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Abstract

Background: Microglia recognize pathogen-associated molecular patterns such as double-stranded RNA (dsRNA)
present in some viruses. Polyinosinic-polycytidylic acid [poly(l:0)] is a synthetic analog of dsRNA that activates
different molecules, such as retinoic acid-inducible gene |, melanoma differentiation-associated gene 5, and toll-like
receptor-3 (TLR3). Poly(l:C) increases the expression of different cytokines in various cell types. However, its role in
the regulation of the production of inflammatory mediators of the arachidonic acid pathway by microglia is poorly
understood.

Methods: In the present study, we evaluated the effect of poly(l:C) on the production of prostaglandin E;, (PGE,) and
the inducible enzymes cyclooxygenase-2 (COX-2) and microsomal prostaglandin £ synthase-1 (mPGES-1) in primary rat
microglia. Microglia were stimulated with different concentrations of poly(l:C) (0.1-10 pug/ml), and the protein levels of
COX-2 and mPGES-1, as well as the release of PGE,, were determined by western blot and enzyme immunoassay (EIA),
respectively. Values were compared using one-way ANOVA with post hoc Student-Newman-Keuls test.

Results: Poly(l:C) increased the production of PGE,, as well as mPGES-1 and COX-2 synthesis. To investigate the
mechanisms involved in poly(l:0)-induced COX-2 and mPGES-1, we studied the effects of various signal transduction
pathway inhibitors. Protein levels of COX-2 and mPGES-1 were reduced by SB203580, SP600125, and SC514 (p38
mitogen-activated protein kinase (MAPK), c-Jun N-terminal kinase (JNK), and IkB kinase (IKK) inhibitors, respectively), as
well as by PD98059 and PD0325901 (mitogen-activated protein kinase kinase (MEK) inhibitors). Rapamycin, a
mammalian target of rapamycin (mTOR) inhibitor, enhanced the synthesis of COX-2. Inhibition of phosphatidylinositol
3-kinase (PI3K) by LY294002 or dual inhibition of PI3K/mTOR (with NVP-BEZ235) enhanced COX-2 and reduced mPGES-
1 immunoreactivity. To confirm the data obtained with the inhibitors, we studied the phosphorylation of the blocked
kinases by western blot. Poly(l:C) increased the phosphorylation of p38 MAPK, extracellular signal-regulated kinase (ERK),
JNK, protein kinase B (Akt), and IkB.
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of TLR3 might be involved.

Conclusions: Taken together, our data demonstrate that poly(l:C) increases the synthesis of enzymes involved in PGE,
synthesis via activation of different signaling pathways in microglia. Importantly, poly(l:C) activates similar pathways also
involved in TLR4 signaling that are important for COX-2 and mPGES-1 synthesis. Thus, these two enzymes and their
products might contribute to the neuropathological effects induced in response to dsRNA, whereby the engagement
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Background

Microglia express receptors that recognize pathogen-
associated molecular patterns leading to various immuno-
logical responses. For instance, the toll-like receptor-3
(TLR3) is an intracellular receptor that recognizes double-
stranded RNA produced by some viruses [1, 2]. TLR3
might also be activated by endogenous messenger RNA
(mRNA) released from apoptotic cells [3], and activation
of this receptor has been shown to increase the expression
of different cytokines in various cell types, including
microglia [4, 5].

Polyinosinic-polycytidylic acid [poly(I:C)] is a ligand of
TLR3 and is able to activate different immune cells in a
toll/interleukin ~ (IL)-1  receptor domain-containing
adaptor inducing IEN-f (TRIF)-dependent manner [6].
Activation of this receptor is important to protect and
fight against infections, since its activation induces the
production of type I interferon and other cytokines in-
volved in antiviral responses [7]. Furthermore, poly(I:C)
increases the phagocytosis and the intracellular killing of
Escherichia coli by primary microglia [8].

