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Apocynin prevents mitochondrial burdens, @
microglial activation, and pro-apoptosis

induced by a toxic dose of

methamphetamine in the striatum of mice

via inhibition of p47phox activation by ERK
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Abstract

Background: Activation of NADPH oxidase (PHOX) plays a critical role in mediating dopaminergic neuroinflammation.
In the present study, we investigated the role of PHOX in methamphetamine (MA)-induced neurotoxic and inflammatory
changes in mice.

Methods: We examined changes in mitogen-activated protein kinases (MAPKs), mitochondrial function [ie,
mitochondrial membrane potential, intramitochondrial Ca** accumulation, mitochondrial oxidative burdens,
mitochondrial superoxide dismutase expression, and mitochondrial translocation of the cleaved form of protein kinase
C delta type (cleaved PKCS)], microglial activity, and pro-apoptotic changes [i.e, cytosolic cytochrome c release, cleaved
caspase 3, and terminal deoxynucleotidyl transferase dUDP nick-end labeling (TUNEL) positive populations] after a
neurotoxic dose of MA in the striatum of mice to achieve a better understanding of the effects of apocynin,
a non-specific PHOX inhibitor, or genetic inhibition of p47phox (by using p47phox knockout mice or p47phox
antisense oligonucleotide) against MA-induced dopaminergic neurotoxicity.

Results: Phosphorylation of extracellular signal-regulated kinases (ERK1/2) was most pronounced out of MAPKs
after MA. We observed MA-induced phosphorylation and membrane translocation of p47phox in the striatum
of mice. The activation of p47phox promoted mitochondrial stresses followed by microglial activation into

the M1 phenotype, and pro-apoptotic changes, and led to dopaminergic impairments. ERK activated these signaling
pathways. Apocynin or genetic inhibition of p47phox significantly protected these signaling processes induced by MA.
ERK inhibitor U0126 did not exhibit any additional positive effects against protective activity mediated by apocynin or
p47phox genetic inhibition, suggesting that ERK regulates p47phox activation, and ERK constitutes the crucial target for
apocynin-mediated inhibition of PHOX activation.

Conclusions: Our results indicate that the neuroprotective mechanism of apocynin against MA insult is via preventing
mitochondrial burdens, microglial activation, and pro-apoptotic signaling process by the ERK-dependent
activation of p47phox.
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Background

It has been well-recognized that high doses of metham-
phetamine (MA) result in impaired nigrostriatal dopamin-
ergic systems in both rodents [1-4] and primates [5].
Although the pathogenesis on the MA-induced dopamin-
ergic neurotoxicity remains to be further elucidated, this
neurotoxicity may be, at least in part, related to oxidative
stress [3, 4, 6-10], inflammatory changes [4, 6, 11, 12],
and pro-apoptosis [4, 9, 10, 13-16]. Thus, dopaminergic
neurotoxicity induced by high doses of MA may be a
possible Parkinson’s disease (PD) model [17-21].

Furthermore, previous investigations have suggested
that humans who abuse MA have an increased risk for
PD later in life [22-25]. Earlier postmortem studies re-
ported reductions in dopamine levels, tyrosine hydroxy-
lase (TH) expression, and dopamine transporter (DAT)
binding in the striatum of MA abusers [26], and these
changes paralleled neurochemical changes in Parkinson’s
disease (PD) patients [27, 28].

Accumulated evidence indicates that MA can also cause
oxidative stress by shifting the balance between reactive
oxygen species (ROS) production and the capacity of
antioxidant systems to scavenge ROS [3, 4, 29-31].
Recently, we have proposed that MA-induced mitochon-
drial oxidative stress and mitochondrial dysfunction pro-
motes dopaminergic degeneration [4, 8]. Interestingly,
NADPH oxidase (PHOX) activation was observed in
response to mitochondrial ROS formation in human
leukocytes [32].

PHOX is a multiunit enzyme that catalyzes the reduc-
tion of molecular oxygen to form superoxide radicals and
is composed of gp91phox, p22phox, p47phox, p67phox,
p40phox, and small GTPase Rac (Racl or Rac2) subunits.
Under basal conditions, p47phox, p67phox, and p40phox
are present in the cytosol as a complex [33], and Rac is
bound to its inhibitory protein, RhoGDP-dissociation
inhibitor (RhoGDI) [34]. These subunits are separated
from the transmembrane gp91phox and p22phox subunits
[33, 34]. Upon activation, the p47phox subunit gets phos-
phorylated and translocates to the membrane as a complex
to assemble with gp91phox, p22phox, and membrane-
translocated Rac to form an active PHOX capable of redu-
cing oxygen to a superoxide radical to generate microglial
[35-38] and/or mitochondrial-derived ROS [32] and
possibly neuronal and astroglial ROS [35, 39].

Microglia-mediated neuroinflammation has been linked
to multiple neurodegenerative diseases, including PD
[35, 37—-45]. One recent therapeutic strategy has been
to deviate from conventional anti-inflammatory targets
and inhibit upstream mediators, such as PHOX [35]. Once
activated, PHOX produces extracellular and intracellular
reactive oxygen species, which are critical in initiating and
maintaining neuroinflammatory responses, leading to pro-
gressive dopaminergic neurodegeneration [42, 43, 46]. For

Page 2 of 22

example, activated microglia secrete a variety of toxic fac-
tors, such as tumor necrosis factor a, interleukin-1, and
other pro-inflammatory cytokines, which work in concert
to cause neuronal damage [41]. Hong and colleagues have
recognized PHOX as a key mediator in bridging neu-
roinflammation and progressive dopaminergic neuro-
degeneration [42, 43, 47].

Importantly, a recent investigation demonstrated that
treatment with apocynin, a non-specific inhibitor of
PHOX [48], results in a significant reduction in MA-
induced dopamine-release from rat striatal slices [49].
Furthermore, Park et al. [50] found that MA (10 uM) in-
duces an increase in phosphorylation of the p47phox
subunit and subsequently enhanced PHOX activity in
endothelial cells. However, the information of PHOX in
the MA-induced neurotoxicity in vivo remains unknown.
Thus, we investigated whether apocynin affects dopamin-
ergic neurotoxicity induced by MA in mice, and whether
apocynin modulates p47phox in our system, because
p47phox acts as a connector between the components
of the membrane and the cytoplasm [36, 51, 52]. We
suggested here for the first time that inhibition of the
extracellular signal-regulated kinase (ERK)-dependent
phosphorylation and membrane translocation of p47phox
are critical for apocynin-mediated protective potentials
against oxidative stress (mitochondria > cytosol), neu-
roinflammatory change, and pro-apoptotic pathway
induced by MA and that these morbid events re-
quire pro-apoptotic scenarios induced by a toxic
dose of MA.

Methods

Animals

All animals were treated in accordance with the National
Institutes of Health (NIH) Guide for the Humane Care
and Use of Laboratory Animals (NIH Publication No.
85-23, 1985; www.dels.nas.edu/ila). The present study
was performed in accordance with the Institute for
Laboratory Research (ILAR) Guidelines for the Care and
Use of Laboratory Animals, and the animal experimental
procedure was approved by the Institutional Animal
Care and Use Committee (IACUC) of Kangwon National
University (#KIACUC-12-0016). Mice were maintained
under a 12-h light:12-h dark cycle and fed ad libitum.
They were adapted to these conditions for 2 weeks prior
to the experiment. Wild-type C57BL/6 and p47phox
knockout mice were purchased from Jackson Laboratories
(Bar Harbor, ME, USA) [53].

To evaluate the effect of apocynin or p47phox anti-
sense oligonucleotide on the MA-induced pro-apoptosis,
we employed 10-week-old male ICR mice (Taconic
Farms, Inc.,, Samtako Bio Korea, O-San, South Korea)
because our previous reports [4, 8, 9] indicated that the
C57BL/6 background does not exhibit MA-induced
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terminal deoxynucleotidyl transferase dUDP nick-end
labeling (TUNEL)-positive cells in the striatum, but
does so in Taconic ICR mice.

