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Abstract

Background: Mesenchymal stem cells (MSCs) are well known having beneficial effects on intracerebral hemorrhage
(ICH) in previous studies. The therapeutic mechanisms are mainly to investigate proliferation, differentiation, and
immunomodulation. However, few studies have used MSCs to treat blood—brain barrier (BBB) leakage after ICH. The
influence of MSCs on the BBB and its related mechanisms were investigated when MSCs were transplanted into rat
ICH model in this study.

Methods: Adult male Sprague-Dawley (SD) rats were randomly divided into sham-operated group, PBS-treated
(ICH + PBS) group, and MSC-treated (ICH + MSC) group. ICH was induced by injection of IV collagenase into the rats’
brains. MSCs were transplanted intravenously into the rats 2 h after ICH induction in MSC-treated group. The following
factors were compared: inflammation, apoptosis, behavioral changes, inducible nitric oxide synthase (iINOS), matrix
metalloproteinase 9 (MMP-9), peroxynitrite (ONOO™), endothelial integrity, brain edema content, BBB leakage,
TNF-a stimulated gene/protein 6 (TSG-6), and nuclear factor-kB (NF-kB) signaling pathway.

Results: In the ICH + MSC group, MSCs decreased the levels of proinflammatory cytokines and apoptosis, downregulated
the density of microglia/macrophages and neutrophil infiltration at the ICH site, reduced the levels of INOS and MMP-9,
attenuated ONOO™ formation, and increased the levels of zonula occludens-1 (ZO-1) and claudin-5. MSCs also improved
the degree of brain edema and BBB leakage. The protective effect of MSCs on the BBB in ICH rats was possibly invoked
by increased expression of TSG-6, which may have suppressed activation of the NF-kB signaling pathway. The levels of
iINOS and ONOO™, which played an important role in BBB disruption, decreased due to the inhibitory effects of TSG-6 on
the NF-kB signaling pathway.

Conclusions: Our results demonstrated that intravenous transplantation of MSCs decreased the levels of ONOO™ and
degree of BBB leakage and improved neurological recovery in a rat ICH model. This strategy may provide a new insight
for future therapies that aim to prevent breakdown of the BBB in patients with ICH and eventually offer therapeutic
options for ICH.
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Background

Intracerebral hemorrhage (ICH) has high mortality and
accounts for 10% to 20% of all strokes [1]. ICH, which
occurs when a blood vessel within the brain ruptures,
causes the accumulation of blood within the extracellular
space. ICH always has the following features: compression
of adjacent brain tissue due to hematoma, reduction of
cerebral blood flow, disruption of blood—brain barrier
(BBB) function, and increased brain edema, which all con-
tribute to neurological deterioration [2,3]. In particular, BBB
leakage, which is closely associated with brain edema for-
mation, may cause secondary brain damage in ICH patients
and lead to disability or death.

The BBB is mainly formed by endothelial cells with
complex tight junctions which are governed by intracellular
proteins, zonula occludens (ZO) as well as essential trans-
membrane proteins including occludin, claudins, and junc-
tional adhesion molecules [4]. The BBB maintains the
neural microenvironment by regulating the passage of mol-
ecules into and out of the brain and protects the brain
against microorganisms and toxins in the blood [5]. Disrup-
tion of the BBB is an important pathophysiological change
after ICH and contributes to formation of vasogenic brain
edema, which plays an important role in secondary neur-
onal death and neurological dysfunction [6,7].

Peroxynitrite (ONOO~), which is formed by the
diffusion-controlled reaction between nitric oxide (NO)
and superoxide [8], can exert a devastating effect on the
BBB in several diseases including ICH. Upregulation of
three isoforms of NOS, which are essential for ONOO™
formation, may be correlated with BBB disruption [9].
Under some circumstances, microglia and astrocyte in
the central nervous system can generate NO radicals
from inducible NOS (iNOS) activation [10,11]. NO is
produced in large quantities by iNOS and leads to
ONOO™ formation and is thought to be a damaging radical
that is responsible for brain injury [12]. ONOO™ can dis-
rupt BBB integrity by several mechanisms such as impair-
ing cellular energy metabolism, inhibiting Na*/K*-ATPase
activity, which lead to cytotoxic brain edema, and activating
the matrix metalloproteinases (MMPs), which can com-
promise BBB integrity [13-16]. In addition, sites of en-
hanced 3-nitrotyrosine (3-NT), which is a hallmark of
ONOO, are co-localized with tight junction proteins such
as zonula occludens-1 (ZO-1) and claudin-5, indicate the
direct disruptive effect of ONOO™ on BBB integrity [9].

