
JOURNAL OF 
NEUROINFLAMMATION

Yu et al. Journal of Neuroinflammation  (2015) 12:141 
DOI 10.1186/s12974-015-0368-7
REVIEW Open Access
Neuroinflammatory responses in diabetic
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Abstract

Diabetic retinopathy (DR) is a common complication of diabetes and has been recognized as a vascular dysfunction
leading to blindness in working-age adults. It becomes increasingly clear that neural cells in retina play an
important role in the pathogenesis of DR. Neural retina located at the back of the eye is part of the brain and a
representative of the central nervous system. The neurosensory deficits seen in DR are related to inflammation and
occur prior to the clinically identifiable vascular complications. The neural deficits are associated with abnormal
reactions of retina glial cells and neurons in response to hyperglycemia. Improper activation of the innate immune
system may also be an important contributor to the pathophysiology of DR. Therefore, DR manifests characteristics
of both vasculopathy and chronic neuroinflammatory diseases. In this article, we attempt to provide an overview of
the current understanding of inflammation in neural retina abnormalities in diabetes. Inhibition of
neuroinflammation may represent a novel therapeutic strategy to the prevention of the progression of DR.
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Introduction
Diabetic retinopathy (DR) is a common complication of
diabetes and a leading cause of legal blindness in working-
age adults in the world [1, 2]. According to the report of
World Health Organization (WHO), the prevalence of DR
is expected to increase and the number of people at the
risk of vision loss is predicted to double by the year 2030
[3]. DR is staged into several levels of severity, including
mild, moderate, and severe nonproliferative DR (NPDR),
followed by an advanced proliferative DR (PDR), as de-
fined by the presence of retinal neovascularization [4]. In
PDR, proliferative neovasculature causes severe complica-
tions, such as vitreous hemorrhage, retinal scars, and trac-
tional retinal detachment, all of which may lead to
irreversible vision loss.
The clinical evidence indicates that there is an increased

capillary permeability and capillary occlusion in DR. Many
DR studies in both clinic and animal models focused on
vascular dysfunction, such as impaired endothelial cells,
death of pericytes, thickening of retina capillary basement
membrane, and altered tight junctions [5, 6]. However,
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retinal thickness, as measured by the retinal thickness
analyzer, has been found to be abnormally diffused in the
retina including the areas without clinically apparent ret-
inopathy [7]. Microaneurysms, acellular capillary, and
pericyte ghosts are more numerous in the temporal retina
than in the nasal retina. However, the change in the thick-
ness of retina capillary basement membrane is similar in
all retina areas of retinopathy [8]. Both DR and diabetic
nephropathy are considered as microvascular complica-
tions of diabetes. However, diabetic microvasculopathy
may not explain the susceptibility of peripheral nerves or
cerebral complications [9]. Thus, DR may not simply be a
vasculopathy.
Recent studies revealed that electroretinogram (ERG) is

defective in patients with diabetes who have no clinical
retinopathy [10, 11]. The thickness of the nerve fiber layer
in retinal superior polar quadrant was significantly re-
duced in patients with 15-year diabetic history, suggesting
a loss of axons in this area [12]. In addition, functional
changes in the earliest stages of human diabetic retinop-
athy were detected prior to the development of vascular
dysfunction; therefore, the effect of hyperglycemia may be
direct on the neural retina rather than secondary to the
breakdown of the blood-retinal barrier [13]. Actually,
neural retina located in the back of the eye is the
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evagination of the brain and a representation of the cen-
tral nervous system (CNS). It is noted that chronic neuro-
degeneration is a critical cause of vision loss in DR [14].
The neurosensory deficits in DR occur prior to the clinic-
ally identifiable vascular complications [15]. Then, a major
question is what links the neural responses of the retina,
brain, and peripheral nerves and makes the neural tissues
susceptible to hyperglycemia?
Epidemiologic studies have shown an association be-

tween the appearance of inflammatory biomarkers and
the occurrence of type 2 diabetes mellitus (T2DM) and
its complications [16]. Diabetics have increased serum
levels of inflammatory markers, including C-reactive
protein (CRP), interleukin-6 (IL-6), and tumor necrosis
factor-alpha (TNF-α) [17]. There is increasing evidence
that inflammatory processes play a considerable role in
the pathogenesis of DR [18]. Leukostasis is particularly
increased in the retinas of diabetic mice [19], while leu-
kostasis in rats is associated with retinal endothelial cell
injury and death [20]. There is also an association be-
tween high levels of proinflammatory cytokines and the
development of diabetic retinopathy [21]. Although DR
exhibits features of chronic neuroinflammation, the pre-
cise relationship between inflammatory alterations in DR
and the loss of neural function is currently unknown.
In order to delineate inflammatory processes involved

in DR, we will provide an overview of the current under-
standing of retinal neural abnormalities evoked by in-
flammation. Although treatment of vascular disorders in
later stages of the disease may preserve vision in many
DR patients, prevention of the onset of the disease or ar-
resting its progression at early stage of chronic inflam-
mation is highly desired.

The retinal neural system
The neural retina is a highly specialized nervous tissue, a
part of the brain. It is divided into nine layers. From devel-
opmental perspective, the retina is a heterocellular collec-
tion of interacting cellular systems assembled by three
distinct neuron-like groups: 1, superset of rod and cone
photoreceptors and bipolar cells [22]; 2, superset of ama-
crine cells, axonal cells, and ganglion cells (GCs) [23]; and
3, the gliaform cell phenotype and the superclass of hori-
zontal cells. In addition, a complete vertebrate retina con-
tains two traditional classes of glial cells: Müller’s cells and
astrocytes. Furthermore, functional neuroanatomy con-
tains not only the neuronal architecture for signal process-
ing but also the synaptic connectivity, network topology,
and signaling biophysics of retinal networks.
DR involves alterations of all retinal cellular elements,

including vascular endothelial cells, pericytes, glial cells
(macroglia/microglia), and neurons (photoreceptors, bi-
polar cells, amacrine cells, and ganglion cells), showing a
diffused pathological process.
Clinicopathologic and bioelectrical characteristics
of the neural retina in diabetes
DR is characterized by a long period of clinical silence with-
out significant signs and symptoms. However, by the time
worsening vision is experienced, pathology may have been
significantly advanced. Visual electrophysiology including
ERG and visual-evoked potentials (VEPs) can reveal the
earliest sign of impairment of retinal and optic nerve func-
tion both in diabetic human and model animals [24–26].
Oscillatory potentials (OPs) relating to amacrine cells, GCs
and Müller cells [27], are considered as sensitive indicators
of DR in diabolic patients and model rats [28–30]. The clin-
icopathologic and bioelectrical characteristics of retina in
diabetes are shown in Table 1.