Drug treatment

Although the 4 x7-10 mg/kg paradigm of MA ad-
ministration is currently the most frequently used
model that mimics an acute toxic dose of MA [6], we
selected a toxic dose (35 mg/kg, ip.) of MA in the
present study because this paradigm is more sensitive
than the 4 x7 mg/kg paradigm for producing more
significant dopaminergic protective effects by apocynin or
p47phox gene knockout (Additional file 1; Additional
file 2: Figs. S1-4).

Mice were treated with a single dose of MA (35 mg/kg,
i.p.) or saline and sacrificed 30 min, 1 h, 2 h, 4 h, 6 h, and
1 day after MA treatment (Additional file 2: Fig S5) to
examine phosphorylation and membrane translocation of
p47; mitochondrial translocation of cleaved cleaved form
of protein kinase C delta type (PKCS); mitochondrial
membrane potential; intramitochondrial Ca** level;
ROS formation; phosphorylations of ERK, p38 mitogen-
activated protein kinase (p38), and c-Jun N-terminal
kinase (JNK); and changes in TH-, ionized calcium
binding adaptor molecule 1 (Iba-1)-, and mitochondrial
manganese-dependent superoxide dismutase (MnSOD)
expression and in dopamine and its metabolite levels.
Apocynin (Sigma-Aldrich, St. Louis, MO, USA) was
dissolved in dimethyl sulfoxide (DMSO) and then di-
luted in sterile saline immediately prior to use at a con-
centration of 50 mg/ml. The final DMSO concentration
was 10 % (v/v). Administration of apocynin (50 mg/kg,
i.p.) was conducted once daily for seven consecutive
days. The last dose of apocynin was given 30 min before
MA injection (Additional file 2: Fig S5). The dose of apoc-
ynin was determined based on a previous study [49].
U0126 (ERK inhibitor; Tocris Bioscience, Ellisville, MO,
USA) was dissolved in DMSO as a stock solution and then
stored at —20 °C. U0126 was diluted in sterile saline im-
mediately before use at a concentration of 2 ug/pL. The
final DMSO concentration was 10 % (v/v). U0126 (2 pg,
i.c.v.) was given 1 h before MA injection (Additional file 2:
Fig. S5). The dose of U0126 was determined based on a
previous study [54].

Guide cannula building and intracerebroventricular

infusion with p47phox sense oligonucleotide (p47phox SO)
or p47phox antisense oligonucleotide (p47phox ASO)

A stainless steel guide cannula (AG-4; Eicom, Kyoto,
Japan) was implanted into the right lateral ventricle
(stereotaxic coordinates: 0.5 mm posterior to bregma,
1 mm right to the midline, and 2 mm ventral to the
dura, according to the atlas of Franklin and Paxinos) as
described previously [4, 8, 55]. One day after guide cannula
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implantation, Taconic ICR mice received a single injection
of MA (35 mg/kg, i.p.). p47phox antisense oligonucleotide
(p47phox ASO; 5'-GGTGTCCCCCATGGCTGGGCCG)
or control p47phox sense oligonucleotide (p47phox SO; 5'-
CGGCCCAGCCATGGGGGACACC) [GenBank accession
number: AB002663.1] was microinfused into the lateral
ventricle at a dose of 2.5 pg/pL at 4 and 0.5 h before, and at
4 h after MA injection. P47phox SO and p47phox ASO
used here were phosphorothioated on the two terminal
bases of the 5'-end and three terminal bases of the 3'-end
(Bioneer Corporation, Daejeon, South Korea). Microinfu-
sion into the lateral ventricle was performed through a
microinfusion cannula (AMI-4, Eicom) at a rate of
1 puL/min using a microinjection pump (CMA/100, CMA,
Solna, Sweden). The microinfusion cannula was kept in
place for 1 min after infusion to avoid backflow.

Preparation of cytosolic and membrane fractions for
Western blot analysis

Cytosolic and membrane fractions were prepared as
described previously with minor modifications [56].
Animal tissues were collected and homogenized in ice-
cold lysis buffer (pH 7.4) containing 25 mmol/L Tris,
250 mmol/L NaCl, 3 mmol/L ethylenediaminetetraacetic
acid (EDTA), and protease inhibitor cocktail (Sigma-
Aldrich, St. Louis, MO, USA) using Dounce homogenizer.
The lysates were loaded onto sucrose in lysis buffer and
centrifuged at 1600xg for 15 min; the supernatant above
the sucrose gradient was utilized as the cytosolic fraction
after centrifugation at 150,000xg for 30 min at 4 °C.
The resulting pellets were resuspended with lysis buffer
containing 1 % Triton X-100 and used as the mem-
brane fraction.

Preparation of cytosolic and mitochondrial fraction for
Western blot and neurochemical analyses

Preparation of cytosolic and mitochondrial fraction
was performed as described previously [4, 8]. Briefly,
striatal tissues were collected and homogenized in
ice-cold homogenization buffer containing 0.25 M su-
crose, 0.5 mM potassium ethylene glycol-bis(2-aminoethyl
ether)-N,N,N’,N"-tetraacetic acid (EGTA), 10 mM Tris—
HCI (pH 7.4), and protease inhibitor cocktail (Sigma-
Aldrich, St. Louis, MO, USA) using Dounce homogenizer.
Homogenates were centrifuged at 2000xg for 10 min
to remove nuclei and unbroken cells. Supernatants
were then centrifuged at 12,000xg for 15 min to ob-
tain crude mitochondrial pellets and cytosolic super-
natant. Crude mitochondrial pellets were suspended
in 3 % Ficoll 400 (Sigma-Aldrich) in Ficoll dilution
buffer containing 0.25 M mannitol, 60 mM sucrose,
0.1 mM potassium EGTA, and 10 mM Tris—HCI (pH 7.4).
A Ficoll density gradient was constructed by pouring
crude mitochondrial suspension in 3 % Ficoll over
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6 % Ficoll 400 solution. Purified mitochondrial pellets,
which were obtained by centrifugation at 11,500xg for
10 min, were resuspended in buffer containing 210 mM
mannitol, 70 mM sucrose, 5 mM 4-(2-hydroxyethyl)-1-
piperazineethanesulfonic acid (HEPES), and protease
cocktail (pH 7.4). For Western blot, mitochondrial pellets
were lysed in 100 pL of lysis buffer.