Although mesenchymal stem cells (MSCs) have been
successfully used for treatment of experimental ICH, to
the best of our knowledge, no previous studies have in-
vestigated the possible protective effect of MSCs on the
BBB after ICH. Previous studies have indicated that
transplanted MSCs are recruited to the site of injury and
contribute to repair by transdifferentiation [17,18]. How-
ever, recent investigations have shown that paracrine
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signaling is the primary mechanism accounting for the
beneficial effects of MSCs in response to injury [19,20].
After intravenous infusion of MSCs, the cells trapped as
emboli in the lung are activated to express the anti-
inflammatory factor TNF-a stimulated gene/protein 6
(TSG-6) and eventually reduce inflammatory responses
and infarct size in mice with myocardial infarction [21].
The potential mechanism by which MSCs exert their
therapeutic effect involves TSG-6 and has been reported
in traumatic brain injury [20], renal tubular inflammation
and fibrosis [22], corneal injury [23], and dendritic cell
maturation [24]. However, whether intravenous trans-
plantation of MSCs improves BBB function after disrup-
tion and whether the mechanism is, at least in part,
related to secretion of TSG-6, which inhibits the nuclear
factor-kB (NF-kB) signaling pathway and decreases of
ONOO" in ICH, remain unclear.

Therefore, the effects of MSCs on BBB leakage in a rat
ICH model and their potential mechanisms of action
were investigated in this study.

Materials and methods

BMMSC isolation, culture, and identification

The steps of bone marrow mesenchymal stem cell
(BMMSC) isolation were prepared as described previ-
ously [25]. MSCs were isolated from the bone marrow of
the femur and tibia of the 5-week-old male Sprague—
Dawley (SD) rats. The femur and tibia from both knees
were isolated with sterile forceps and surgical scissors,
and both ends of the long bones were cut away. Mono-
nuclear cells were isolated by Ficoll-Hypaque density
gradient centrifugation for 20 minutes at 1,500 rpm. The
collected mononuclear cells were plated at 1 x 10° cells/
25 ¢m? in culture flasks in 5 ml DMEM/F12 (1:1) with
10% fetal bovine serum. Non-adherent cells were re-
moved from the cultures after incubation. When the
cells reached 90% confluence, adherent cells were har-
vested and expanded. MSCs that had undergone three
passages were used in this study. Flow cytometry ana-
lysis was used for MSCs identification. The antibodies
were as follows: FITC-CD29, PE-CD34, FITC-CD44,
FITC-CD45, and PE-CD90 (Becton-Dickinson Biosci-
ences, San Jose, CA, USA).

Animals and experimental groups

Our animal study and protocol was approved by the
Southern Medical University Ethics Committee. All animal
procedures were performed to minimize pain or discom-
fort in accordance with current protocols. Adult male SD
rats weighting 250 to 300 g were purchased from the Ani-
mal Experiment Center of Southern Medical University
(Guangzhou, China). Animals were housed under a 12-h
light/dark cycle with free access to food and water. The
SD rats were randomly assigned to three experimental



Chen et al. Journal of Neuroinflammation (2015) 12:61

groups: sham-operated group, PBS-treated group (ICH +
PBS), and MSC-treated group (ICH + MSC).

Intracerebral hemorrhage animal model

ICH was induced via the stereotaxic intrastriatal injec-
tion of collagenase type IV (Sigma-Aldrich, St. Louis,
MO, USA) as described previously with modifications
[26]. In brief, the rats were anesthetized with 10% chloral
hydrate (0.3 ml/100 g, ip.; Sigma-Aldrich, St. Louis,
MO, USA). Rectal temperature was maintained at 37°C
throughout the surgical procedure using a heating lamp.
Animals were placed in a stereotaxic frame and under
aseptic conditions, and an incision was made exposing
the bregma. A 10-uL microsyringe was inserted stereo-
tactically through the burr hole and into the right stri-
atum which coordinates are 0.2 mm anterior, 5.8 mm
ventral, and 3.0 mm lateral to the bregma. Collagenase
type IV (0.5 IU) in 2 pl saline was injected over a period
of 5 min. After placement for another 5 min, the micro-
syringe was slowly removed. The burr hole was sealed
with bone wax, and the wound was sutured. The sham-
operated rats were treated the same way except that they
were administered 2 pl sterile saline into the right
striatum.

MSC transplantation

Two hours after ICH induction, MSCs were adminis-
tered intravenously into the rats as previously described
with slight modification [27]. The jugular vein was ex-
posed and then isolated with blunt dissection. A 250-pl
Hamilton syringe attached with a 31-gauge needle
(Hamilton, Princeton, NJ, USA) was laid into the lumen
and fixed in place. The cells (5x10° in 200 ul PBS
(Invitrogen, Carlsbad, CA, USA) were delivered over
10 min. Then, the needle was withdrawn carefully and
incision was closed. As a comparison, an equal amount
of PBS without MSCs was administered via jugular vein
to animals in the PBS-treated group.