Retinopathy in diabetes
NPDR stages in patients are determined by the number
and severity of microaneurysms, dot-and-blot hemor-
rhages, hard exudates [31], cotton-wool spots, venous
abnormalities, and intraretinal microvascular anomalies
(IRMAs) [32]. PDR is a characteristic of neovasculariza-
tion. The clinicopathologic features of the neural retina
in NPDR and PDR are shown in Fig. 1. Clinically, there
is a stage called “no apparent retinopathy”, which also
can be labeled as NPDR grade 1. During this stage, there
is no apparent morphological change. However, multi-
focal ERG (mfERG) technology reveals that functional
changes are measurable in patients with diabetes without
classic indicators of retinopathy [33, 34], suggesting that
disfunction occurs before the appearance of morpho-
logical changes [35]. Local mfERG implicit times are sig-
nificantly prolonged in the eyes of diabetic subjects
without retinopathy [36]. In patients with type 1 diabetes
of 3 months without retinopathy, VEP recordings show
delayed P100 implicit time but with amplitudes similar
to those of control subjects [37].
The neovascularization in PDR, which is initially intraret-

inal, usually breaks through the internal limiting membrane
and lies between the membrane and the vitreous. Neovas-
cularization is eventually accompanied by hemorrhage [38]
and retinitis proliferation. Shrinkage of the fibroglial com-
ponent often leads to neural retinal detachment. In mild
background diabetic retinopathy, the reduced amplitudes of
pattern electroretinogram (PERG) reveal the presence of
cotton-wool spots and angiographic evidence of capillary
nonperfusion [25], suggesting that PERG has certain advan-
tages as a screening test when NPDR deteriorates to a PDR
stage. Some study considers the amplitude of OPs as the
prediction of the progression of eyes with NPDR or mild
PDR to severe PDR, and the changes correlate with the
grade of DR [28, 39]. The significantly reduced OP ampli-
tudes indicate a high risk to develop proliferative diabetic
retinopathy [28]. Moreover, the probability of regression
curves based on lower OPs amplitudes, greater retinopathy



Table 1 Clinicopathologic and bioelectrical characteristics of retina in diabetes

Morphological features Clinicopathologic features Bioelectrical features Model References

No apparent retinopathy – mfERG: implicit times prolong Human [36, 37]

VEP: P100 implicit time delay Human

Microaneurysma Loss of pericytes Rat [5]

Hard exudative Degeneration of photoreceptor and neuronal
elements in the outer plexiform layer

Human [31]

Cotton-wool spot Microinfarct of the nerve fiber layer PERG: amplitude reduce Human [25, 32]

IRMA Shunt vessels and re-vascularize the hypoxic neuropile Human [32]

Neovascularization Disrupt local basement membrane OPs amplitude is correlated with the
grade of DR

Human [28, 39]

Hemorrhage Human [38]

Dot-and-blot Hemorrhage in the inner nuclear layer

Flame-shaped Hemorrhage in the nerve fiber layer

Globular Hemorrhage in the middle neural retinal layer

Confluent Hemorrhage in all neural retinal layers

Massive Hemorrhage break through internal limiting membrane

Retina detachment Shrinkage of the fibroglial component

Fibrovascular membrane Composed of blood vessels, fibrous, glial matrix tissue,
fibroblasts, and glial cells

DME Intracellular fluid collections in Müller cells, extracellular
fluid in the outer plexiform and the inner nuclear layers

mfERG: P1 latency decrease Human [41, 44, 45]

Macular OPs: reduced Human

Diabetic optic nerve Vascular leakage and axonal edema in and around
the optic nerve head

Increased VEP latency Rat [26, 47]
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severity, higher fluorescein leakage, and higher capillary
nonperfusion can be used to support clinical decisions con-
cerning the time to perform panretinal laser photocoagula-
tion and how often to follow up [40].
Diabetic macular edema
Clinically diabetic macular edema (DME) is the most
important single cause of vision impairment in diabetic
patients. Morphologic evidence suggests that macular
edema may be caused by functional damage to the ret-
inal vascular endothelium, resulting from intracellular
fluid collection in Müller cells. Excessive swelling and
rupture or death of Müller cells produce pockets of fluid
and cell debris. Extracellular fluid mainly in the outer
plexiform and the inner nuclear layers of the central part
of the retina may also result in macular edema [41],
causing similar changes in adjacent neurons. mfERG
may evaluate the macular function with high sensitivity
[42, 43]. The response of the positive wave (P1) in macu-
lar and paramacular areas tends to decrease in latency
and increase in amplitude 3 months after vitrectomy of
diabetic macular edema [44]. Macular OPs are reduced
in diabetic maculopathy, leaving the a- and b-waves in-
tact, suggesting macular OPs can also be a sensitive indi-
cator to assess the macular function of DME [45].
Diabetic optic neuropathy
Diabetes is a known risk factor for the development of
ischemic optic neuropathy, particularly non-arteritic an-
terior ischemic optic neuropathy (NA-AION) and pos-
terior ischemic optic neuropathy (PION) [46]. It is
characterized by optic disc swelling caused by vascular
leakage and axonal edema in and around the optic nerve
head [47]. VEP supports the diagnosis of the AION,
which causes optic disc edema in type-I diabetes [48].
Increased VEP latency is statistically correlated with the
changes of the glucose level in the blood [26].
The role of inflammatory mediators and adhesion
molecules in the pathogenesis of DR
A considerable body of evidence from animal models and
patients shows that DR is a chronic low-grade inflamma-
tory disorder with participation of inflammatory mediators
[49, 50]. Cytokines, chemokines, adhesion molecules,
prostaglandins, and inflammatory cells including macro-
phages and neutrophils participate in a complex chain of
events [41, 51, 52]. The inflammatory responses of specific
cell types in DR are shown in Table 2.
Vascular endothelial growth factor (VEGF) plays a fun-

damental role in angiogenesis, and its concentration in
the vitreous in patients with DR is significantly increased