Western blot analysis

For Western blot analysis of phospho (p)-p47phox, p-
ERK, p-p38, p-JNK, Iba-1, cleaved caspase 3, and TH,
striatal tissues were lysed in buffer containing a 200 mM
Tris—-HCl (pH 6.8), 1 % SDS, 5 mM EGTA, 5 mM
EDTA, 10 % glycerol, 1 x phosphatase inhibitor cocktail
I (Sigma-Aldrich, St. Louis, MO, USA), and 1 x protease
inhibitor cocktail (Sigma-Aldrich, St. Louis, MO, USA).
Lysate was centrifuged at 12,000xg for 30 min, and the
supernatant fraction was used for Western blot analysis
as described previously [4, 9]. Proteins (20 pg/lane) were
separated by 8 % or 10 % sodium dodecyl sulfate poly-
acrylamide gel electrophoresis (PAGE) and transferred
onto the polyvinylidene fluoride (PVDF) membranes.
Following transfer, the membranes were preincubated
with 5 % non-fat milk for 30 min and incubated over-
night at 4 °C with primary antibody against p47phox
[1:500; Chemicon (EMD Millipore), Temecula, MA,
USA], p-p47phox at Ser345 (1:1000; Sigma-Aldrich, St.
Louis, MO, USA), Na*/K*-ATPase al subunit (1:1000;
Abcam, Cambridge, UK), ERK (1:5000; Cell Signaling
Technology, Danvers, MA, USA), p-ERK (1:1000; Cell
Signaling Technology), p38 (1:2000; Cell Signaling Tech-
nology), p-p38 (1:1000; Cell Signaling Technology), INK
(1:5000; Cell Signaling Technology), p-JNK (1:1000;
Cell Signaling Technology), cleaved PKCS8 (1:2000; Santa
Cruz Biotechnology), cytochrome c¢ (1:500; Santa Cruz
Biotechnology), MnSOD (1:10000; kindly gifted by Dr.
Kanefusa Kato at Aichi Prefectural Colony, Kasugai, Japan)
[18], cleaved caspase 3 (1:1000; Cell Signaling Technology),
Iba-1 (1:500, Abcam), TH [1:5000; Chemicon (EMD
Millipore)], B-actin (1:50000; Sigma-Aldrich), or COX
IV (1:10000; Cell Signaling Technology). Membranes
were then incubated with HRP-conjugated secondary
anti-rabbit IgG (1:1000, GE healthcare, Piscataway,
NJ, USA), anti-mouse IgG (1:1000, Sigma-Aldrich), or
anti-goat IgG (1:1000, Sigma-Aldrich) for 2 h. Subse-
quent visualization was performed using an enhanced
chemiluminescence system (ECL plus®, GE Healthcare,
Arlington Heights, IL, USA). Relative intensities of
the bands were quantified by PhotoCapt MW (version
10.01 for Windows; Vilber Lourmat, Marne la Vallée,
France) and then normalized to the intensity of (-
actin (whole lysate or cytosolic fraction), COX IV
(mitochondrial fraction), or Na'/K*-ATPase al sub-
unit (membrane fraction) [4].
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Mitochondrial preparation for in vivo measurement of
mitochondrial membrane potential and intramitochondrial
Ca** level

Mitochondria were isolated as described previously with
minor modifications [4, 8]. The animals were anesthetized
with sodium pentobarbital (60 mg/kg) and perfused trans-
cardially with 30 mL ice-cold homogenization buffer
(250 mM sucrose, 20 mM HEPES, 1 mM EDTA, pH 7.2).
The animals were then decapitated, and the striatum was
dissected out, rinsed in 9 mL homogenization buffer, and
processed using a tissue homogenizer. All subsequent steps
were conducted at 4 °C. The resulting homogenate was
centrifuged (10 min, 1300xg). The supernatant was re-
moved and centrifuged again (10 min, 10,000xg), and the
pellet was gently resuspended (four strokes) in 30 mL
homogenization buffer using a hand-held homogenizer
and centrifuged (10 min, 10,000xg). The resulting pellet
was resuspended and rinsed in EDTA-free homogenization
buffer. Then the mitochondrial pellet was resuspended in
250 mM sucrose to a final concentration of ~20 mg/mL
and placed on ice. The entire mitochondrial preparation
took <1 h to complete.

Mitochondrial membrane potential

Mitochondrial membrane potential (MMP) was measured
as described previously [4] using 5,5,6,6 -tetrachloro-
1,1',3,3 -tetraethylbenzimidazolycarbocyanine iodide dye
(JC-1; Molecular Probes), which exists as a green fluores-
cent monomer at low membrane potential, but reversibly
forms red fluorescent “J-aggregates” at polarized mito-
chondrial potentials. Briefly, 250-ug aliquots of isolated
mitochondrial protein were suspended in respiration buf-
fer [250 mM sucrose, 20 mM HEPES, 2 mM MgCl,,
2.5 mM inorganic phosphates (pH 7.2), and 10 mM suc-
cinate (5 mM glutamate and 2.5 mM maleate produced
similar results in all paradigms)] in a final volume of
200 pL. The energized mitochondria were then incubated
at 37 °C in the presence of 10 pM JC-1 for 30 min, after
which fluorescence was measured with a fluorescent plate
reader (Molecular Devices). The relative amount of
mitochondrial polarization was quantified by taking the
ratio of emission from 590 to 535 nm, respectively, with
excitation at 490 nm.

Intramitochondrial Ca®* levels

Intramitochondrial Ca** levels were measured as de-
scribed previously [4]. Mitochondrial fractions (250 ug)
from striatal tissues were incubated in the presence of
Rhod-2-AM (5 uM) for 60 min at 37 °C and washed
three times with Ca®**-free Locke’s solution. This re-
duced form of Rhod-2-AM is a colorless, nonfluorescent
dye that has a net positive charge, which promotes se-
questration into mitochondria. Then, the dye is oxidized
in the mitochondria where the AM ester is cleaved,
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trapping the dye in the mitochondria. Fluorescence was
quantified with a fluorescent plate reader (Molecular
Devices), with excitation and emission wavelengths of
549 and 581 nm, respectively.

Determination of ROS formation

The ROS formation in the striatum was assessed by
measuring the conversion from 2’,7’-dichlorofluorescin
diacetate (DCFH-DA) to dichlorofluorescin (DCF) [8].
Cytosolic or mitochondrial fraction was added to a
tube containing 2 mL of PBS with 10 nmol of DCFH-DA,
dissolved in methanol. Mixture was incubated at 37 °C for
3 h, and then fluorescence was measured at a 480-nm ex-
citation and 525-nm emission. DCF is used as a standard.

Immunocytochemistry
Immunocytochemistry was performed as described previ-
ously [4]. Mice were perfused transcardially with 50 mL of
ice-cold PBS (10 mL/10 g body weight) followed by 4 %
paraformaldehyde (20 mL/10 g body weight). Brains were
removed and stored in 4 % paraformaldehyde overnight.
Series of every sixth sections (35 pm thickness, 210 pm
apart) from striatum were selected and subjected to im-
munocytochemistry. Sections were blocked with PBS con-
taining 0.3 % hydrogen peroxide for 30 min and then
incubated in PBS containing 0.4 % Triton X-100 and 1 %
normal serum for 20 min. After a 48-h incubation with
primary antibody against TH [1:500; Chemicon (EMD
Millipore)] and Iba-1 (1:500, Wako Pure Chemical Indus-
tries, Chuo-ku, Osaka, Japan), sections were incubated
with the biotinylated secondary antibody (1:1000; Vector
Laboratories, Burlingame, CA, USA) for 1 h. The sections
were then immersed in a solution containing avidin—
biotin peroxidase complex (Vector Laboratories) for 1 h,
and 3,3"-diaminobenzidine was utilized as the chromogen.
To examine TH-immunoreactivity, digital images
were acquired at x4 objective magnification using an
Olympus microscope (BX51; Olympus) and a digital
microscope camera (DP72; Olympus). Image] version
1.47 software (National Institutes of Health, Bethesda, MD,
USA) was employed to measure the TH-immunoreactivity
as described previously [21]. Briefly, the entire striatal
region from each section was selected as the region
of interest (ROI). Threshold values for hue (0-100),
saturation (0-255), and brightness (175-255) were set
in the “Adjust Color Threshold” dialog box, and then
the mean density was measured.

Morphological changes in microglia

To analyze morphological changes in microglia, digital
images of Iba-1-immunostained sections were obtained
at x40 objective magnification under an upright micro-
scope (BX51; Olympus) using an attached digital micro-
scope camera (DP72; Olympus). Each section was
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acquired in 11 planes of focusing, and then the images
were stacked and integrated into one image for morpho-
logical analysis [57]. The resolution of the resulting im-
ages was 1360 pixels x 1024 pixels (350 um x 263 pm).

Skeleton analysis was performed as described previ-
ously [58-60]. For skeleton analysis, the resulting images
were subjected to background subtraction, converted to
8 bit, and binarized using Image] version 1.47 software.
The “Skeletonize3D” plugin (fiji.sc/Skeletonize3D) and
“AnalyzeSkeleton” plugin (fiji.sc/AnalyzeSkeleton) were
applied to skeletonize and analyze skeleton, as shown in
Additional file 2: Fig. S8a. The number of branches, the
number of junctions, the number of triple points (junc-
tions with exactly three branches), the average branch
length, and summed branch length were determined.