Besides its role in infections, TLR3 activation might be
involved in neurodegeneration, psychiatric disorders,
and pain [2, 9-12]. Considering that RNA released from
necrotic cells could activate TLR3 [3], it may be assumed
that the binding of endogenous nucleic acid released
from dying neurons could activate TLR3 in other cell
types, such as microglia, and promote an inflammatory
process in the brain. Systemic administration of poly(I:C)
increases apoptosis and exacerbates an existing chronic
neurodegenerative process in a ME7 model of prion
disease [9]. Furthermore, injection of poly(I:C) enhances
neuronal loss in the substantia nigra pars compacta and
striatum induced by 6-hydroxydopamine and paraquat
[13, 14]. Additionally, challenge of mice aged 5 to 7 days
with poly(I:C) induces schizophrenia-like signs, as well
as a progressive microglia activation [15]. Indeed, pre-
natal injection of poly(I:C) in rodents is used as a neuro-
developmental model of schizophrenia [2, 16].

Although different studies have demonstrated that the
effects of poly(I:C) might be dependent on TLR3, it is
currently known that this compound acts via other tar-
gets. To date, it has been shown that poly(Il:C) activates
retinoic acid-inducible gene I (RIG-I) and melanoma

differentiation-associated gene 5 (MDAS5), which are also
pattern recognition receptors (PRRs) that recognize
pathogen-specific molecular patterns [17, 18]. Interest-
ingly, the involvement of these PRRs in neurodegenera-
tion has also been suggested [19, 20].

Although the pathological conditions induced by
poly(I:C) might be a consequence of an inflammatory
process that leads to neurodevelopmental abnormalities,
neurodegenerative processes, or pain, the underlying
mechanisms are still unknown. These effects might be
associated with microglia activation [21], which results
in the release of neurotoxic molecules such as the lipid
inflammatory mediators from the arachidonic acid cas-
cade. Since cyclooxygenase-2 (COX-2), microsomal
prostaglandin E synthase-1 (mPGES-1), and prostaglan-
din E, (PGE,) are involved in neurodegeneration, psychi-
atric disorders, and pain [22-26], these molecules may
mediate the pathological effects induced by dsRNA.

Thus, it is necessary to unveil molecular mechanisms
induced by a viral mimetic in isolated brain microglial
cells, since these cells are the main source of various
inflammatory mediators. Different studies use lipopolysac-
charide (LPS) as a gold standard to activate microglia, but
the main receptor of this substance is the TLR4. However,
although it has been shown that TLR3 ligands increase
the production of cytokines in microglia [27, 28], the role
of this receptor in the production of inflammatory lipid
mediators in microglia is poorly understood. In the
present study, we evaluated the effect of poly(L:C) in the
synthesis of molecules involved in the arachidonic acid
cascade (i.e.,, COX-2, mPGES-1, and PGE,), as well as the
intracellular mechanisms involved in these responses in
rat primary microglia.

Methods

The following inhibitors were purchased from Calbiochem
(Bad Soden, Germany): PD 98059 (2’-amino-3 -methoxy-
flavone), an inhibitor of mitogen-activated protein kinase
kinase (MEK); SB 203580 [4-(4-fluorophenyl)-2-(4-methyl-
sulfinylphenyl)-5-(4-pyridyl)1H-imidazole], an inhibitor of
P38 mitogen-activated protein kinase (MAPK); SP600125
[anthra(1,9-cd)pyrazol-6(2H)-one  1,9-pyrazoloanthrone],
an inhibitor of c-Jun N-terminal kinase (JNK); rapamycin
[(3S,6R,7E,9R,10R,12R,14S,15E,17E,19E,21S,23S,26R,27R,
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34aS)-9,10,12,13,14,21,22,23,24,25,26,27,32,33,34,34a-hex-
adecahydro-9,27-dihydroxy-3-[(1R)-2-[(1S,3R,4R)-4-hydro
xy-3-methoxycyclohexyl]-1-methylethyl]-10,21-dimethoxy-
6,8,12,14,20,26-hexamethyl-23,27-epoxy-3H-pyrido  [2,1-c]
[1, 4] oxaazacyclohentriacontine-1,5,11,28,29(4H,6H,31H)-
pentone], an inhibitor of mammalian target of rapamycin
(mTOR); and SC-514 [5-(thien-3-yl)-3-aminothiophene-2-
carboxamide], an IkB kinase 2 (IKK2) inhibitor. The dual
PI3K/mTOR inhibitor NVP-BEZ235 was purchased from
Axon Medchem BV (Groningen, the Netherlands). The
phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002
[2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one hy
drochloride] and the MEK inhibitor PD0325901 [N-[(2R)-
2,3-dihydroxypropoxy]-3,4-difluoro-2-[(2-fluoro-4-iodo
phenyl)amino]-benzamide] were obtained from Tocris
(Ellisville, MO). Poly(I:C) (high molecular weight, catalog
code: tlrl-pic) was purchased from InvivoGen (San Diego,
CA, USA).