Fig. 1 Clinicopathologic characteristics of the neural retina in diabetes.
DR manifests characteristics of both vasculopathy and
neuroinflammatory diseases. Neural retina including retina glial cells
and neurons is involved in the neuroinflammatory responses of DR.
NPDR nonproliferative diabetic retinopathy, PDR proliferative diabetic
retinopathy, RGCs retinal ganglion cells, IRMA intraretinal microvascular
anomalies, DME diabetic macular edema, AION anterior ischemic optic
neuropathy, PION posterior ischemic optic neuropathy

Table 2 Retina cells involved in inflammatory responses in DR

Neural cell Inflammatory molecule Model References

Müller cell VEGF Rat/mice [76, 79]

PEDF Rat [79]

IL1-β Rat/human [83]

TNF-α rMC-1 cells [78]

MCP-1 rMC-1 cells [78]

β-catenin Mice [81]

NO, COX2 Rat/rMC-1 cells [86]

PGE2, iNOS Rat/rMC-1 cells [86]

RAGE Rat/human Müller cell [87]

S100B Rat/human Müller cell [87]

IL-6 Human Müller cell [74]

Astrocyte COX-2 Human [102]

IL-1β Rat [103]

Microglia TNF-α Rat [115]

NF-κB Mice [116]

IL1-β Rat [103]

Leukotrienes, IL-6,
MMPs

[120]

Ganglion
cell

Par2 Mice [128]

GPR91 Rat [137]
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[53]. Although initially considered as a vascular perme-
ability factor, VEGF is recognized as an important con-
tributor to the progression of DR. VEGF also promotes
the expression of intercellular cell adhesion molecule-1
(ICAM-1) and initiates early diabetic retinal leukocyte
adhesion [54, 55]. Leukocyte adhesion to the vascular
endothelium is a necessary first step in DR, mediated by
chemokines and adhesion molecules including monocyte
chemoattractant protein-1 (MCP-1), chemokine (C-C
motif ) ligand 2 (CCL2), ICAM-1, and vascular cell adhe-
sion molecule-1 (VCAM-1) [51, 56, 57]. The levels of
ICAM-1, VCAM-1, and E-selectin in vitreous are signifi-
cantly higher in eyes with PDR [58]. ICAM-1 and
VCAM-1 are also upregulated in the conjunctiva of dia-
betic patients with or without retinopathy [51]. TNF-α,
together with diabetic duration, remains a single, persist-
ent, independent, and determinant inflammatory marker
for PDR [59]. The levels of IL-6, IL-8, IL-5, and IL-10 in
the vitreous of patients with PDR are also increased [60].
It appears that inflammatory mediators and adhesion
molecules dominate the pathogenesis of DR. However,
other mediators that closely related to inflammatory me-
diator may also be important in the pathophysiology of
the disorder. Nuclear factor kappa B (NF-κB) activation
was observed in epiretinal membranes of patients with
PDR, and selective inhibition of NF-κB reduces the ex-
pression of ICAM-1 and VEGF in vivo [61, 62]. Metallo-
proteinase (MMP)-9 in vitreous is elevated in diabetic
patients with retinopathy [63]. Moreover, the level of
high-mobility group box-1 (HMGB1) is increased in
epiretinal membranes and vitreous fluid from patients
with PDR and in the diabetic retina, suggesting HMGB1
is involved in inflammatory and angiogenic signaling
pathways in diabetic retina through its putative receptor
termed receptor for advanced glycation end products
(RAGE) [64].

The effect of inflammation on diabetic
neurosensory retina
Retina glial cells in neuroinflammation
Retinal glia are classified into two groups: macroglia
(Müller cells and astrocytes) and microglia. Each glial
subtype differs markedly in distribution, morphology,
and pathophysiology. Some studies reported that glial fi-
brillary acidic protein (GFAP), a glial cell marker, is a
sensitive indicator of CNS injury. GFAP is increased in
glial cells in patients after 1 to 3 months of uncontrolled
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diabetes, with pathological potential reduction after lon-
ger durations of the disease [65, 66]. Pathological
changes in retina glial cells in DR are shown in Table 3.

Müller cells
Müller cells are the major glial cell type in mammalian
retina, which span the entire depth of the neural retina.
Müller cell somata are located in the inner nuclear layer
(INL), from which two major trunks extend in opposite
directions. The outer trunk forms a network of adherent
junctions known as the outer limiting membrane be-
tween Müller cells and photoreceptors [67]. In vascular-
ized retina, the end feet contact and surround blood
vessels within the retina. The secondary processes
branching from the main trunk of Müller cells form ex-
tensive sheaths that surround neuronal cell bodies, den-
drites, and the axons of ganglion cells [68]. In the
normal retina, Müller cells limit the spread of excitatory
neurotransmitters such as glutamate, provide metabolic
support for a subset of inner retinal cells, and maintain
the stability of the extracellular environment [68, 69]. In
diseases, Müller cells possess a marked capacity to re-
spond to a wide variety of environmental insults with
pathophysiologic and biosynthetic changes [69].
The density of Müller cells is significantly increased at

4 weeks of diabetic rats. The expression of GFAP in
Müller cells is not detectable at 4 weeks (early stage) but
the expression becomes prominent at 12 weeks. It is
noteworthy that hyperplasia of Müller cells precedes
GFAP overexpression in the diabetic retina [70]. On
electron microscopy, Müller cells in diabetic rats exhibit
dispersion of nuclear chromatin and electrondense
Table 3 Changes of retina glial cells and neurons in DR