The cell size and cell body size in the area were deter-
mined as described previously [61, 62], using Image] ver-
sion 1.47 software. Background was subtracted from
each image to correct uneven background. To measure
the cell size, all pixels that were darker than the back-
ground were selected by the auto-threshold command.
Cell bodies were selected by manual intensity selection,
as shown in Additional file 2: Fig. S8c. The “Analyze
Particles” command was employed to measure the cell
size and cell body size. The number of cell bodies was
counted to normalize the cell size and cell body size per
cell. The cell body size to cell size ratio (%) was also
determined.

Reverse transcription and polymerase chain reaction
(RT-PCR)

Total RNA was isolated from striatal tissues using an
RNeasy Mini Kit (Qiagen, Valencia, CA, USA) according
to the manufacturer’s instructions. Reverse transcription
reactions were carried out using the RNA to ¢cDNA Eco-
Dry Premix (Clontech, Palo Alto, CA, USA) with a 1-h
incubation at 42 °C. PCR amplification was performed
for 35 cycles of denaturation at 94 °C for 1 min, anneal-
ing at 60 °C for 2 min, and extension at 72 °C for 1 min.
Primer sequences [21] for PCR amplification are listed
in Table 1. PCR products were separated on 2 % agarose
gels containing ethidium bromide and visualized under
ultraviolet light. Quantitative analysis of RNA was
performed using PhotoCapt MW (version 10.01 for
Windows; Vilber Lourmat).

TUNEL staining

For TUNEL staining, a series of every sixth section
(35 pm thickness, 210 pm apart) from striatum was se-
lected. TUNEL staining was performed using the FragEL
DNA fragmentation detection kit (QIA33; Calbiochem,
La Jolla, CA, USA) according to the manufacturer’s
protocol [4, 8, 9]. Briefly, sections were permeabilized by
incubation with 20 mg/ml proteinase K, and then
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Table 1 Gene primer sequences for RT-PCR analysis
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Gene Forward primer (5-3) Reverse primer (5"-3)

Arginase 1 GAACACGGCAGTGGCTTTAAC TGCTTAGCTCTGTCTGCTTTGC
CD206 TCTTTGCCTTTCCCAGTCTCC TGACACCCAGCGGAATTTC
CD16 TTTGGACACCCAGATGTTTCAG GTCTTCCTTGAGCACCTGGATC
CD32 AATCCTGCCGTTCCTACTGATC GTGTCACCGTGTCTTCCTTGAG
CD86 TTGTGTGTGTTCTGGAAACGGAG AACTTAGAGGCTGTGTTGCTGGG
GAPDH ACCACAGTCCATGCCATCAC TCCACCACCCTGTTGCTGTA

incubated with 3 % hydrogen peroxide to block en-
dogenous peroxidase activity. After immersion in the
terminal deoxynucleotidyl transferase (TdT) equilibra-
tion buffer, sections were incubated with biotinylated
deoxynucleotides and TdT enzyme. Sections were then
immersed in streptavidin-peroxidase complex with di-
aminobenzidine tetrahydrochloride as the chromogen.
Counterstaining was performed using methyl green,
which was provided in the kit. Digital images from each
quadrant of the striatum (dorsal-medial, dorsal-lateral,
ventral-media, ventral-lateral) were acquired [15, 16] at
x40 objective magnification using an Olympus micro-
scope (BX51; Olympus) and a digital microscope camera
(DP72; Olympus). Cell counting was performed blindly.
Apoptotic cells were identified based on the rounded,
shrunken nature of the cytoplasm and nucleus and on
the intense staining of the nucleus. After counting, a
mean value was obtained by averaging the counts of
each quadrant from five sections for each animal [45].

Measurements of dopamine, 3,4-dihydroxyphenylacetic
acid, and homovanillic acid

Mice were sacrificed by cervical dislocation, and the brains
were removed. The striatum was dissected, immediately
frozen on dry ice, and stored at 70 °C before assays were
performed. Tissues were weighed, ultrasonicated in 10 %
perchloric acid, and centrifuged at 20,000xg for 10 min.
The levels of dopamine (DA) and its metabolites 3,4-dihy-
droxyphenylacetic acid (DOPAC) and homovanillic acid
(HVA) were determined by HPLC coupled with an
electrochemical detector, as described previously [4, 21].
Supernatant aliquots (20 pL) were injected into an HPLC
equipped with a C18 column with 3 pm particle size
(Waters). The mobile phase was comprised of 26 mL
of acetonitrile, 21 mL of tetrahydrofuran, and 960 mL
of 0.15 M monochloroacetic acid (pH 3.0) containing
50 mg/L of EDTA and 200 mg/mL of sodium octyl
sulfate. The amount of DA was determined by comparison
of peak areas of tissue samples with standard, and was
expressed in nanograms per gram of wet tissue.

Statistical analyses
Data were analyzed using IBM SPSS ver. 21.0 (IBM,
Chicago, IL, USA). One-way analysis of variance (ANOVA)

(time) or three-way ANOVA (MA x p47phox inhibition x
ERK inhibition) was employed for the statistical analyses.
Post hoc Fisher’s least significant difference pairwise
comparison tests were then conducted. P values <0.05
were considered to be significant.

Results

Methamphetamine treatment significantly promoted
phosphorylation and membrane translocation of p47phox
and phosphorylation of mitogen-activated protein kinase
(MAPK) in the striatum of wild-type mice

It is recognized that phosphorylation of p47phox consti-
tutes one of the key intracellular events associated with
PHOX activation, and Ser345 phosphorylation of p47phox
by the MAPK protein plays a critical role in the potenti-
ation of PHOX activation by pro-inflammatory agents
[36, 51, 52]. Thus, we examined the levels of p47phox
phosphorylation and membrane translocation induced by
MA. In addition, we investigated MA-induced phosphory-
lations of ERK1/2, p38, and JNK. As shown in Fig. 1, we
examined phosphorylation (Fig. 1a) and translocation
(Fig. 1b) of p47phox 30 min, 1 h, 2 h, 4 h, 6 h, and 1 day
after MA treatment in wild-type (WT) mice. MA-induced
phosphorylation of p47phox was most pronounced at
30 min (Fig. 1a), while translocation of p47phox was most
evident at 2 h (Fig. 1b).

Treatment with MA resulted in strong inductions in
p-ERK1/2 in WT mice. MA-induced initial increase in
p-ERK1/2 was observed 30 min (P<0.01) later. The
most significant increase in p-ERK1/2 was noted 1 h
(P <0.001) after MA, and p-ERK1/2 expression remained
significantly elevated (P<0.01) 1 day later (Fig. 1lc).
Although MA-induced increases in p-p38 (Fig. 1d) and
p-JNK (Fig. le) were observed in WT mice, these
increases were much less pronounced than that in p-
ERK1/2 (Fig. 1d, e).

ERK1/2 activation is required for methamphetamine-induced
p47phox phosphorylation and translocation; ERK1/2
inhibitor U0126, apocynin, or p47phox knockout attenuates
MA-induced activation of ERK1/2 and p47phox

As shown in Fig. 2, p-ERK1/2 expression was not altered
significantly without MA in WT and p47phox knockout
(KO) mice. MA-induced phosphorylation of ERK1/2 was
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Fig. 2 Effects of U0126 and apocynin or p47phox knockout against MA-induced activations in ERK and p47phox. Phosphorylation of ERK (a) and
phosphorylation (b) and membrane translocation (c) of p47phox after MA (35 mg/kg, i.p.). WT wild-type mice, p47 KO p47phox knockout mice,
Sal saline, U U0126 (2 ug, i.cv.), Apo apocynin (50 mg/kg, ip.), V or Veh vehicle [10 % (v/v) DMSO] for U0126 or apocynin. Each value is the mean + SEM
of six animals. “P<0.01, ¥P<0.001 vs. vehicle/WT with saline. *P < 0.05 or *P <0.01 vs. vehicle/WT with MA (three-way ANOVA was

most prominent 1 h later, and thus, we focused on this
time. The specific ERK inhibitor U0126 or apocynin sig-
nificantly attenuated (P<0.01) MA-induced increase in
p-ERK1/2 expression in WT mice. Consistently, MA-
induced significant increase in p-ERK1/2 in WT mice
was not observed in p47phox KO mice. However, U0126
treatment did not exhibit any additional effects in re-
sponse to attenuation mediated by apocynin or p47phox
KO (Fig. 2a).