All stock solutions were prepared in dimethyl sulfoxide
(DMSO) and stored at —20 °C. Further dilutions in DMSO
were prepared immediately before the incubations of the
cells.

Primary microglia cultures

Primary microglia cultures were prepared from cere-
bral cortices of 1-day neonatal Wistar rats [29, 30]. In
brief, forebrains were minced and gently dissociated
by repeated pipetting in Hank’s balanced salt solution
(PAA Laboratories GmbH, Colbe, Germany). Dissoci-
ated cells were then passed through nylon cell strainer
with 70-pm pores (BD biosciences, Heidelberg,
Germany). Cells were collected by centrifugation, re-
suspended in Dulbecco’s modified Eagle’s medium
(DMEM) containing 10 % fetal calf serum (FCS) and
antibiotics and cultured on 10-cm cell culture dishes
(Falcon, 5 x 10° cells/plate) in 5 % CO, at 37 °C. Float-
ing microglia were harvested from 12 to 14-day-old
mixed (astrocyte-microglia) primary cultures and re-
seeded into cell culture plates at the density of 2 x 10°
cells/ml to give pure microglial cultures. On the next
day, cells were washed to remove non-adherent cells,
and fresh medium was added. After 1 h, cells were
used for the different experiments.

Western blot analysis

Thirty minutes, 24 or 48 h after stimulation with poly(I:C),
microglial cells were washed with phosphate-buffered
saline (PBS) and lysed in 1.3 xSDS (sodium dodecyl
sulfate)-containing sample buffer without dithiothreitol
(DTT) or bromophenol blue containing 100 uM orthova-
nadate [31]. Cell lysates were homogenized by repeated
passage through a 26-gauge needle. Protein contents were
measured using the bicinchoninic acid (BCA) method
(Thermo Fischer Scientific, Waltham, MA, USA). Bovine
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serum albumin (BSA) was used as a protein standard at
concentrations ranging from 0.2 to 4 pg/ul, and the optical
density was read at 570 nm using a microplate reader. Im-
mediately before electrophoresis, bromophenol blue and
DTT (final concentration, 10 mM) were added to the
samples. For mPGES-1, COX-2, p-p38 MAPK, p-JNK, p-
ERK, p-IkB-a, p-Akt, actin, and a-tubulin immunoblot-
ting, 30 to 50 pg of protein from each sample was
subjected to SDS-PAGE (polyacrylamide gel electrophor-
esis) on a 10 % (for p-p38 MAPK, p-JNK, p-ERK, p-IkB-a,
p-Akt) or 12 % (for COX-2 and mPGES-1) gel under
reducing conditions. Proteins were then transferred onto a
polyvinylidene fluoride (PVDF) membrane (Millipore,
Bedford, MA, USA) by semi-dry blotting. The membrane
was blocked for 1 or 2 h at room temperature using
Rotiblock (Roth, Karlsruhe, Germany) for COX-2 or 5 %
blocking milk (BioRad, Miinchen, Germany) for the other
proteins, before the overnight incubation at 4° C with the
primary antibody. Primary antibodies were goat anti-
COX-2 (M-19, Santa Cruz, Heidelberg, Germany); rabbit
anti-mPGES-1 (Cayman Chemical, USA; 1:500); rabbit
anti-actin (Sigma-Aldrich, USA, 1:5000); and rabbit anti-
p-p38 anti-MAPK, anti-p-JNK, anti-p-ERK, anti-p-IxB-a,