TUNEL assay

Terminal deoxynucleotidyl transferase-mediated bio-
tinylated-dUTP nick-end labeling (TUNEL) staining was
performed 72 h after ICH as previously described with
minor modifications [28], by use of the in situ cell death
detection kit (Roche, Nutley, NJ, USA) according to the
manufacturer’s instruction. The slides were analyzed
with fluorescence microscopy (Bx51, Olympus Corpor-
ation, Shinjuku-ku, Japan).

Behavioral testing

Behavioral testing was conducted 24 and 72 h after ICH
according to the previous study [29]. Briefly, the modified
neurological severity score (mNSS) test includes motor,
sensory, reflex, and balance tests. The mNSS test is graded
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on a scale of 0 to 18, where a total score of 18 points indi-
cates severe neurological deficit and a score of 0 indicates
normal performance, 13 to 18 points indicate severe in-
jury, 7 to 12 indicate moderate injury, and 1 to 6 indicate
mild injury. The mNSS test was monitored by two investi-
gators and both of whom had been blinded to groups.

Analysis of brain water content

Brain water content was measured 24 and 72 h after ICH
as described earlier [3,30]. The brains of the rats were re-
moved immediately after anesthetization followed by de-
capitation, and the brain was divided into two hemispheres
along the midline, and the cerebellum and brain stem were
removed. Two hemispheres were weighed on an electronic
analytical balance to obtain wet weights and then dried in
an electric oven at 100°C for 24 h to obtain dry weight. The
brain water percentage was calculated as the following for-
mula: ([wet weight — dry weight] / wet weight) x 100 (%).

Immunohistochemistry

For immunohistochemistry, the rats were anesthetized
and transcardially perfused with cold PBS and 4% para-
formaldehyde at 72 h after ICH. Slides were incubated
with primary antibodies: anti-MPO antibody (1:100,
Abcam, Cambridge, MA, USA), anti-Iba-1 antibody
(1:100, Abcam, Cambridge, MA, USA) at 4°C overnight.
Following primary antibody incubation, the slides were
incubated in secondary antibody. Finally, the nucleus
was counterstained with hematoxylin. Images were ob-
served with the use of a microscope (Bx51, Olympus
Corporation, Shinjuku-ku, Japan).

ELISA

The rats were killed at 1, 3, and 7 days after ICH or
sham operation, the brain tissues were obtained, and the
following cytokine levels were quantified by enzyme-
linked immunosorbent assay (ELISA): IL-1, IL-6, IL-10,
tumor necrosis factor (TNF)-a, interferon (IFN)-y, and
transforming growth factor (TGF)-f1. Photometric
measurements were conducted at 450 nm using micro-
plate reader (Bio-Rad, Hercules, MA, USA). In the
process of ELISA, commercial ELISA kits (Bio-Rad,
Hercules, MA, USA) were used following the manufac-
turer’s instructions.

Quantitative analysis of blood-brain barrier permeability

BBB leakage was assessed as previously described with
slight modification [31]. The rats received 100 ul of a 5%
solution of Evan’s blue (EB) in saline administered
intravenously 24 and 72 h following ICH. Two hours
after EB injection, cardiac perfusion was performed
under deep anesthesia with 200 ml of saline to clear the
cerebral circulation of EB. The brain was removed and
sliced. The two hemispheres were isolated and mechanically
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homogenized in 750 pl of N,N-dimethylformamide (DME).
The suspension obtained was kept at room temperature in
the dark for 72 h. It was centrifuged at 10,000 x g for
25 min and the supernatant was spectrofluorimetrically an-
alyzed (Aey 620 nm, A, 680 nm) to determine EB content.

Imnunofluorescence analysis

Immunofluorescence was performed at 72 h after ICH
as previously described [9,32]. After antigen retrieval by
heat treatment, the sections were incubated at 4°C
overnight with primary antibodies: anti-iNOS antibody
(Abcam, Cambridge, MA, USA), anti-3-Nitrotyrosine
antibody (Abcam, Cambridge, MA, USA), anti-ZO-1
antibody (Invitrogen, Carlsbad, CA, USA). It was then
incubated with the appropriate fluorescence conjugated
secondary antibodies for 1.5 h at room temperature.
Nuclei were stained by Hoechst 33258 (Sigma-Aldrich,
St. Louis, MO, USA) for 10 min at room temperature.
The slices were observed underneath a fluorescence
microscope (Bx51, Olympus Corporation, Shinjuku-ku,
Japan).

