43,79] and animal studies [80,81] indicate that 3,6′-
dithiothalidomide (albeit administered systemically by
the i.p. route, as in the current study) is more potent in
reducing TNF-α elevations than thalidomide and that it
enters the brain but does not appear to be soporific
[44,79,80]. In light of recent studies suggesting that
thalidomide analogues can express more potent anti-
inflammatory action with less neurotoxicity than the
parent compound [96,97], the development of new and
well-tolerated small molecular weight TNF-α inhibitors
that can be administered orally may be of great clinical
potential. Past studies evaluating genetically engineered
mice that either lack TNF-α or its receptors have
suggested a ‘Jekyll and Hyde’ scenario in which elevated
TNF-α is detrimental during the acute phase after a TBI
incident, but a part of the regenerative processes during
the later chronic post-injury phase [42,98,99]. More
recent studies in which the two individual receptors,
TNFR1 (p55) and TNFR2 (p75), have been separately
deleted suggest that each may have a distinct time-
dependent function in TBI [40,41]. TNFR1 knockout
mice possessed a smaller contusion volume and a clearly
improved neurobehavioral performance for up to 4 weeks
following a controlled cortical impact TBI, as compared
with wild-type mice, whereas TNFR2 knockout mice
demonstrated significant worsening post injury [42].
This implicates TNFR1 involvement in the immediate
deleterious actions associated with acute TNF-α release
following an injury and an involvement of TNFR2 in
later tissue repair.
In summary, our studies suggest that the administration

of a TNF-α synthesis inhibitor, 3,6′-dithiothalidomide,
within the initial 12-h window of a mTBi event, may be
therapeutically valuable at a time when elevated TNF-α
interacts with TNFR1 to drive the development of neuro-
inflammation, neuronal dysfunction, and apoptosis. But
such a therapeutic strategy should best be acute to
allow later potentially beneficial actions of TNF-α medi-
ated via TNFR2. Our results, together with other studies
[33,36,39-41,44,56,74-78,97], underscore the potential of
TNF-α as a potential therapeutic target in TBI and other
neurological disorders.

Conclusion
This study implicates TNF-α in the delayed neuronal cell
death and gliosis that occurs within the brain following
mTBI, which leads to cognitive deficits. It additionally
indicates that pharmacologically limiting the elevation of
TNF-α within 12 h of the mTBI event markedly reduces
such secondary damage and leads to improved cognitive
outcome measures. Such a window provides an oppor-
tunity for translational studies in mTBI that is more
difficult to define for other neurological disorders [100].
Building on the growing literature on the role of TNF-α
in the initiation and perpetuation of the neuroinflamma-
tion that can drive the progression of acute and chronic
neurological disorders [29-31,36,55,56,68,69,101,102], the
present study underscores the value of targeting of TNF-α
as a treatment strategy for TBI and the development
of new and well-tolerated oral small molecular weight
TNF-α inhibitors and related approaches as clinical
treatment options.
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