anti-p-Akt, and anti-a-tubulin (all from Cell Signaling
Technology). After extensive washing (three times for
15 min each in TBS containing 0.1 % Tween 20), proteins
were detected with horseradish peroxidase (HRP)-coupled
rabbit anti-goat IgG (Santa Cruz, 1:100,000) or HRP-
coupled donkey anti-rabbit (GE Healthcare, 1:25,000)
using chemiluminescence (ECL) reagents (GE Healthcare).
All western blot experiments were carried out at least
three times. The densitometry of the western blot was per-
formed by using Image J software 1.47v (National Institute
of Health). A box was drawn around the bands, and a per-
centage of the area covered was determined. In case of
multiple bands, such as phospho-extracellular signal-
regulated kinase (ERK) and phospho-JNK where a box
was difficult to draw around the single band, quantifica-
tion of bands was performed altogether as done in our
previous study [32]. Highly overexposed bands were
excluded in the quantification. The bands of COX-2,
mPGES-1, phospho-p38, phospho-ERK, phospho-JNK,
phospho-Akt, and phospho-IkB were normalized to actin
or a-tubulin as housekeeping proteins.

Enzyme immunoassay (EIA)

Twenty-four hours after stimulation, supernatants were
harvested, centrifuged at 10,000xg for 10 min, and levels
of PGE, in the media were measured by enzyme im-
munoassay (EIA) (Biotrend, Koln, Germany) according
to the manufacturer’s instructions. Standards from 39 to
2500 pg/ml were used; sensitivity of the assay was
36.2 pg/ml
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Statistical analysis

At least three independent experiments were used for
data analysis. Original data were converted into %
values of LPS or poly(l:C) controls, and mean + S.E.M.
were calculated. Values were compared using ¢ test
(two groups) or one-way ANOVA with post hoc
Student-Newman-Keuls test (multiple comparisons).
For each experiment, P value <0.05 was considered
statistically significant. Significant effects are indicated
by asterisks (*P < 0.05, **P < 0.01, ***P < 0.001).

Results

Poly(I:C) increases the expression of mMPGES-1 and COX-2
and PGE, production

We first evaluated the effect of poly(I:C) on the produc-
tion of PGE,, a prostanoid involved in neuroinflamma-
tory conditions. Poly(I:C) increased the production of
PGE, at concentrations of 5 and 10 pg/ml in rat primary
microglia (Fig. 1a; P<0.05 and 0.001, respectively). In
order to investigate the mechanism by which poly(I:C)
increases PGE,, we investigated the synthesis of
mPGES-1 and COX-2 after treatment with poly(L:C).
10 pg/ml of poly(I:C) increased the synthesis of mPGES-
1 and COX-2 proteins at 24 (Fig. 1b, ¢; P <0.05)- and
48-h (Fig. 1d, e; P <0.05) post-stimulation. Interestingly,
poly(I:C) increased mPGES-1 synthesis even at lower
concentrations (1-10 pg/ml, Fig. 1d, e, P <0.05) at 48 h.
In the same conditions, LPS (10 ng/ml), used as a posi-
tive control, also increased the synthesis of mPGES-1
and COX-2 (Fig. 1b—e).