Neural cell Pathology Cell
density

Marker Fu

Müller cell Nuclear chromatin dispersion,
nuclear granulation electrondense

↑ GFAP↑ Pr

A

Astrocyte Axonal bundles are scanty, starlike
cell bodies are irregularly distributed

↓ GFAP↓ A

Microglia Cell bodies appear larger and
bore long blunt ruffles with thin
thread-like projections

↑ CD45, CD68,
HLA-DR

Pr

A

Ganglion
cell

Axonal swellings and associated
constriction enlarged cell bodies,
increased dendritic branches
and terminals

↓ Thy1 N
nuclear granulations, with the presence of increased
glycogen, dense bodies, and lysosomes in the cytoplasm
[71]. Diabetic retina shows edematous Müller cell end
feet in the nerve fiber layer, ganglion cell loss, intercellu-
lar space increase in the inner and outer nuclear layers,
and outer retina degeneration due to apoptotic cell
death as a result of overexpression of caspase-3 [72].
Müller cells are major sources of inflammatory media-
tors [73] and become “activated” or “reactive” in re-
sponse to virtually all pathological changes in the retina
[74]. By using high-throughput techniques, diabetes-
induced alteration of gene expression profile in Müller
cells reveals that among 78 altered genes, one third are
associated with inflammation [75], suggesting that
Müller cells contribute to inflammatory responses dur-
ing the development of DR. VEGF is rapidly released
from Müller cells in early DR, enhancing perfusion by lo-
cally increased permeability of blood vessels with con-
comitant decrease in anti-angiogenic pigment epithelium-
derived factor [76, 77]. In VEGF knockout mice, diabetes-
induced retinal inflammation, vascular leakage, and vascu-
lar degeneration exhibit a significant reduction [76]. In
Müller cells cultured in high glucose, the levels of histone
acetylation at histone H3 (AcH3K9), AcH3K18,
AcH2BK5, and AcH4K8 are increased, with upregulated
mRNA of inflammatory genes, such as VEGFR1, IL1-β,
ICAM-1, TNF-α, and MCP-1 (CCL2) [78]. These findings
suggest that elevation of histone acetylations in Müller
cells plays an important regulating role in the inflamma-
tory response under diabetic conditions. The expression
of VEGF and pigment epithelium-derived factor (PEDF)
in Müller cells is disregulated in high glucose
nction Signal pathway Model References

oinflammatory iNOS/COX2 Rat/rMC-cells [19, 70, 71, 74,
79–81, 84]

ngiogenic PEDF Rat

Caspase-1/IL-1β Rat

Wnt/β-catenin Mice

p38 MAPK/NF-
κB/IL-6

Human Müller cells

nti-angiogenic COX-2/EP3/
PGE2

Human [70, 102]

oinflammatory MAPK Rat [107, 115, 116,
121]

ngiogenesis P2 receptors/
Ca2+

Rat

NF-κB/TNF-α,
IL1-β

Mice/rat

eurodegeneration ERK1/2/COX-
2/PGE2

Rat [129, 136, 137]

MAPK Mice

NF-κB Mice
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concentration, which contributes to retinal neovasculari-
zation in DR [79]. The anti-angiogenic P60, a PEDF de-
rivative, reduces vascular leakage by increasing tight
junction proteins in retina vessels through Müller glia sig-
naling and by reducing the levels of inflammatory cyto-
kines that promote vessel abnormalities. The
neuroprotective P78, another PEDF derivative, is more ef-
fective in the prevention of cell dropout and inner plexi-
form layer (IPL) thinning with reduction of vitreous levels
of TNF-α and IL-2 and activation of the PI3K/AKT path-
way in Müller glia [80].
In an STZ-induced diabetic mouse model, disruption

of β-catenin in Müller cells attenuates the overexpres-
sion of inflammatory cytokines and ameliorates pericyte
dropout in the retina. Thus, Müller cell-derived β-
catenin is an important contributor to retinal inflamma-
tion in DR, and the Wnt/β-catenin pathway is activated
in DR model mice [81].
Müller cells produce IL-1 and exert an inhibitory activ-

ity on Ag- and IL-2-driven proliferation of T helper cell
lines. Under conditions where the inhibitory capacity of
Müller cells is suppressed, the cells display APC function
to show a dual effect on autoimmune T helper lympho-
cytes [82]. Müller cells have been reported to produce in-
creased amount of IL-1β when exposed to high glucose
in vitro [83], in which caspase-1/IL-1β signaling plays an
important role in diabetes-induced retinal pathology [19].
IL-1β has also been reported to induce IL-6 production by
Müller cells predominantly through the activation of p38
MAPK/NF-κB signaling pathway [74].
Studies of our laboratory have shown that hyperglycemia

induced the overexpression and activation of HMGB1 in
Müller cells. HMGB1 mediates toll-like receptor 4 (TLR4)-
dependent angiogenesis [84]. The expression of TLR4 was
markedly increased in fibrovascular membranes from DR
patients and in retinal vascular endothelial cells of diabetic
mice [85]. We therefore speculate that Müller cells are in-
volved in inflammation-driven angiogenesis.
Retinal Müller cells (rMC-1) cultured in high glucose in-

crease their production of nitric oxide (NO) and prosta-
glandin E2 (PGE2) as well as the expression of inducible
nitric oxide synthase (iNOS) and cyclooxygenase (COX)-
2. In vitro results suggest that hyperglycemia-induced
increase in NO in retinal Müller cells promotes the pro-
duction of cytotoxic prostaglandins via COX-2. iNOS ap-
pears to account for the increased production of NO by
Müller cells [86].
Exposure of Müller cells to high glucose also induces

their expression of RAGE and S100B. RAGE signaling
via MAPK pathway was linked to cytokine production.
Blockade of RAGE prevents cytokine production in-
duced by high glucose and S100B in Müller cells [87].
Müller cells regulate the level of substances in the

neuronal microenvironment. One of the most
characterized functions of Müller cells is the regulation
of K+ in the retina [88]. The accumulation of K+ in
extracellular space leads to changes in neuronal excit-
ability. Müller cells may also control neuronal activity
more directly. When sufficiently depolarized, glutamate
uptake by salamander Müller cells is reversed and glutam-
ate is released into extracellular space [89]. Additionally,
glycogen stores in the retina are restricted to Müller cells.
Furthermore, Müller cells also regulate blood flow in ret-
inal vessels in response to the changes in neuronal
activity.