NF-kB assay in brain

Cytosolic and nuclear extracts were prepared as previ-
ously described [33,34] with slight modifications. Briefly,
the brain tissues from rats were suspended in extraction
buffer A containing 0.2 mM phenylmethanesulfonyl
fluoride (PMSE), 0.15 uM pepstatin A, 20 pM leupeptin,
and 1 mM sodium orthovanadate, homogenized at the
highest setting for 2 min, and centrifuged at 1,000 x g for
10 min at 4°C. Supernatants represented the cytosolic
fraction. The pellets, containing enriched nuclei, were re-
suspended in buffer B containing 1% Triton X-100,
150 mM NaCl, 10 mM Tris—HCI, pH 7.4, 1 mM EGTA,
1 mM EDTA, 02 mM PMSE 20 uM leupeptin, and
0.2 mM sodium orthovanadate. After centrifugation for
30 min at 15,000 x g at 4°C, the supernatants containing
the nuclear protein were stored at —80°C for further ana-
lysis. The levels of IkB-a and phospho-NF-«kB p65 (serine
536) were quantified in the cytosolic fraction from the
brain tissue collected 24 and 72 h after ICH, while NF-kB
p65 levels were quantified in the nuclear fraction. The fil-
ters were blocked with 1x PBS, 5% (w/v) nonfat dried milk
for 40 min at room temperature and subsequently probed
with specific Abs IkB-a (1:1000, Santa Cruz Biotechnology,
Santa Cruz, CA, USA), or phospho-NF-kB p65 (serine
536) (1:1000, Cell Signaling Technology, Beverly, MA,
USA), or anti-NF-kB p65 (1:1000, Santa Cruz Biotechnol-
ogy, Santa Cruz, MA, USA) in 1x PBS, 5% w/v nonfat
dried milk, 0.1% Tween-20 (PMT) at 4°C overnight. Mem-
branes were incubated with goat anti-mouse IgG (1:1000,
Invitrogen, Carlsbad, CA, USA) or goat anti-rabbit IgG
(1:1000, Invitrogen, Carlsbad, CA, USA) secondary anti-
body for 1 h at room temperature. Immunoblots were
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detected using an enhanced chemiluminescence (ECL) kit
(Thermo Fisher Scientific, Waltham, MA, USA) and
GAPDH (1:1000, Cell Signaling Technology, Beverly, MA,
USA) was employed as the loading control.

Total RNA extraction and real-time PCR

Total RNA extraction and real-time PCR of TSG-6 was
performed as previously described [20]. Total RNA
was extracted from tissues around the lesional sites 24
and 72 h after ICH using Trizol reagent (Invitrogen,
Carlsbad, CA, USA). One microgram of total RNA was
reverse transcribed to c¢DNA with High Capacity
c¢DNA Reverse Transcription Kits (Applied Biosystems,
Foster City, CA, USA). Gene transcription was detected
by real-time PCR in an ABI Prism 7500 sequence detec-
tion system (Applied Biosystems, Foster City, CA, USA)
using specific primers designed from known sequences.
GAPDH (1:1000, Cell Signaling Technology) was used as
an endogenous control. Sequence-specific primers for
TSG-6 and GADPH were showed as follows:

TSG-6, 5-GCAGCTAGAAGCAGCCAGAAAG-3’
(forward primer),

TSG-6, 5-TTGTAGCAATAGGCGTCCCACC-3'
(reverse primer);

GAPDH, 5-AAGGTGAAGGTCGGAGTCAA-3'
(forward primer),

GAPDH, 5-AATGAAGGGGTCATTGATGG-3'

(reverse primer).

Western blotting analysis

Rats were sacrificed 24 and 72 h after ICH by injecting
overdose of chloral hydrate. Total tissue protein was
isolated from ipsilateral lesional brain tissues using ice-
cold RIPA buffer. Protein concentrations were mea-
sured with the BCA Protein Assay Kit (Thermo Fisher
Scientific, Waltham, MA, USA). The samples were sub-
jected to SDS-polyacrylamide gel electrophoresis and
transferred to a polyvinylidene diflouride (PVDF) filter
membrane. The membranes were blocked with 5% non-
fat milk and incubated with primary antibody (rabbit
polyclonal anti-iNOS 1:800, Abcam, USA; mouse
monoclonal anti-3-nitrotyrosine, 1:1000, Abcam, USA;
mouse monoclonal anti-ZO-1, 1:200, Invitrogen, USA;
rabbit polyclonal anti-Claudin-5, 1:800, Novus, USA;
rabbit polyclonal anti-matrix metalloproteinase-9 (MMP-
9), 1:250, Abcam, USA; mouse monoclonal anti-TSG-6,
1:800, Santa Cruz Biotechnology, USA) overnight. The
blots were incubated with secondary antibodies after
washing with Tris-buffered saline. Immunoblots were de-
tected using an enhanced chemiluminescence (ECL) kit
(Thermo Fisher Scientific), and GAPDH (1:1000, Cell Sig-
naling Technology) was employed as the loading control.
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Figure 1 Effect of MSC transplantation on apoptosis, functional recovery, and brain water content. Influence of MSC transplantation on
apoptosis, MNSS, and brain water content. Compared with the PBS-treated group, the number of TUNEL-positive cells in the cortical hemorrhagic
boundary in the MSC group was significantly decreased at 72 h after ICH (A, B). The mNSS and brain water content were tested 24 and 72 h after
ICH. Treatment with MSCs significantly lowered mNSS at 24 and 72 h. The mNSS was differed significantly 72 h after ICH between the PBS- and
MSC- treated groups (C). The PBS-treated group had a significantly higher brain water content than the sham-operated control group. MSC treatment
reduced brain water content compared with the PBS-treated group 24 and 72 h after ICH. The brain water content was different between the two
groups 72 h after ICH (D). n =6 in each time point per group. Data are presented as the mean + SD. *P < 0.05; **P < 0.01. Original magnification, x 600.