Inhibition of IKK-2, MEK, JNK, and p38 MAPK reduces the
expression of mPGES-1 and COX-2 induced by poly(l:C)
As described in our previous studies, mPGES-1 and
COX-2 are regulated in microglia by various signal
transduction pathways [29, 33] such as protein kinase C,
NF-xB, MEK, JNK, and p38 MAPK. We therefore evalu-
ated whether the increase in COX-2 and mPGES-1 in-
duced by poly(I:C) could be altered by the inhibition of
different kinases. As shown in Fig. 2a, b, inhibition of
IKK-2, JNK, MEK, and p38 MAPK with SC514,
SP600125, PD98059, and SB203580, respectively, re-
duced the levels of mPGES-1 and COX-2 proteins 24 h
after stimulation with poly(:C) (P<0.05). A similar
pattern of inhibition of these kinases was also observed
48 h after stimulation (Fig. 2¢, d; P < 0.05). Considering
that PD98059 might have direct inhibitory effects on
COX-2 [34], we evaluated the effect of other MEK in-
hibitor on the expression of this enzyme, as well as on
mPGES-1. We confirmed that PD0325901, a selective
MEK1/2 inhibitor, reduced COX-2 and mPGES-1 pro-
tein levels induced by poly(I:C) (P < 0.05; Fig. 2e, f).

Page 4 of 11

Inhibition of PI3K and mTOR differently regulates the
expression of mMPGES-1 and COX-2 induced by poly(l:C)
We have previously demonstrated that inhibition of PI3K
and mTOR differently regulates the expression of
mPGES-1 and COX-2 in LPS-stimulated rat primary
microglia [29, 33]. Thus, we decided to investigate the
effect of PI3K and mTOR inhibition on microglia stimu-
lated with a TLR3 agonist. As observed in Fig. 3a-c,
LY294002, a PI3K inhibitor, increased the immunoreactiv-
ity of COX-2 at 24 and 48 h after stimulation (P < 0.001
and P<0.05, respectively), although mPGES-1 was re-
duced only at 48 h (P<0.05). A similar pattern of the
modulation of production of COX-2 and mPGES-1 was
also obtained with NVP-BEZ235, a PI3K dual inhibitor
(Fig. 3a—c, P<0.05). On the other hand, inhibition of
mTOR with rapamycin enhanced the immunoreactivity of
COX-2 at 24 and 48 h, although a strong tendency
towards induction of mPGES-1 was observed at 48 h after
stimulation with poly(I:C) (P < 0.05; Fig. 3b, c).

Poly(I:C) increases the phosphorylation of ERK, JNK, p38
MAPK, Akt, and IkB-a

We next studied whether poly(I:C) directly activated
the intracellular signaling molecules described above.
Thirty minutes after stimulation, poly(l:C) increased
the phosphorylation of JNK and p38 MAPK in all con-
centrations used (Fig. 4a, b, P <0.001). Phosphorylation
of IkB-a were also obtained with the same concentra-
tions (0.1-10 pg/ml; Fig. 4e, f, P <0.001). ERK (Fig. 4c,
d, P<0.05) and protein kinase B (Akt) (Fig. 4e, f, P<
0.001) were activated by poly(I:C) only at a higher con-
centration (10 pg/ml). As a control for the experiments,
we demonstrated that LPS (10 ng/ml) increased the
phosphorylation of IkB-a and all kinases studied
(Fig. 4a, ¢, e) at the same time point.

Discussion
In the present study, we evaluated the effects of the
TLR3 ligand poly(I:C) on the synthesis of enzymes of
the arachidonic acid cascade, as well as the intracellular
signaling pathways involved in their expressions in rat
primary microglia. We demonstrate here that poly(I:C)
increases the synthesis of COX-2 and mPGES-1 in rat
primary microglia and that these effects are dependent
on the activation of MAPKs, PI3K, mTOR, and NF-«kB.
Various studies have been performed to elucidate
the roles of both mPGES-1 and COX-2, since these
enzymes are induced during inflammatory processes.
The increased production of PGE, by microglia dur-
ing neuroinflammatory processes might be important
for the development of psychiatric and neurodegen-
erative processes [22, 35, 36]. Thus, we decided to
investigate the effect of a TLR3 agonist on the pro-
duction of these molecules of the arachidonic acid