Astrocytes
Astrocytes are the primary glia in the brain, constituting
approximately one third of the brain mass [90]. Astro-
cytes in the retina show a stellate morphology, with
somata located in the ganglion cell layer and nerve fiber
layer (NFL). In the monkey retina, GFAP-positive astro-
cytes are found ubiquitously in the NFL. Astrocytes are
absent in avascular foveal region. The concurrence of
retinal astrocytes and intraretinal vascularization may be
a common feature for many mammalian species [91].
Despite the fact that astrocytes are far less pervasive in
the retina than in the brain, these cells play an important
role in the development and maintenance of retinal neu-
rons and blood vessels. They provide energy substrates
to neurons and regulate the production of trophic fac-
tors and antioxidants in retinal microenvironment [92].
Astrocytes show opposite reactions as compared with

Müller cells in response to hyperglycemia. The density
of Müller cells is increased, whereas the number of as-
trocytes is decreased in diabetic retinas. In 4-week dia-
betic rat retina, astrocyte density is significantly reduced
in the peripapillary region and in the far periphery [70].
Astrocytic profiles, notably the processes investing
axonal bundles, are scanty in rat diabetic tissue, and the
starlike cell bodies are irregularly distributed [70]. In
addition, recent study demonstrates that exosomes from
retinal astrocytes contain multiple anti-angiogenic com-
ponents that inhibit laser-induced choroidal neovascu-
larization in model mice [93].
Astrocytes are the major cell population in the optic

nerve head and are responsible for the remodeling of the
lamina cribrosa structure [94]. Astrocytes are important
in stress over-activation of inflammatory responses in
glaucoma that leads to local axonal damage within the
optic nerve head [95]. Astrocytes have the potential to
secrete a wide array of mediators [96]. COX-2 can be
constitutively produced by astrocytes and is generally
considered as an “immediate early response gene” fol-
lowing damage to the CNS [97]. As an acute phase gene,
COX-2 is readily induced in a variety of cells by inflam-
matory and mitogenic stimuli, including cytokines and
growth factors [98]. Overexpression of transforming
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growth factor-alpha (TGF-α) and epidermal growth fac-
tor receptor (EGFR) occurs in active astrocytes [99].
EGFR-dependent induction of COX-2 occurs early in as-
trocytes following optic nerve injury [100]. COX-2 and
COX-2-induced PGE2 participate in DR and regulate
the expression of VEGF [101]. In human diabetic retina,
COX-2 is induced in astrocytes and contributes mark-
edly to preretinal neovascularization in ischemic retinop-
athies. This effect appears to be PGE2-mediated mostly
via prostaglandin E receptor 3 (EP3) implicating a new
interaction through thrombospondin-1 (TSP-1) and
CD36 [102].
IL-1β induces its own synthesis in the retinal vascular

endothelial cells, Müller cells, and astrocytes. The com-
bination of high glucose stimulation and the upregula-
tion of IL-1β in the diabetic retina is responsible for
sustained IL-1β overexpression in astrocytes [103].

Microglia
Microglia are bone marrow-derived mononuclear phago-
cytes, representing the major component of the innate
immune cells in the retina [104]. Like macrophages in
the rest of the body, microglia use phagocytic and cyto-
toxic mechanisms to destroy foreign materials. However,
microglia differ from macrophages in that they are much
more tightly regulated spatially and temporally to main-
tain proper immune responses in the eye. The size of
microglia is small relative to macroglia (such as astro-
cytes), with changing shapes and oblong nuclei. Micro-
glia together with invading choroidal macrophages
significantly contribute to chronic para-inflammation
present in several aging retinal pathologies [105].

Microglia in human diabetic retinopathy Microglia
settle into the plexiform layers of the retina and gain a
highly branched morphology with small cell bodies and
long protrusions that may span the complete nuclear
layers [106]. In human DR, perivascular microglia in the
background form are moderately increased in numbers
and are hypertrophic in the inner retinal layers, extend-
ing from internal to middle limiting membranes. Hyper-
trophic microglia in the preproliferative form cluster
around cotton-wool spots and infiltrate into optic nerve
region. Dilated new vessels in proliferative retinopathy
are heavily surrounded by microglia, featuring microglial
perivasculitis [107].

Microglia in animal models of diabetic retinopathy
Retinal microglia are activated, and the morphology
is changed at 4–8 weeks of animal diabetic models
[70, 108, 109]. The number of microglia is increased in
the outer plexiform layer at 4-month diabetic models. Re-
active microglia at 14 to 16-month diabetic models are de-
tected in the outer nuclear and photoreceptor layer [110].
Active Iba1-positive microglia with retracted and swollen
processes are present in insulin-2 Akita (Ins2Akita/t) mice
after 8 weeks of hyperglycemia [111].
Minocycline, an antibiotic that inhibits microglia, de-

creases diabetes-induced inflammatory cytokine produc-
tion and reduces the release of cytotoxins from activated
microglia as well as the activity of caspase-3 in rodent
retina [112]. Therefore, activated microglia are consid-
ered as a major source of proinflammatory and neuro-
toxic mediators. These cells are also recognized as a
potential culprit contributing to the early inflammatory
outcome in DR [107, 113].
Advanced glycation end products (AGEs) may act dir-