transferase-mediated biotinylated-dUTP nick-end labeling.

mNSS, modified neurological severity score; MSCs, mesenchymal stem cells; PBS, phosphate-buffered saline; TUNEL, Terminal deoxynucleotidyl

Statistical analysis

Data are presented as means + SD and analyzed by
SPSS 13.0 software (SPSS, Chicago, IL, USA). Com-
parison between groups was assessed by Student’s ¢
test or one-way analysis of variance (ANOVA). A P-
value of <0.05 was considered to indicate a statisti-
cally significant result.

Results

Isolation and characterization of MSCs

The MSCs used in our study were isolated from SD rats’
bone marrow and were analyzed for cell surface antigens
at passage three. The results gained by using flow
cytometry showed that MSCs were positive for
CD29 (99.52%), CD44 (94.63%), and CD90 (99.65%)
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infiltrating and brain-resident immune cells. Both the numbers of Iba-1" microglia cells/macrophages (A, C) and infiltrated MPO* neutrophils
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Figure 3 Influence of MSC treatment on cytokine concentrations. Levels of the proinflammatory cytokines IL-1(3 (at 1, 3, and 7 days), IL-6
(at 1, 3, and 7 days), TNF-a (at 1, 3, and 7 days), and IFN-y (at 3 and 7 days) were decreased in the MSC-treated group compared with the
PBS-treated group (A-D). Levels of the anti-inflammatory cytokines IL-10 (at 1, 3, and 7 days) and TGF-B1 (at 1, 3, and 7 days) were increased
in the MSC-treated group compared with the PBS-treated group (E-F). n=6 in each time point per group. Data are presented as the mean +
SD. *P < 0.05; **P < 0.01. MSCs, mesenchymal stem cells; PBS, phosphate-buffered saline.




Chen et al. Journal of Neuroinflammation

(2015) 12:61

) 16 *
D14 |
EEC g€
— E]O-
Q S
= 84
= &0
O = 64
o =]))]
g 2 4
<
g 1[0
0

[ Sham [ PBS 3 MSCs

*

L]

F

24 h

as the mean + SD. *P < 0.05.
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and were negative for CD34 (1.61%) and CD45
(0.95%).

The effect of MSC treatment on the number of TUNEL-positive
cells

In order to investigate apoptotic cells after ICH, TUNEL
staining was performed 72 h after ICH (Figure 1A,B).
TUNEL-positive cells were detected in the center
and the peripheral area of the hemorrhagic lesion. In
the sham-operated group, TUNEL-positive cells were
barely detected. Compared with the PBS-treated group,
the number of TUNEL-positive cells in the cortical
hemorrhagic boundary in the MSC-treated group were
decreased (P < 0.01).

Improvement of neurological deficits with MSC treatment
We performed the mNSS tests in purpose of examining
the effect of MSC transplantation on neurological function.
Compared with the PBS-treated group, the improvement
in motor performance in the MSC-treated group was
statistically significantly different 72 h after ICH (P < 0.01)
(Figure 1C).
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Figure 6 Transplantation of MSC decreased the levels of matrix
metalloproteinase-9 (MMP-9). Western blotting analysis of MMP-9.
Treatment with MSCs downregulated the levels of MMP-9 24 and 72 h
after ICH when compared with the PBS-treated group (A, B). n=6in
each time point per group. Data are presented as the mean + SD.
*P < 0.05. GAPDH, glyceraldehyde 3-phosphate dehydrogenase;
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PBS, phosphate-buffered saline.

MSC treatment reduced brain water content

The brain water content was tested to represent the
brain edema in hemorrhagic hemispheres and to investi-
gate the effect of MSC treatment on BBB leakage. At 24
and 72 h after ICH, the PBS-treated group had a higher
brain water content than the sham-operated group, and
brain water content was reduced in the MSC-treated
group when compared with the PBS-treated group. The
brain water content was statistically significantly differ-
ent at 72 h between the PBS- and MSC-treated group
(P<0.05) (Figure 1D).

The influence of MSC on brain inflammatory cell
infiltration and microglia numbers

Iba-1" microglia cells/macrophages and MPO" neutro-
phils were identified by immunohistochemistry to test
the effect of MSC treatment on the number of peripheral
infiltrating and brain-resident immune cells. Both the num-
bers of Iba-1" microglia cells/macrophages (Figure 2A,C)
and infiltrated MPO™ neutrophils (Figure 2B,D) were re-
duced in the MSC-treated group when compared with the
PBS-treated group (P < 0.01).