We then examined the effect of U0126 or apocynin
against phosphorylation of p47phox 30 min post-MA.

Either U0126 or apocynin significantly attenuated (P < 0.01)
phosphorylation of p47phox in WT mice. U0126 treatment
did not alter inhibited phosphorylation of p47phox by apoc-
ynin (Fig. 2b). Since membrane translocation of p47phox
was maximally induced 2 h post-MA, we examined the ef-
fect of U0126 or apocynin against membrane translocation
of p47phox at that time. Either U0126 or apocynin
significantly inhibited (P<0.01) p47phox membrane
translocation in WT mice. U0126 treatment failed to
affect membrane translocation of p47phox mediated
by apocynin (Fig. 2c).
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ERK inhibitor U0126, apocynin, or genetic depletion of
p47phox protects MA-induced mitochondrial dysfunction;
U0126 does not significantly affect the protection
mediated by apocynin or p47phox knockout

We have demonstrated that multiple doses of MA (i.e.,
four injections of 7 mg/kg MA, intraperitoneally at 2 h
intervals) impair MMP and intramitochondrial Ca®* ac-
cumulation in the striatum of mice [4, 8]. We examined
here whether a toxic dose of MA affects MMP and
intramitochondrial Ca®* level and whether inhibition of
ERK, PHOX, or p47phox gene modulates these mito-
chondrial parameters in the striatum of mice.

Significant decreases in MMP were observed 30 min
(P<0.05), 1 h (P<0.05), 2 h (P<0.01), 4 h (P<0.05),
and 6 h (P<0.05) after MA in WT mice. The decrease
was most pronounced 2 h post-MA. This decrease
returned near control (saline-treated animal) level 1 day
later (Fig. 3a). U0126 (P <0.05), apocynin (P < 0.05), or
genetic inhibition of p47phox (i.e., p47phox knockout
mice) (P<0.05) significantly protected the decrease in
MMP 2 h post-MA. U0126 did not alter protection
mediated by apocynin or genetic inhibition of p47phox
(Fig. 3b).

MA treatment, however, significantly increased (P < 0.01)
intramitochondrial calcium accumulation at the same time
(2 h post-MA) in WT mice. The increase in intramito-
chondrial calcium accumulation returned near control
(saline) level 1 day later (Fig. 3c). U0126 (P < 0.05), apocy-
nin (P <0.05), or genetic inhibition of p47phox (P < 0.05)
significantly attenuated intramitochondrial calcium accu-
mulation 2 h after MA. U0126 did not significantly affect
attenuation produced by apocynin or p47phox knockout
(Fig. 3d).

ERK inhibitor U0126, apocynin, or genetic depletion of
p47phox protects MA-induced oxidative stress and
decreases in mitochondrial MnSOD expression; U0126
does not significantly affect the protection mediated by
apocynin or p47phox knockout

We have shown that mitochondrial oxidative stress and
impaired mitochondrial antioxidant system might mediate
dopaminergic degeneration induced by multiple doses of
MA [4]. We examined here whether a toxic dose of MA
also significantly impairs MMP and intramitochondrial
Ca®* level and whether inhibition of ERK, PHOX, or
p47phox gene modulates mitochondrial ROS and mito-
chondrial MnSOD (SOD-2) in the striatum of mice.

As shown in Fig. 4a, cytosolic ROS was significantly
increased 30 min (P<0.05), 1 h (P<0.05), 2 h (P<0.01),
4 h (P<0.01), and 6 h (P<0.05) after MA. In contrast,
mitochondrial ROS was also significantly increased
30 min (P<0.01), 1 h (P<0.01), 2 h (P<0.001), 4 h
(P<0.001), 6 h (P<0.001), and 1 day (P<0.01) after MA
in WT mice (Fig. 4a), indicating that ROS formation is
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more pronounced in mitochondrial fraction than that in
cytosolic fraction.

We then investigated the effect of U0126, apocynin, or
genetic inhibition of p47phox (using p47phox KO mice) on
the cytosolic and mitochondrial ROS formation 2 h post-
MA. Attenuation of cytosolic ROS formation by U0126
(P<0.05), apocynin (P<0.05), or p47phox knockout
(P <0.05 vs. vehicle/WT) was observed in the striatum of
mice. The attenuation by U0126 (P<0.01), apocynin
(P<0.01), or p47phox knockout (P<0.01) against mito-
chondrial ROS formation appeared to be more evident than
cytosolic ROS formation. Consistently, MA-induced forma-
tion of ROS parallels that of 4-hydroxynonenal (HNE) or
protein carbonyl. U0126, apocynin, or p47phox knockout
also revealed protective effects against MA-induced forma-
tion of HNE and protein carbonyl (Additional file 1;
Additional file 2: Figs. S6 and S7).

In contrast, mitochondrial MnSOD (SOD-2) expression
was decreased significantly 2 h (P<0.01), 4 h (P<0.05),
and 1 day (P < 0.05) post-MA. U0126 (P < 0.05), apocynin
(P <0.05), or p47phox knockout (P < 0.05) significantly re-
covered reduced SOD-2 expression 2 h after MA. Import-
antly, U0126 did not show any additional protection
against antioxidant potentials (Fig. 4b) and enhanced
SOD-2 expression mediated by apocynin or p47phox
knockout (Fig. 4c, d).

ERK inhibitor U0126, apocynin, or genetic depletion of
p47phox protects MA-induced increases in mitochondrial
translocation of cleaved PKCS; U0126 does not significantly
affect the protection mediated by apocynin or p47phox
knockout
Recently, we have proposed that mitochondrial trans-
location of cleaved PKCS plays a critical role in pro-
apoptosis induced by MA [4, 8, 63]. We examined the
effect of the inhibition of ERK, PHOX, or p47phox gene
against mitochondrial translocation of cleaved PKC§
induced by a toxic dose of MA in the striatum of mice.
As shown in Fig. 5, mitochondrial translocation of
cleaved PKCS did not change in the absence of MA.
However, mitochondrial translocation of cleaved PKCS was
significantly increased 30 min (P <0.01), 1 h (P <0.01), and
2 h (P<0.01) after MA treatment in WT mice (Fig. 5a).
Since mitochondrial dysfunction (i.e., decrease in MMP
and increase in intramitochondrial calcium accumulation)
was most evident 2 h post-MA, we examined effect of
U0126, apocynin, or genetic inhibition of p47phox (using
p47phox KO mice) at that time against mitochondrial
translocation of cleaved PKCS (Fig. 5b). U0126 (P < 0.01),
apocynin (P<0.01), or genetic inhibition of p47phox
(P<0.01) significantly protected MA-induced mitochon-
drial translocation of cleaved PKCS8. However, U0126
did not affect the protection mediated by apocynin or
p47phox knockout (Fig. 5b).
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ERK inhibitor U0126, apocynin, or genetic depletion of
p47phox protects MA-induced increases in Iba-1-labeled
microglia in the striatum of mice; U0126 does not
significantly affect the protection mediated by apocynin
or p47phox knockout

Accumulating evidence suggests that mitochondrial dys-
function links inflammation to neuronal death [32, 64].
Importantly, it has been proposed that microglia partici-
pate in neuroinflammation-associated activated MA in-
toxication [4, 8, 65—67]. Thus, we examined changes in
Iba-1 expression after MA. Initial increase (P < 0.05) was
observed 30 min post-MA. This increase was strongly
activated (P <0.01) 1 day after MA (Fig. 6a). We examined
the effect of U0126, apocynin, or genetic inhibition of
p47phox (using p47phox KO mice) on Iba-1 expression
1 day after MA. U0126, apocynin, or genetic inhibition of

p47phox significantly inhibited (P <0.01) Iba-1 expression
1 day after MA (Fig. 6b). U0126 did not alter the inhibition
by apocynin or genetic inhibition of p47phox.