ectly on microglia to initiate DR and promote its ad-
vancement. AGEs increases the expression of TNF-α in
cultured rat retinal microglia, thereby trigging infiltra-
tion of leukocytes to the site of vascular injury and caus-
ing vascular inflammation [114]. Increased levels of
AGEs also lead to the formation of reactive oxygen spe-
cies (ROS) and ERK/P38 activation during microglial ac-
tivation in diabetes [109, 115]. Inhibition of the
production of NO and other free radicals by glial cells
with intracellularly acting antioxidants may imply their
ability to reduce AGE-induced neuroinflammatory pro-
cesses [114]. Identification of the redox-active signal
transduction pathways involved in microglial activation
and the chemical structures of the responsible AGEs
and AGE receptors/binding proteins will provide add-
itional molecular targets for the treatment of AGE-
associated inflammatory conditions [114].
NF-κB is activated in pericytes, vascular endothelial

cells, macrophages, and microglia in hypoxia-induced
C57BL/6N mouse model of neovascularization [116].
NF-κB activation is required for retinal angiogenesis and
inhibition of NF-κB ameliorates neuronal cell death in
PDR [116]. It is well known that IL-1, IL-6, IFN-γ, and
TNF-α activate microglia in vitro [117]. STZ induces a
rapid and sustained increase in glycemia and causes
microglial activation along with increased levels of TNF-
α and IL1-β during a very short period of time [118]. In
STZ-induced diabetic rats, TNF-α colocalizes with ion-
ized calcium binding adaptor molecule-1 (Iba-1+) in
microglia but not in Müller cells or astrocytes. TNF-α
production induced by glycated albumin was blocked by
ERK and p38 MAPK inhibitors [119]. Molecules released
by activated retinal microglia include glutamate, prote-
ases, leukotrienes, IL-1β, IL-3, IL-6, TNF-α, VEGF, lym-
photoxin, macrophage inflammatory protein 1 (MIP-1),
and MMPs [120]. Purinergic P2 receptors in high
glucose-cultured rat microglia are upregulated, eliciting
calcium influx and release of proinflammatory mediators
[121]. Furthermore, in Ins2Akita/t mice, a PEDF peptide
PEDF78-121 (P78) is effective in preventing cell dropout
and IPL thinning, presumably due to its inhibition of
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microglia activation. P78 also inhibits the activation of
PI3K/AKT pathway in Müller glia and reduces vitreous
levels of TNF-α and IL-2 in vitro [80].

Neurons in neuroinflammation
Neurons in retina include photoreceptors, bipolar cells,
amacrine cells, and retinal ganglion cells (RGCs). Diabetes
affects both neurites (axons and dendrites) and cell bodies
of retinal neurons, as evidenced by neuritic swellings [122].

RGCs
Diabetes impairs axonal retrograde transport in large- and
medium-sized RGCs in type 1 but not type 2 diabetic rats
[123]. The total number of RGC bodies is reduced in type 2
diabetic rats [14]. There is a reduction in the overall thick-
ness of inner layers of the retina, accompanied by dimin-
ished number of RGCs in rat retinas after long term
experimental diabetes [124]. After 22 weeks of hypergly-
cemia, there is a 23.4 % reduction in the number of cell
bodies in the RGC layer in Ins2Akita mice [125]. In diabetic
patients, the number of RGCs is also reduced [124, 126].
Consistent with this, scanning laser polarimetry revealed a
reduced thickness of the nerve fiber layer in diabetic pa-
tients [127]. The morphology of a subset of RGCs is altered
in diabetes, including axonal swellings with associated con-
striction, enlarged cell bodies, and increased dendritic
branches and terminals [127].
The proteinase-activated receptor-2 (Par2) is recog-

nized for its marked proangiogenic properties in the ret-
ina [128]. Par2 mRNA in cultured retinal neuronal cells
(RGC-5) is increased by IL-1β [129]. Par2 stimulation
activates several downstream effector events, including
Ca2+ mobilization and MAPK [130, 131]. RGC-5 cells
treated with SLIGRL exhibit increased MAPK signaling,
including Erk1/2, Jnk, and p38 phosphorylation [129].
Regeneration of injured RGCs is supported by Müller

cell-derived neurotrophic/protective factors [132]; among
those are VEGF [133], ciliary neurotrophic factor (CNTF)
[134], and PEDF [135]. PEDF activates NF-κB in RGC.
Addition of NF-κB inhibitor (SN50) to PEDF-treated RGC
reduces their survival. Thus, NF-κB activation in RGC is
critically involved in the effect of Müller cell-derived
PEDF on maintaining neuronal survival [136].
Recent research demonstrates that hyperglycemia causes

succinate accumulation and G protein-coupled receptor
91 (GPR91) activation in RGC, which mediate VEGF-
induced retinal vascular change via the ERK1/2/COX-2/
PGE2 pathway [137]. Proinflammatory and proapoptotic
thioredoxin-interacting protein (TXNIP) has a causative
role in the development of diabetes [138, 139]. TXNIP ex-
pression is increased in the brain of diabetic rats [140] and
plays a role in RGC injury in glaucoma [141, 142]. Block-
ing the expression of TXNIP in diabetic rat retinas results
in the inhibition of its target genes COX-2 and FN thus
demonstrating TXNIP’s role in aberrant gene induction in
early DR. RNAi silencing TGS of TXNIP abolishes
diabetes-induced retinal gliosis and ganglion injury [143].
Other neurons
Amacrine cells are the third-order retinal interneurons,
projecting their processes into the IPL and contribute to
the most of the synapses in the inner plexiform layer
and mediate visual information input from bipolar cells
onto retinal ganglion cells [144]. Mammalian AII ret-
inal amacrine cells are arrow-field, multistratified glyci-
nergic neurons best known for its capacity to collect
scotopic signals from rod bipolar cells and distribute
the signals to ON and OFF cone pathways across the
network [145].
There are three classes of photoreceptors: rods,