Cytokine levels detected by ELISA

To further assess the microenvironment in the brain
which may closely relate to the BBB disruption, we
examined the expression of inflammatory-associated
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cytokines in hemorrhagic lesion at 1, 3, and 7 days
after ICH. The levels of IL-1p (at 1, 3, and 7 days),
IL-6 (at 1, 3, and 7 days), TNF-a (at 1, 3, and 7 days),
and IFN-y (at 3 and 7 days) were all substantially
downregulated in the MSC-treated group when com-
pared with the PBS-treated group, whereas the levels
of anti-inflammatory cytokines IL-10 (at 1, 3, and
7 days) and TGF-B1 (at 1, 3, and 7 days) were upreg-
ulated (P < 0.05) (Figure 3).

Effect of treatment with MSCs on recovery of BBB
integrity

Disruption of the BBB and edema formation is associated
with endothelial dysfunction [35]. To investigate the
neurovascular protective action of MSCs on ICH, we
compared the MSC group to the PBS group in relation to
the intensity of Evan’s blue 24 and 72 h after ICH. The
intensity of Evan’s blue determined by spectrofluorometric
estimation showed that administration of MSCs reduced
BBB leakage when compared with the PBS-treated group
24 and 72 h after ICH (P < 0.05) (Figure 4).

In addition, tight junction molecules were studied
to assess microvascular integrity. As shown in Figure 5,
compared with the PBS-treated group, blood vessels in
the MSC-treated group were surrounded by more in-
tense and continuous reactivity for ZO-1, which was
analyzed by fluorescence microscopy (Figure 5A) and
western blotting (Figure 5B,C). Western blotting ana-
lysis of claudin-5 (Figure 5B,D) showed similar results
in that tight junctions were decreased in the PBS-
treated group but increased in the MSC-treated group.
The activity of MMP-9, which is also closely related
to BBB integrity, was analyzed by western blotting.
As shown in Figure 6, transplantation of MSCs reduced
the expression of MMP-9, compared with that of the
PBS-treated group 24 and 72 h after ICH (Figure 6A, B)
(P<0.05).

The influence of MSCs treatment on the expression of 3-NT
and iNOS

Since ONOO™ is unstable, the nitration of tyrosine
residues in proteins by ONOO™ to 3-NT is a reliable
hallmark of the presence of ONOO™ [36], so its detec-
tion through 3-NT expression is an index of the levels
of ONOO™ [37]. As shown in Figures 7 and 8, the
MSC-treated group decreased the expression of iNOS
(Figure 7) and 3-NT (Figure 8A,C,D) obviously when
compared with the PBS-treated group. The western
blotting analysis of iNOS and 3-NT showed the similar
results in that administration of MSCs downregulated
the levels of iNOS (Figure 7B,C) and 3-NT (Figure 8C,D)
24 and 72 h after ICH (P < 0.05).
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Figure 7 Transplantation of MSC decreased the levels of inducible nitric oxide synthase (iNOS). Immunofluorescence and western blotting
analysis of iINOS. Immunofluorescence analysis of iNOS (A) showed that treatment with MSCs decreased the levels of iNOS compared with the
PBS-treated group 72 h after ICH. Western blotting (B, C) analysis of iNOS showed similar results in that transplantation of MSCs downregulated
the levels of INOS compared with the PBS-treated group 24 and 72 h after ICH. n=6 in each time point per group. Data are presented as the
mean + SD. Bar =50 um. *P < 0.05; **P < 0.01. GAPDH, glyceraldehyde 3-phosphate dehydrogenase; iNOS, inducible nitric oxide synthase; MSCs,
mesenchymal stem cells; PBS, phosphate-buffered saline.

The influence of MSC treatment on the expression of
TSG-6

The expression of TSG-6 was detected by western blot-
ting and real-time polymerase chain reaction in order to
assess the potential mechanisms which may relate to the
protective effect of MSCs on the BBB disruption. As the
result of western blotting shown (Figure 9A,B), the treat-
ment of MSC in ICH have upregulated the expression of
the inhibitory factors TSG-6 24 and 72 h after ICH
(P < 0.05); similar results were obtained at the mRNA
levels (Figure 9C) (P < 0.01).