de Oliveira et al. Journal of Neuroinflammation (2016) 13:11 Page 5 of 11

A
30+
= *kk
o
; |
O 204
o O *
w =
2% 1
2 10-
©
O\O
= 0 T T T T T
ST S
Poly(I:C) (ng/ml)
B C
- 2000~ 1 mPGES-1 Hl COX-2
3 3 . 24h COX-2 —
N *g 15004 (70 kDa) -
5o x . MPGES-1
(S 1000- (17 kDa) G
5®
- §’ Actin
*
5 s0o- i (12KD8) e i - -
e ﬁ i LPS (10 ngiml) - . . ; )
E oM L ﬁi .i . . Poly(I:C) (ug/ml) - - 01 1 5 10
Q ] A LN ) Q
& o s
Poly(I:C) (ng/ml)
D ] mPGES-1 B COX-2 E
4000 48 h COX-2
c *
=~ T oo e ~
B S 3000- L o7 (70 kDa) ‘ - :
9 5 2000- 1 mPGES-1 P
X O 17 kDa e —
8 @ 10004 L ’l\ ( ) -
5 = a0 . Actin
-9 ] T 42 kDa
(2100 . ) - -
G O 20 LPS (10 ng/ml) -  + - - - -
a2 100 i ' Poly(C) (ug/ml) - - 01 1 5 10
= qinl Wi ' | | | y(I:C) (ug/ml)
N > N N ) o
& o s
Poly(I:C) (ng/ml)
Fig. 1 Effect of poly(:C) on the production of PGE,, and mPGES-1 and COX-2 protein levels in primary microglia. a Effect of poly(.C) (0.1-10 pg/ml) on
PGE; production after 24 h of stimulation in rat primary microglia. b, d Quantitative densitometric analysis of COX-2 and mPGES-1 protein levels
normalized to actin loading control at 24 (b) and 48 h (d). ¢, e Immunoblot analysis of protein levels of COX-2, mPGES-1, and actin in poly(l:C)-activated
microglia at 24 (c) and 48 h (e). *P < 0.05 and ***P < 0.001 with respect to negative control

cascade in microglia. Importantly, poly(I:C) might be We first demonstrated that poly(I:C) increased the
considered as an alternative stimulus to LPS to acti- immunoreactivity of both COX-2 and mPGES-1, as well
vate microglial cells. as the production of PGE,. In contrast to our results,
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Gutierrez-Venegas and Rodriguez-Perez [37] demon- in the two studies might be due to the different cell type
strated that poly(I:C) reduced the expression of COX-2  and stimulation agents used. However, another study has
and the production of PGE, induced by histamine in  shown that, in RAW264.7 cells, poly(I:C) increased the
human gingival fibroblasts. These differences observed  synthesis of COX-2 and PGE, production via TLR3 [38].
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and COX-2 at 24 and 48 h after stimulation with poly(:C) in microglia.

Besides, in microglia, poly(I:C) increased the production
of TNF-a, IL-6, and IFN-f in a TLR3-dependent manner
[28]. In accordance with our data, it has been shown
that poly(I:C) increases the expression of mPGES-1 and
COX-2 in mouse glial cells [39-41]. However, in these
studies, the authors did not investigate whether the
effects of poly(I:C) in microglia were mediated by TLR3
and did not elucidate the signaling cascades involved in
their syntheses. The increased expression of inflamma-
tory mediators, such as cytokines and prostanoids,
induced by dsRNA stimulation, could contribute to the
development of the neuropathological processes pro-
moted by the activation of some cytosolic PRRs.