long-wave system (LWS) cones, and short-wave system
1 (SWS1) cones. Each class displays a distinct morph-
ology as well as visual pigment. Because photorecep-
tors are especially vulnerable to hypoxia [146], diabetes
may also affect the function of photoreceptors. It has
been reported that there are foveal cone photopigment
bleaching abnormalities in patients with diabetes [147].
There are decreases in the sensitivity parameter (log S)
for both rod-isolated and cone-isolated ERG a-wave re-
sponses in patients with DR. Moreover, rod and cone
b-wave changes in DR patients, including changes in
both amplitude and implicit time [148]. However, the
function of these neurons in DR remains unclear.
Immuno-inflammatory response in DR It has recently
been recognized that the pathology of diabetic retinop-
athy has strong immunological underpinnings [149]. T
cell abnormalities are believed to be the major cause of
autoimmune disease in type 1 diabetes, leading to the
destruction of pancreatic islets. In type 2 diabetes, in-
flammation and activation of monocytes are important
for enhancing insulin resistance and may contribute to
the loss of insulin secretory function of islet cells [150].
In many diabetic complications, there is dysregulation of
innate immunity associated with increased inflammatory
responses [151]. Improper activation of the innate im-
mune system may result in DR. TLR4 is an important
mediator of innate immunity, and genetic alterations of
TLR4 is associated with inflammation in the hypergly-
cemic condition [152].
Resident microglia are regarded as immunological

watchdogs in the brain and retina. These cells are ac-
tive sensors of neuronal microenvironment and rapidly
respond to insults with morphological and functional
transformation into reactive phagocytes [153]. Inflam-
mation in diabetes activates microglia, stimulates a
cascade of inflammation that recruits leukocytes,
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causes vascular breakdown, and directly induces glial
dysfunction and neuronal cell death through the re-
lease of cytotoxic substances. Increased levels of
sICAM-1 and sVCAM-1 as well as high concentrations
of vitreous IL-6 and TNF-α in patients with PDR ap-
pear to confirm the inflammatory-immune nature of
PDR [154].

DR is a result of systemic neuroinflammation
CNS inflammation in diabetes
Diabetes causes chronic inflammatory complications in the
peripheral and CNS. Amylin deposition is promoted by
chronic hyperamylinemia, which is common in humans
with pre-diabetic insulin resistance. The majority of pa-
tients with T2DM have abundant amylin amyloid depos-
ition in the pancreas [155]. A recent study indicates that
chronic hyperamylinemia promotes the accumulation of
oligomerized amylin in the brain, which may trigger inflam-
matory responses and lead to neurological defects [156]. β-
amyloid deposition around brain microvessels can cause
direct toxicity to microvascular endothelial cells (BMVECs).
Impaired clearance of β-amyloid across the blood brain
barrier (BBB), aberrant angiogenesis, and senescence of
the cerebrovascular system may initiate neurovascular
uncoupling, brain hypoperfusion, and neurovascular in-
flammation [157].
T1DM is also associated with increased expression of

proinflammatory mediators, such as IL-1β, IL-2, IL-6,
TNF-α, and NF-κB, compared to age matched control
brains [21, 158]. In addition, TNF-α and IL-1β induce
COX-2 activity in perivascular macrophages of BBB and
generate prostaglandin E2, which enters the brain and
stimulates paraventricular nucleus (PVN) neurons to re-
lease adrenocorticotropic hormone (ACTH). Increased
expression of Ang II, ICAM-1, lymphocyte function-
associated antigen-1 (LFA-1) and CD8 positive cells are
found in diverse zones of the cerebrum and cerebellum
in STZ-induced diabetic rats [159]. Local Ang II in-
creases vascular permeability by promoting the secretion
of VEGF [160]. Ang II also contributes to the recruit-
ment of inflammatory cells into tissues by stimulating
the production of cytokines and chemokines.

Systemic inflammation in diabetes
Connections of neuropathy with the bone marrow (BM),
CNS, and peripheral nervous system may exist. Systemic
hyperglycemia-induced inflammation in diabetes may re-
sult in BM neuropathy by enhancing the generation of
inflammatory cells and lead to vascular complications
such as DR by reducing the production of endothelial
progenitors, which maintain the endothelial function
and renewal. [21]. Endothelial progenitor cells (EPCs) aris-
ing from BM circulate in the bloodstream and traffic to
areas of injury to orchestrate vascular repair [161, 162].
Diabetic individuals have fewer EPCs in the circulation
with decreased migratory and reparative potential. Acellu-
lar capillaries in the retina in type 2 diabetic rats are ob-
served at the precise time when there is denervation of
the BM and reduction in peripheral clock gene expression.
The resultant acellular capillaries appear at 4 months of
diabetes, due to the loss of proper EPC reparative function
and the failure of circadian EPC release secondary to
diabetes-associated denervation of BM [163]. Therefore,
BM neuropathy precedes the development of DR. The de-
crease in circulating EPCs reduces the repair of injured
retinal vessels in diabetes and leads to the development of
acellular capillaries.
BM-derived cells such as leukocytes play a critical role in

the development of diabetic retinopathy in animals [164].
Diabetes-induced inflammatory changes, superoxide pro-
duction, and degeneration of retinal capillaries are inhib-
ited in diabetic mice in which inflammatory proteins
(iNOS and PARP-1) are deleted from BM cells [165].

Intervention of neuroinflammation in DR
Pharmacologic interventions are available to reduce
neural inflammatory response in patients with DR [21],
in particular in patients who fail to respond to anti-
VEGF therapy. Neuroprotection as a new approach to
the treatment of early stage DR has been emphasized.
Neuroprotection effect is based on administering natural
protective factors that may downregulate inflammatory
responses in the diabetic retina. The factors such as pig-
ment epithelial growth factor, somatostatin, corstistatin,
and neurotrophins are abundant in the physiological ret-
inas. Therefore, administration of these factors could be
considered as replacement treatments [166].

Hesperetin
Hesperetin (3′,5,7-trihydroxy-4-methoxyflavanone) is a
member of the flavanone subclass of flavonoids. It is a
potential anti-inflammatory agent with potent inhibition
of LPS-induced expression of the COX-2 gene in RAW
264.7 macrophage cell line [167]. Hesperetin also in-
hibits the appearance of oxidative stress biomarkers,
such as thiobarbituric acid-reactive substance (TBARS)
and carbonyl content. Moreover, hesperetin activates
catalase and total superoxide dismutase (SOD) in mice
[168]. Thus, hesperetin may be neuroprotective as
shown by the fact that hesperetin-treated retina reduces
the expression of caspase-3, GFAP, and AQP4, which are
increased in diabetic rat retina [72].