Iba-1-IR by immunocytochemical analysis was com-
parable to Iba-1 expression by Western blot analysis.
Significant microglial activation was observed 1 day after
MA treatment, as revealed by cell skeleton analysis and
cell size analysis (Additional file 1; Additional file 2: Fig.
S8). MA treatment significantly increased the number of
branches (P < 0.01), the number of junctions (P < 0.01), the
number of triple points (P<0.01), the summed branch
length (P<0.05), cell size (P<0.01), cell body size
(P<0.01), and cell body to cell size ratio (P < 0.05), but did
not significantly alter average branch length (Additional file
1; Additional file 2: Fig. S8). Then, we examined the effect
of U0126, apocynin, or genetic inhibition of p47phox on
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Fig. 4 Effects of U0126, apocynin, or p47phox knockout on cytosolic and mitochondrial oxidative burdens after MA. Changes in cytosolic and
mitochondrial reactive oxygen species (ROS) formation (a) and mitochondrial MnSOD expression (c) after MA treatment and effects of U0126,
apocynin, or p47phox knockout on ROS (b) and MnSOD expression (d) 2 h after MA (35 mg/kg, i.p.). WT wild-type mice. p47 KO p47phox knockout
mice, Sal saline, U U0126 (2 ug, i.cv.), Apo apocynin (50 mg/kg, i.p.), V or Veh vehicle [10 % (v/v) DMSQ] for U0126 or apocynin. Each
value is the mean = SEM. of six animals. P <005, P < 001 vs. saline or vehicle/WT with saline. %P < 0.001 vs. saline. *P < 005, P < 001 vs. vehicle/WT
with MA [one-way ANOVA (a and ) or three-way ANOVA (b and d) was followed by Fisher's LSD pairwise comparisons]

the microglial activation induced by MA. U0126, apocy-  of junctions (U0126, apocynin, or p47phox KO, P <0.01),
nin, or p47phox gene knockout significantly attenuated and cell body size (U0126, apocynin, or p47phox KO,
MA-induced increases in the number of branches (U0126 P <0.01). U0126 did not affect the attenuation mediated
or p47phox KO, P < 0.01; apocynin, P < 0.01), the number by apocynin or p47phox gene knockout (Fig. 6¢, d).
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Fig. 5 Effects of U0126, apocynin, or p47phox knockout on mitochondrial translocation of cleaved PKCS after MA. Mitochondrial translocation of
cleaved PKCS after MA (35 mg/kg, i.p.) treatment (a) and effects of U0126, apocynin, or p47phox knockout on mitochondrial translocation of cleaved
PKCS (b). WT wild-type mice, p47 KO p47phox knockout mice, Sal saline, U U0126 (2 pug, i.cv.), Apo apocynin (50 mg/kg, i.p.), V or Veh vehicle [10 % (v/v)
DMSO] for U0126 or apocynin. Each value is the mean + SEM. of six animals. P <001 vs. saline. P < 0.001 vs. vehicle/WT with saline.

P <001 vs. vehicle/WT with MA [one-way ANOVA (a) or three-way ANOVA (b) was followed by Fisher's LSD pairwise comparisons]

ERK inhibitor U0126, apocynin, or genetic depletion of effects may be due to distinct macrophage/microglial
p47phox attenuates MA-induced microglial differentiation  subsets, i.e., “classically activated” pro-inflammatory (M1)
into M1 type in the striatum of mice; U0126 does not or “alternatively activated” anti-inflammatory (M2)
significantly affect the attenuation mediated by apocynin  cells [68-70]. The mRNA level of M1 markers were
or p47phox knockout significantly enhanced (CD16, CD32, or CD86; P < 0.01 vs.

It has been suggested that macrophages/microglia play corresponding vehicle) 1 day after MA treatment. This en-
different roles in tissue repair or damage in response to  hancement was significantly inhibited (P < 0.05) by U0126,
central nervous system (CNS) injury. These divergent apocynin, or p47phox knockout (Fig. 7a—c). Importantly,
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U0126 did not significantly affect the inhibition by apocy-
nin or p47phox knockout (Fig. 7a—c). The mRNA levels of
M2 markers (arginase 1 and CD206) appeared to be
reduced without reaching statistical significance. U0126,
apocynin, or p47phox knockout also did not significantly
alter the levels of M2 markers (Fig. 7d, e).

ERK inhibitor U0126, apocynin, or p47phox antisense
oligonucleotide attenuates MA-induced increases in
TUNEL-positive cells, cytosolic release of cytochrome c,
and cleaved caspase 3 expression in the striatum of
Taconic ICR mice; U0126 does not significantly affect the
attenuation mediated by apocynin or p47phoxASO

As we [4, 8, 9] and others [15, 16] have reported, it is well-
recognized that Taconic ICR mice are sensitive to MA-

induced TUNEL-positive reaction. As 1 day post-MA is
most sensitive to TUNEL-positive reaction [4, 8, 9, 15, 16],
we also evaluated other parameters (i.e., cytosolic re-
lease of cytochrome c¢ and cleaved caspase 3) at the
same time. In the absence of MA, TUNEL-positive
cells were barely observed. They were increased sig-
nificantly (P<0.01) 1 day after a toxic dose of MA
(35 mg/kg. i.p.). This significant increase [with p47phox
sense oligonucleotide (SO) or vehicle] in the Taconic ICR
mice was significantly inhibited (P<0.01) by U0126,
apocynin, or genetic inhibition of p47phox [i.e., p47phox
antisense oligonucleotide (ASO)] in Taconic ICR mice
(Fig. 8a).

In the absence of MA, no significant changes were
observed in the cytosolic release of cytochrome c
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Fig. 7 Effects of U0126, apocynin, or p47phox knockout on microglial differentiation 1 day after MA. Microglial differentiation into M1
type (a—c) and into M2 type (d-e). Gene primer sequences for RT-PCR analysis were shown in Table 1. WT wild-type mice, p47 KO p47phox knockout
mice, Sal saline, U U0126 (2 ug, i.c.v.), Apo apocynin (50 mg/kg, ip.), V or Veh vehicle [10 % (v/v) DMSO] for U0126 or apocynin. Each
value is the mean + SEM. of six animals. P < 0.01 vs. vehicle/WT with saline. *P < 0.05 vs. vehicle/WT with MA (three-way ANOVA was
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(Fig. 8b) and cleaved caspase 3 expression (Fig. 8c).
MA treatment significantly increased these parameters
consistently in Taconic ICR mice. MA-induced signifi-
cant increases in cytosolic release of cytochrome c,
and cleaved caspase 3 were significantly attenuated by

U0126, apocynin, or p47phox ASO. Consistently, these
increases were significantly inhibited by U0126, apocynin,
or p47phox ASO (Fig. 8b, c). However, U0126 did not
significantly affect the inhibition mediated by apocynin
or p47phox ASO (Fig. 8a—c).
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Fig. 8 Effects of U0126, apocynin, or p47phox knockout on pro-apoptotic changes after MA. Effects of U0126, apocynin, or p47phox gene knockout
on TUNEL-positive cells (a), cytosolic release of cytochrome ¢ (b), and cleaved caspase 3 expression (c) 1 day after MA (35 mg/kg, i.p.) in the Taconic
ICR mice. p47 SO or p47phox SO p47phox sense oligonucleotide, p47 ASO or p47phox ASO p47phox antisense oligonucleotide, Sal saline, U or U0126
U0126 (2 ug, i.cv.), Apo apocynin (50 mg/kg, i.p.), V or Veh vehicle [10 % (v/v) DMSQ] for U0126 or apocynin. Each value is the mean + SEM of
six animals. P < 0.01 vs. respective saline-group. *P < 0.05, P < 0.01 vs. vehicle/p47phox SO with MA or vehicle/vehicle with MA (three-way
ANOVA was followed by Fisher's LSD pairwise comparisons). Scale bar= 100 ym

ERK inhibitor U0126, apocynin, or p47phox knockout
protects MA-induced decreases in tyrosine hydroxylase
expression, TH-immunoreactivity and dopamine level and
increase in dopamine turnover rate in the striatum of
mice; U0126 does not significantly affect the protection
mediated by apocynin or p47phox knockout

Recent reports demonstrated that a single high MA dose
(30 mg/kg, i.p.) produces persistent monoaminergic defi-
cits [71], including dopaminergic impairments [72]. We
examined the role of ERK, PHOX, or p47phox gene in
the dopaminergic loss induced by a single dose of MA
(35 mg/kg, i.p.).