Effects of MSC on IkB-a degradation, phosphorylation of
Ser536 on p65, expression of NF-kB p65, and NF-kB
translocation

To further investigate the mechanisms by which may
attenuate BBB leakage, we evaluated IkB-a degradation,
phosphorylation of Ser536 on the NF-«kB subunit p65,
and total NF-kB p65 by western blotting. Compared
with a basal level of IkB-a in the sham-operated group,
the levels of IkB-a in the PBS-treated group were re-
duced; on the contrary, treatment with MSCs inhibited

the degradation of IkB-a 24 and 72 h after ICH (P < 0.05)
(Figure 10A,B). Unlike the levels of IkB-a, phosphoryl-
ation of Ser536 on p65 was increased in the PBS-treated
group 24 and 72 h post-ICH when compared with the
sham-operated group, whereas the treatment of MSC
inhibited its increase (P < 0.05) (Figure 10C,D). The same
as phosphorylation of Ser536 on p65, MSC treatment
reduced NF-«kB p65 levels in the nuclear fractions of the
ICH tissue when compared with the PBS-treated group 24
and 72 h after ICH (P < 0.01) (Figure 10E,F).

Discussion

The main pathophysiological factors of ICH include
hematoma size and edema [38]. The formation of edema,
which is mainly caused by disruption of the BBB following
ICH, is associated with patient outcome. The BBB is com-
posed of endothelial cells, tight junction proteins, astrocyte
end-feet, and pericytes, which have the function of main-
taining homeostasis of the neuro-parenchymal microenvir-
onment [6]. Loss of BBB integrity is an important
pathophysiological change that contributes to initiation of
the inflammatory cascade, edema formation, and ultimately
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Immunofluorescence analysis of 3-NT (A) showed that the treatment with MSCs decreased the levels of 3-NT compared with the PBS-treated group
72 h after ICH. Western blotting (C, D) analysis of 3-NT showed the similar results in that transplantation of MSCs downregulated the levels of 3-NT
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J

poor outcome [39]. In this study, the effect of MSCs on
BBB leakage in ICH rats and relevant mechanisms were in-
vestigated after intravenous transplantation of MSCs.
Besides endothelial cell activation, vascular ONOO,
which is formed by NO and superoxide anion, is closely
related to BBB leakage [37]. Studies have already shown
that ONOO™ alone is sufficient to induce BBB leakage,
endothelial dysfunction, and neurodegeneration [40,41].
Several tight junction proteins, such as claudin-5 [42],
occludin [43], and ZO-1 [44], are critical determinants
of BBB permeability in rats. In the process of BBB damage,
the formation of ONOO™ may play an important role by

reducing the tight junction proteins. In addition to the
impact on the tight junction proteins, ONOO™ -mediated
increased expression of MMP-9 is reported to exacerbate
BBB leakage [45]. MMPs are important for normal physio-
logical brain function, but in the early stage of ICH, they
can be detrimental [7]. Previous studies have established
the link between MMP-9 and degradation of tight junc-
tion proteins, BBB disruption, inflammation, and tissue
injury [46,47]. Our study showed that the increase in
ONOO™ in ICH rats may have caused harmful effects,
such as BBB disruption and brain edema formation. In
addition, the levels of tight junction proteins, including
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Figure 9 Influence of MSC treatment on TNF-a stimulated
gene/protein 6 (TSG-6). Western blotting and real-time PCR analysis
of TSG-6. Transplantation of MSCs increased the levels of TSG-6 24 and
72 h after ICH compared with the PBS-treated group (A, B). Similar results
were observed at the mRNA levels of TSG-6 (C). n=6 in each time point
per group. Data are presented as the mean + SD. *P < 0.05; **P < 0.01.
GAPDH, glyceraldehyde 3-phosphate dehydrogenase; MSCs, mesenchymal
stem cells; PBS, phosphate-buffered saline; TSG-6, TNF-a stimulated
gene/protein 6.

ZO-1 and claudin-5, were decreased whereas MMP-9 was
increased. MSC treatment restored the reduced expres-
sion of BBB integrity proteins such as claudin-5 and ZO-1
and attenuated BBB leakage. Considering that ONOO™
formation is closely related to BBB disruption, our results
indicated that MSC blocked BBB leakage by suppressing
ONOO".

Several studies have elaborated the effect of MSCs on
ICH. The potential mechanisms include increase of imma-
ture neurons and synaptogenesis [48], enhancement of
survival and differentiation of neural cells [49], reduction
of inflammatory infiltration, and promotion of angiogen-
esis [50,51]. However, recent studies indicate that the cap-
acity of MSCs is related to some soluble factors such as
interleukin (IL)-10 [52], indoleamine 2,3-dioxygenase
[53,54], prostaglandin E2 [52,55], which is a so-called by-
stander mechanism of MSCs. More recently, TSG-6, one
of the anti-inflammatory factors, has attracted increased
attention. Although most MSCs which were infused
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intravenously into the rats are rapidly trapped in the lung,
the trapped cells are activated to express amount of TSG-
6 [21]. TSG-6 can play a role by inhibiting components in
the inflammatory network of proteases [56], suppressing
neutrophil migration into the site of inflammation [57],
and interacting through the CD44 receptor on resident
macrophages to decrease nuclear translocation of the NF-
kB complex [58]. Although published literatures do not
exclude the possibility that the MSCs trapped in the lung
secreted additional factors in addition to TSG-6, an in-
creasing number of results have suggested that the
beneficial effect of MSCs are related to the inhibitory
effect of TSG-6 on NF-kB [20,24]. Previous studies have
indicated that NF-«B is activated as early as 15 min
after ICH, reaching a maximum between 1 and 3 days,
and remaining elevated for several weeks [59]. NF-«kB is
normally sequestered in the cytoplasm and bound to
regulatory protein IkBs. In response to a wide range of
stimuli, IkB is phosphorylated by the enzyme IkB kinase
and the result is the release of the NF-kB dimer, which
is then free to translocate into the nucleus [60]. Our
study showed that in this ICH model, MSC treatment
prevented IkB-a degradation and attenuated phosphor-
ylation of Ser536 in the cytoplasm. Likewise, NF-kB
p65 levels in the nuclear fraction were also decreased.