Minocycline and doxycycline
Minocycline (MINO) and doxycycline (DOXY) derived
from tetracycline show neuroprotection in animal models
of ischemia [169–171]. MINO exerts anti-inflammatory
effect on microglia by inhibiting the production of
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inflammatory mediators, such as NO, cyclooxygenases,
prostaglandins, IL-1β, and TNF-α, while DOXY down-
regulates NO and IL-1β [169, 172–174]. MINO inhibits
hyperglycemia-induced histone acetylations, Müller cell
activation and upregulation of inflammatory mediators
[175]. MINO also inhibits the formation of acellular capil-
laries in the retina of diabetic and galactosemic mice. The
activation of caspase-1 and caspase-3 by high glucose and
subsequent neuronal apoptosis in retina Müller cells and
microglia are also inhibited by MINO [19, 112, 176]. In
the clinic, MINO improves visual acuity and neuropathic
pain resulted from inflammation in diabetic patients [21].
These findings support that MINO is a novel promising
therapeutic drug for DR [21].

VEGF
VEGF is an angiogenic and vessel-permeability factor
[177]. Anti-VEGF therapy in the management of PDR
and DME has shown beneficial effects [178, 179]. Anti-
bodies Ranibizumab (Lucentis®) [180, 181], Bevacizumab
(Avastin®) [182, 183], and Aflibercept (Eylea®) [184],
which inhibit VEGF isoforms, are currently used in the
clinic. Most studies focus on inhibition of vascular per-
meability and endothelial cell proliferation stimulated by
VEGF [185]. However, further research suggests that
VEGF also has neurotrophic and neuroprotective activity
[186]. The hypoxia-induced neuroprotective effects se-
quentially require the activation of VEGF/VEGFR-2 and
Akt/PKB phosphorylation, indicating that VEGF is a
hypoxia-induced neurotrophic factor [187]. VEGF also
has a protective effect on hippocampal neurons against
glutamate-mediated toxicity, and this effect is dependent
on PI3-K/Akt and MEK/ERK signaling pathways medi-
ated primarily through Flk-1 receptor [188].
Therefore, VEGF may have a dual role: neuroprotec-

tion and neovascularization in hypoxic regions of the tis-
sues. Its effect on angiogenesis and vascular permeability
appears paradoxical versus the neuroprotective activa-
tion [14]. Patients who failed in anti-VEGF therapy may
be due to inhibition of its neuroprotective function.
Moreover, diabetic patients may be at higher risk for
both systemic and ocular complications, such as cardio-
vascular and renal diseases, susceptibility to infection,
endophthalmitis, retinal detachment, and intraocular
hemorrhage [189–192]. Thus, although anti-VEGF ther-
apy is helpful, complications of this treatment should
not be overlooked.

Other novel therapeutic medicine
There are novel therapies focusing on inflammation and
neurodegeneration to mitigate retinal damage associated
with diabetes. Cannabidiol (CBD) is a non-psychoactive
component considered to have the properties of anti-
inflammation and anti-oxidation [193, 194]. CBD
attenuates high glucose-induced NF-κB activation in hu-
man coronary endothelial cells (HCAECs) in vitro. It
also attenuates high glucose-induced iNOS expression
and 3-nitrotyrosine (3-NT) formation in endothelial cells
[195]. Moreover, CBD decreases the incidence of diabetes
possibly through an immunomodulatory mechanism that
induces regulatory Th2 responses [196]. It is reported that
CBD reduces neurotoxicity, inflammation, and BRB break-
down in STZ-induced diabetic rats by blocking activation
of microglia and p38 MAP kinase, a downstream molecule
of proinflammatory cytokines and oxidative stress [197].
Thus, CBD is a promising candidate for anti-inflammatory
and neuroprotective therapy for DR.
Resveratrol is a natural polyphenol found in grapes

and red wine. Resveratrol has protective effects on ath-
erosclerosis and cardiovascular diseases through reduc-
tion in oxidative stress [198–200]. Further research
demonstrates that resveratrol protects diabetic neur-
opathy by improving motor nerve conduction velocity
and nerve blood flow, as well as reduction in nocicep-
tion [199]. A recent study indicates that resveratrol in-
hibits the activation of NF-κB and TNF-α and reduces
apoptotic cells in the retina of type 2 diabetic rats [201].
Resveratrol also exerts its neuroprotective effect on
RGCs by activating the sirtuin 1 pathway in an optic
nerve transection rat model [202].
The non-steroidal anti-inflammatory drugs (NSAIDs)

have been used to treat DME by inhibiting prostaglandin
biosynthesis [203, 204]. Injection of intravitreal diclofe-
nac (IVD) sodium, as a potent NSAIDs, has been used
in the treatment of macular edema of many etiologies
such as uveitic CME, diabetic macular edema, and ret-
inal vein occlusions [203]. A randomized double-masked
clinical trial demonstrated that the effect of injection of
IVD was superior to intravitreal injection of bevacizu-
mab (IVB) in the treatment of naïve DME [205]. There-
fore, using IVD as an adjunct or alternative treatment
may enhance the functional outcome of naive DME.

Conclusions
DR manifests characteristics of chronic neuroinflamma-
tion. Neurosensory retina including retina glial cells and
neurons are involved in neuroinflammatory responses of
DR. A caveat that should be kept in mind is that most
DR pathogenic studies are conducted on animals, but
none of the animal models may replicate all features of
human disease possibly due to different anatomic char-
acteristics of retinal structure. Nevertheless, animal
models remain necessary tools to study the pathogenesis
of diseases and have provided useful information for bet-
ter understanding of the pathogenesis of neuroinflam-
mation in DR. Many features simulate the process of
human disease and may aid the development of more ef-
ficient therapeutic strategies against human DR.
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