As shown in Fig. 9, TH expression (Fig. 9a) and dopa-
mine level (Fig. 9d) were significantly decreased 2 h
(P<0.05), 4 h (P<0.05), 6 h (P<0.05), and 1 day (P<0.01)
after MA, respectively. The decrease of TH expression was
comparable to that of dopamine in our model (Fig. 9a, d).
However, the dopamine turnover rate was significantly in-
creased over time (Fig. 9f). U0126, apocynin, or p47phox
knockout significantly attenuated reductions in TH expres-
sion (Fig. 9b), TH-immunoreactivity (TH-IR) (Fig. 9¢), and
dopamine level (Fig. 9d) 1 day after MA. Consistently,
MA-induced increase in dopamine turnover rate was
significantly attenuated by U0126, apocynin, or p47phox
knockout (Fig. 9g). However, U0126 did not influence
protective activities afforded by apocynin or p47phox
knockout (Fig. 9b, ¢, e, g).

Discussion
Previous studies have shown that activation of PHOX
activity requires p47phox phosphorylation, a protein that
plays an important role in the translocation of cytosolic
components to cytochrome b558, as well as in the assem-
bly and activation of PHOX [36, 51, 52, 73]. Phosphoryl-
ation of p47phox constitutes one of the key intracellular
events associated with PHOX activation, and Ser345 phos-
phorylation of p47phox by the MAPK protein ERK plays a
critical role in the potentiation of PHOX activation by
pro-inflammatory agents [36, 51]. Therefore, we first ex-
amined the levels of MA-induced p47phox phosphoryl-
ation using the anti-phospho-Ser345-p47phox antibody.
Two prominent features of this protective role of
apocynin or p47phox depletion were observed in this
study: (1) apocynin-mediated inhibition of p47 transloca-
tion is mediated through the inhibition of PHOX subunit
p47phox phosphorylation at Ser345 mainly via suppression

of the ERK-signaling pathway, and (2) apocynin attenuates
MA-mediated oxidative stress (mitochondrial > cytosolic
fraction), mitochondrial dysfunction, microglial activation
(towards M1 phenotype), pro-apoptosis, and dopaminergic
loss mainly through the inhibition of ERK-dependent
p47phox activation.

Participation of ERK1/2 in the activation of PHOX
was also proven by a previous study using microglial
cells/rat primary mesencephalic neuron-glia cultures stim-
ulated with lipopolysaccharides (LPS) [36]. The fact that
apocynin significantly inhibits the formation of ROS
(oxidative damage) 2 h after MA stimulation led us
to examine this factor in greater detail by using
p47phox-deficient mice. The findings that apocynin could
significantly lessen the MA-induced dopaminergic loss in
WT, but has no significant effect in response to p47phox
knockout mice, suggest that the protective effect of
apocynin is most likely mediated through the inhibition of
p47phox activity.

Translocation of p47phox, p67phox, p40phox, and
rac2 to the plasma membrane are required for the
activation of PHOX [73]. The phosphorylation of Ser345
of p47phox by pro-inflammatory agents enhances this
translocation event [36, 51, 52]. While investigating the
mechanism by which apocynin inhibits PHOX activity,
we found that apocynin significantly inhibits this MA-
induced p47phox phosphorylation at Ser345, resulting in
the inhibition of p47phox translocation. As Ser345 is
located in the MAPK consensus sequence [51], we ex-
amined whether apocynin inhibits components of the
MAPK-signaling pathway, and our results indicate that
apocynin shows a significant inhibitory effect on MA-
induced ERK phosphorylation. However, MA-induced
induction in p38- or JNK-phosphorylation was much
less pronounced than in ERK phosphorylation. Further-
more, a specific ERK inhibitor U0126 exhibited strong
inhibitory effects against MA-induced p47phox phos-
phorylation, p47phox translocation, oxidative damage,
pro-apoptosis, and neurodegeneration, suggesting a central
role of ERK in these effects. These findings, coupled with
previous findings on the role of ERK in PHOX activation
[36], strongly indicate that it is ERK that regulates p47phox
phosphorylation and constitutes the crucial target for
apocynin-mediated inhibition of PHOX activation.

A previous study demonstrated that disturbed Ca**
homeostasis may mediate dopaminergic degeneration,
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Fig. 9 Effects of U0126, apocynin, or p47phox knockout on
dopaminergic impairments after MA. Changes in TH expression (a),
dopamine level (d), and dopamine turnover rate (f) after MA treatment
and effects of U0126, apocynin, or p47phox gene knockout on TH
expression (b), TH-immunoreactivity (c), dopamine level (e), and
dopamine turnover rate (g). WT wild-type mice, p47 KO p47phox
knockout mice, Sal saline, U or U0126 U0126 (2 ug, icv.), Apo apocynin
(50 mg/kg, i.p.), V or Veh vehicle [10 % (v/v) DMSQ] for U0126 or
apocynin. Each value is the mean + SEM. of six animals. P < 0.05,
"P< 001 vs. saline or vehicle/WT with saline. *P < 0.05 vs. vehicle/WT
with MA [one-way ANOVA (a, d, and f) or three-way ANOVA

(b, ¢, e, and g) was followed by Fisher's LSD pairwise comparisons].
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such as PD [74] and MA intoxication [4, 8]. We examined
here whether genetically inhibiting p47phox would affect
MMP and intramitochondrial Ca®>* accumulation in the
striatum of mice. Accumulating evidence suggests that
mitochondrial damage links inflammation to neuronal
death [4, 8, 75]. Moreover, it is recognized that the role of
glial cells in MA-induced neurotoxicity is essential to iden-
tify factors contributing to, or mitigating, MA-induced
damage to DA nerve terminals [4, 21, 65-67, 76-78].
Importantly, it has been proposed that microglia par-
ticipate in neurotoxicity associated with MA intoxica-
tion [4, 21, 65-67, 78].

We were interested in whether or not apocynin would
affect this apoptotic signaling pathway after MA exposure.
An earlier report demonstrated that MA induces apoptotic
cell death in striatal neurons [13]. In the present study, we
chose TUNEL staining (which labels the occurrence of
DNA fragmentation, which occurs late in apoptosis). We
previously failed to observe MA-induced TUNEL-positive
cells in the striatum of C57BL/6 mice 12 h, 1 day, or 3 days
after the final MA administration (ie., four injections of
7 mg/kg MA, intraperitoneally at 2 h intervals or a single
injection of MA 20-40 mg/kg), suggesting that the C57BL/
6 background is not sensitive to TUNEL staining [9, 77].
Thus, according to previous reports [9, 15, 16], we used
10-week-old male Taconic ICR mice. Because apoptotic
cell death was detectable at 20 mg/kg MA and reached a
significant level at 35 mg/kg in our previous study, a
35-mg/kg dose of MA was chosen for the present
study. We also sacrificed animals 1 day after MA adminis-
tration [4, 8, 9, 15, 16], and TUNEL-positive cells were
induced maximally at this time point.