In order to investigate the signaling pathways involved
in the synthesis of mPGES-1 and COX-2, we evaluated
the effect of poly(I:C) in the phosphorylation of kinases
and IkB-a. We demonstrated here that poly(I:C) in-
creased the activation of all MAPKs. These results are in
accordance with the study of Steer et al. [42], which
demonstrated that poly(I:C) induces MAPK activation in
macrophages. Jing et al. [43] showed that activation of
TLR3 recruits the complex formed by TRAF6 (TNF
receptor-associated factor 6)-TAK1 (TGEF-B-activated

kinase 1)-TAB2 (TAK1-binding protein 2), which there-
after translocates to the cytosol and interacts with
dsRNA-dependent protein kinase (PKR), inducing TAK1
activation. This activation leads to further activation of
MAPK and NF-kB. This work was corroborated by an-
other study, which showed that poly(I:C) induced the
phosphorylation of MKK3/6 and p38 MAPK in human
natural killer cells [44], MKK4/7, and JNK in fibroblast-
like synoviocytes [45] and ERK in bone marrow-derived
macrophages [46]. However, in human dendritic cells,
poly(I:C) failed to induce phosphorylation of JNK, ERK,
and p38 MAPK, albeit this effect was observed in
rheumatoid arthritis synovial fibroblasts [4]. In accord-
ance with our data, activation of these kinases has also
been demonstrated in mouse microglia although the
concentrations of poly(I:C) necessary for these effects
were higher [28].

MAPKSs are important regulators of the expressions of
inflammatory mediators. Activation of ERK by poly(I:C)
controls the production of nitric oxide and IL-1-f in
macrophages [47, 48]. Inhibitors of JNK and p38 MAPK
reduced the production of CXCL10 in a human bron-
chial epithelial cell line and human natural killer cells
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effects of poly(l:C) on the phosphorylation of p38 and JNK (a, b), ERK (c, d), and Akt and IkB (e, f) 30 min after stimulation. Actin or tubulin was
used as controls. *P < 0.05 and ***P < 0.001 in comparison with the respective poly(l:C) control

stimulated with poly(I:C), respectively [44, 49]. JNK and
p38 MAPK induce the transcription of genes via activa-
tion of different downstream molecules [50, 51]. More-
over, different studies have demonstrated that JNK and
p38 MAPK stabilize mRNA, leading to an enhanced
transduction. In monocyte-derived dendritic cells,
poly(I:C) induced stabilization of IFN-f mRNA, and this
effect is mediated by TRIF, MK2, and p38 MAPK [52].
Considering that J]NK and p38 MAPK might be involved
in the stabilization of COX-2 mRNA [53-55], it is
possible that, in our conditions, the reduction in COX-2
observed with the incubation of the cells with JNK and

p38 MAPK inhibitors might be due to a reduced stability
of the COX-2 mRNA, although a direct effect on gene
transcriptions cannot be discarded.

The NF-kB is involved in the expression of different
inflammatory mediators. We and others have previously
demonstrated that NF-«kB regulates the expression of
COX-2 and mPGES-1 induced by LPS [33, 56]. However,
it has been demonstrated that poly(I:C) and LPS induce
distinct NF-«B signaling [57]. Thus, we aimed to investi-
gate whether poly(I:C) induces NF-kB activation in
microglia. We have demonstrated that poly(I:C) in-
creased IkB phosphorylation and that SC514, a IKK-2
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inhibitor, reduced the expression of both COX-2 and
mPGES-1. Thus, we were able to attest that NF-kB is
involved in the expression of COX-2 and mPGES-1 in-
duced by poly(l:C). In contrast to our previous results,
SC-514 abolished the expression of COX-2 induced by
poly(I:C), albeit higher concentrations of SC-514 only
partially reduced the expression of this enzyme induced
by LPS in microglia [33]. Thus, it might be possible that
the mechanism or the kinetics of activation of NF-kB in-
duced by LPS and poly(I:C) differ.