The downstream gene products of NF-«kB are closely
related to NF-«B signal activity. Therefore, the inhibitory
effect of MSCs on NF-«B signaling pathway, via TSG-6,
may affect formation of the relevant downstream prod-
ucts. Since MSCs can produce some bioactive molecules
in addition to TSG-6, we cannot exclude the possibility
that other factors augmented the effect of the TSG-6.
Among the downstream gene products of NF-kB, iNOS,
which plays a significant role in ONOO™ formation, may
be closely correlated with BBB disruption. In the brain,
there is a close relation between iNOS and ONOO™ in
brain ischemia [61-63], septic animals [64], and Alzhei-
mer’s disease [65]. Our results confirmed the original hy-
pothesis that along with increased levels of TSG-6 and
subsequent inhibition of NF-kB activity, the levels of
iNOS and ONOO™ were clearly decreased.

Besides exacerbation of edema formation, disruption
of BBB integrity by ONOQO™ is a critical event in the
initiation of the inflammatory cascade [39]. Our results
indicate that MSCs reduce infiltration of microglia cells
and neutrophils, increase the levels of anti-inflammatory
cytokines, whereas decrease the levels of proinflammatory
cytokines, suggesting that they could act also through
attenuating the inflammatory response, thus decreasing
BBB disruption.

Taken as a whole, we investigated the properties of
MSCs in ONOO™ formation and BBB protection in a rat
ICH model. By transplantation of bone marrow MSCs
from the jugular vein, the MSCs were trapped in the
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Figure 10 Effects of MSC on NF-kB signaling pathway.
Treatment with MSCs suppressed activation of the NF-kB signaling
pathway 24 and 72 h after ICH. By Western blotting analysis, a basal
level of IkB-a (A, B) was detected in the brain tissue from sham-operated
rats, whereas in the PBS-treated rats, IkB-a levels were substantially
reduced. MSC treatment prevented the degradation of IkB-a in the
PBS-treated group. Phosphorylation of Ser536 (C, D) in the cytoplasm
and phosphorylation of NF-kB p65 (E, F) levels in nuclear fractions
were increased in the PBS-treated group when compared with the
sham-operated group. MSC treatment significantly reduced the
phosphorylation of p65 on Ser536 and NF-kB p65 levels. n=6 in
each time point per group. Data are presented as the mean + SD.
*P < 0.05; **P < 0.01. GAPDH, glyceraldehyde 3-phosphate
dehydrogenase; MSCs, mesenchymal stem cells; NF-kB, nuclear
factor-kB; PBS, phosphate-buffered saline.

lungs and produced a large amount of TSG-6, which
acted by suppressing activation of the NF-«B signaling
pathway. In ICH, ONOO™ is formed around the vessels
that attenuate BBB integrity, destroy tight junction pro-
teins, and suppress tissue inhibitor of metalloproteinases-
1 (TIMP-1) to initiate a damage cascade. TIMP-1 is one
of the naturally occurring inhibitors of MMPs and inhibits
multiple MMP activation [66]. INOS, which is regulated
by the NF-kB signaling pathway, is of major importance
during ONOO™ formation. This study focused on the pro-
tective effect of MSCs on BBB disruption in a rat ICH
model and indicated that the mechanism of MSCs in ICH
rats was related to TSG-6, which improved BBB disrup-
tion by inhibiting the NF-«B signaling pathway. The levels
of iNOS and ONOO™ decrease after the inhibitory effect
of TSG-6 on the NF-«B signaling pathway. Although there
may be also other factors involved in the decrease in iNOS
and ONOOT, the inhibitory effect of TSG-6 on the NF-kB
signaling pathway, at least in part, was a critical contributor
to it in ICH rats.

Conclusions

In summary, our results indicated that MSCs block
ONOO™-induced BBB disruption in ICH. This strategy
may be useful for future therapies targeting prevention
of BBB disruption in clinical ICH patients. However, further
studies are required to investigate the mechanisms in more
detail.
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