The PISK/Akt/mTOR pathway controls a wide range of
physiological and pathological events. These enzymes are
involved in the production of inflammatory mediators.
Here, we showed that inhibition of mTOR with rapamycin
enhanced the synthesis of COX-2. On the other hand, in-
hibition of PI3K or a dual inhibition of PI3K and mTOR
increased the expression of COX-2, albeit the expression
of mPGES-1 was partially reduced only at 48 h. We have
previously demonstrated that inhibition of PI3K or dual
inhibition of PI3K/mTOR increased the expression of
COX-2 and reduced the expression of mPGES-1 in LPS-
activated microglia [29]. Importantly, Akt is downstream
of TRIF and TANK-binding kinase 1 and regulates the
expression of IFN-f mRNA in RAW264.7 cells induced
by poly(L:C) through interferon regulatory factor 3 (IRF3)
activation [58]. Interestingly, Tarassishin and colleagues
[59] have recently shown that IRF3 also activates Akt, and
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inhibition of PI3K with LY294002 reduced the expression
of the immunoregulatory cytokines IL-10, IL-1ra, and
IEN-B, suggesting an anti-inflammatory role of this kinase.
Figure 5 summarizes all the intracellular molecules inves-
tigated in this study that contribute to the regulation of
COX-2 and mPGES-1 protein levels induced by poly(I:C)
in rat primary microglia.

We have previously demonstrated that LPS, a TLR4
ligand, increased the expression of COX-2 and mPGES-1
in primary microglia, and different kinases were involved
in the regulation of these two enzymes [29, 33]. Whereas
activation of TLR4 utilizes both MyD88 and TRIF, TLR3
signals only via TRIF [7]. Although TLR3 does not stimu-
late signals via the MyD88 adapter molecule, the signals
promoted from TLR3 and TLR4 converge to TRIE, which
could lead to further activation of different downstream
molecules necessary for COX-2 and mPGES-1 expression.

In the present study, we were not able to prove that
the effects shown by poly(I:C) are mediated by the TLR3
in our rat microglia model. It might also be possible that
the effects of poly(I:C) are mediated via a TLR3-
independent pathway. For example, it has been demon-
strated that the effects of poly(I:C) on the expression of
COX-2 were not dependent on TLR3 [42]. Furthermore,
deficiency of TLR3 also did not avoid the CD8 T cell ex-
pansion induced by poly(I:C) [60]. In this same study, it
was demonstrated that injection of poly(I:C) increased
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Fig. 5 Signal transduction pathways involved in the poly(l:C)-mediated induction of COX-2 and mPGES-1 in rat primary microglia. It is shown here
that poly(l:C) induced COX-2 and mPGES-1 proteins, as well as PGE, production, and by using pharmacological inhibitors against various signaling
pathways including p38 MAPK, JNK, MEK1/2, and IKK2, these poly(l:C) effects on COX-2 and mPGES-1 were reversed. Furthermore, inhibition of
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the levels of serum IL-6 in WT and TLR3 ™~ mice, albeit
the levels of TNF-a were reduced, demonstrating a dif-
ferential regulation of poly(I:C) on both cytokines [60].

Poly(I:C) might have other targets, such as the melanoma
differentiation-associated gene 5-deficient mice (MDAS),
which is a cytosolic PRR that recognizes viral RNA. It has
been shown that in MDA5 '~ mice, poly(I:C) administra-
tion did not increase the sera levels of IFN-y as compared
with those in WT mice. The production of IL-6 and IL-
12p40 was also impaired in MDA5 ™~ mice [61]. Moreover,
poly(I:C) may also activate the NLRP3 inflammasome in
TLR3- and MDA5-independent pathways [62].

Conclusions

In conclusion, we provide evidences that the signaling
cascades involved in the expression of COX-2 and
mPGES-1 induced by poly(l:C) are similar with the
pathways induced by LPS in microglia. Finally, con-
sidering that activation of PRRs, such as TLR3, might
be associated with pain and psychiatric and neurode-
generative diseases [2, 9-11], it could be speculated
that COX-2, mPGES-1, and PGE, induced by this
stimulus could partially contribute to the development
of neuropathological conditions.
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