The relationship between mitochondrial damage, oxi-
dative stress, and neuronal dysfunction has been recog-
nized by the effects of excessive production of ROS
within mitochondria, which leads to a reduction of mito-
chondrial antioxidant activity, in turn causing impair-
ment of mitochondrial function [4, 8, 79, 80]. Our
results clearly indicate that MA-induced toxic damage is
more pronounced in the mitochondrial fraction than in
the cytosolic fraction in WT mice, and that apocynin or
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genetically inhibiting p47phox significantly attenuates
this oxidative damage, mitochondrial dysfunction, pro-
apoptotic changes, and dopaminergic impairment. We
demonstrated that PKCS is an oxidative stress-sensitive
kinase, and its activation via caspase-3-dependent prote-
olysis induces apoptotic cell death in MA-induced dopa-
minergic toxicity [4, 63]. Therefore, the protective effect
of apocynin against MA-induced PKCS activation and
dopaminergic deficits might reflect an anti-peroxidative
(mitochondrial > cytosolic) potential by targeting p47phox
gene. Indeed, apocynin does not significantly alter neuro-
protective activity mediated by p47phox gene knockout,
suggesting that p47phox is a critical target for the neuro-
protective activity of apocynin. To the best of our know-
ledge, the current study is the first to investigate the role
of p47phox per se in apocynin-mediated neuroprotective
potential with recovery of mitochondrial function.

We propose here that MA potentiates mitochondrial
oxidative stress and also impairs the mitochondrial de-
toxification system, and MMP, possibly due to Ca®" ac-
cumulation. Increased intracellular Ca** promotes the
accumulation of Ca®* within the mitochondrial matrix
when total Ca®* uptake exceeds total Ca®" efflux from
mitochondria [81]. Mitochondrial Ca®>* overload may
also lead to the uncoupling of mitochondrial electron
transport and may potentiate oxidative stress. Decreases
in MMP and increases in oxidative damage after MA
treatment could be mediated by Ca®* entry.

Based on the importance of MnSOD in our experimen-
tal condition, we sought to determine whether or not this
mitochondrial enzyme would provide neuroprotection
against MA neurotoxicity. It has been acknowledged
that MnSOD overexpression attenuates dopaminergic
toxicity induced by MA [82] or 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) [83] and protects cells from
apoptosis [84]. Maragos et al. [82] demonstrated that the
formation of protein carbonyls is less pronounced in
MnSOD transgenic overexpressing (Tg) mice than that in
non-Tg mice against MA toxicity. Furthermore, a previous
report indicated that increased MnSOD expression with-
out a change in Cu/Zn-SOD, catalase, or glutathione per-
oxidase activities [85] conferred neuroprotection against
dopamine loss in a model of neuronal damage, indicating
a possible role for detoxification of MA-induced ROS by
scavenging of superoxide radicals in the mitochondria.
Interestingly, MnSOD overexpression failed to protect
MA-induced reductions in 5-hydroxytryptamine (5-HT)
and 5-hydroxyindoleacetic acid (5-HIAA) [82], suggesting
that the mitochondrial mechanism may not be involved in
serotonergic toxicity. Our results indicate that higher
levels of MnSOD might be associated with enhanced
mitochondrial maintenance and could contribute to redu-
cing apoptosis that has been induced by mitochondrial
damage in the condition with dopaminergic impairments.
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Microglial activation and oxidative stress induced by
mitochondrial toxins (i.e., 3-nitropropionic acid) caused
neuronal loss in the striatum [64]. Mitochondria can
be a target of free radical stress initiated by activated
microglia. The combination of mitochondrial dysfunction,
oxidative stress, and exacerbated activation of microglia
generates a cycle that appears to lead to progressive dopa-
minergic neuronal cell death [86]. We raise the possibility
that apocynin might, at least in part, block Ca®* entry
through the mitochondrial translocation of p47phox,
given that apocynin primarily attenuated mitochondrial
dysfunction and mitochondrial ROS.

In our study, a toxic dose (35 mg/kg, i.p.x 1) of MA
induced the transformation of ramified/resting microglia
into reactive hypertrophic microglia, as evidenced by
increases in the number of branches and cell body size.
Based on morphological characteristics, microglia can
be classified into at least four stages of activation: (1)
ramified/resting, (2) hypertrophic, (3) bushy, and (4)
amoeboid microglia [57, 87]. According to this classifica-
tion, hypertrophic microglia have large cell bodies and
long, thick, highly branched processes, whereas bushy or
amoeboid microglia have fewer thick and rarely branched
processes, even though cell bodies become larger than
hypertrophic microglia. Raineri et al. [88] showed that a
multiple dose regimen of MA (i.e, 5 mg/kg x 4) induces
amoeboid, as well as hyper-ramified microglia, in mouse
striatum; however, amoeboid microglia were rarely ob-
served in a toxic dose regimen of MA in our study. Thus,
this issue requires further exploration.

Current results are in line with our previous reports
that MA treatment significantly increased the mRNA
expression of M1 phenotypic markers (CD16, CD32, and
CD86), suggesting that microglia after MA treatment
existed primarily in the classically activated state [4, 21],
which is pro-inflammatory. Thus, our results indicate
that neuroprotection by apocynin or p47phox knockout
is mediated by its anti-inflammatory properties.

We have reported that the oligomeric form of a-
synuclein was obviously increased after MA [12].
Interestingly, earlier studies have shown that aggregated
a-synuclein released into the extracellular space from
dying or dead DA neurons can directly induce microglia
towards M1 phenotype with the activation of NADPH oxi-
dase, increasing production of ROS and pro-inflammatory
cytokines [89-92]. Overexpression of mutant a-synuclein
solely in microglia switches microglia into a more reactive
M1 phenotype characterized by elevated levels of pro-
inflammatory cytokines [93]. Similarly, typical characteris-
tics of M1 phenotype, including the activation of PHOX
as well as the release of various pro-inflammatory media-
tors, were observed in the MPTP-intoxicated models [94],
indicating that this phenomenon, at least in part, parallels
current results. However, although inhibition of PHOX or
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of mice. The activation of p47phox promotes mitochondrial stress followed by microglial activation into M1 phenotype, and pro-apoptotic process,
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ERK is the crucial target for apocynin-mediated inhibition of PHOX activation

genetic inhibition of its functional p47phox subunit neuroprotective potential mediated by apocynin or
switches microglial activation from M1 to M2 in response  p47phox knockout (Fig. 10).

to LPS challenge [95], either inhibition did not signifi-

cantly alter the mRNA expression of M2 phenotypic  Additional files

markers induced by MA in this study. Similar to the

current study, multiple doses of MA did not significantly Additional file 1: Supplemental information. Supplemental materials
decrease M2 phenotype markers in our previous study [4]. and methods, supplemental results, supplemental references, and
Thus, the interactive modulation between M1- and M2- supplemental figure legends in detall. (DOCX 41 Kb)

activated populations remains to be determined [68—70].

Additional file 2: Supplemental figures. Fig. S1. Experimental design
I. Effect of inhibition of PHOX on the neurotoxicity induced by a multiple
dose regimen (7 mg/kg, i.p. X 4; a) or a toxic dose regimen (35 mg/kg,
Conclusions i.p. X 1; b) of MA. Fig. S2. Effect of apocynin or p47phox knockout on
the hyperthermia induced by the multiple doses (a) or a toxic dose (b) of

We have shown in this Study that a neurotoxic dose MA. Fig. S3. Effect of apocynin or p47phox knockout on the decrease in

of MA-induced pro-apoptosis requires ERK-dependent tyrosine hydroxylase-immunoreactivity induced by multiple doses or a
p47phox activation followed by oxidative stress (mito- toxic dose of. MA. Fig. 54. Effect of apocynin or p47phox knockout on
hondri ) itochondrial dvsf ti d the changes in dopamine level (a) and dopamine turnover rate (b) in the
chondria > cytosol), mitochondria ystunction, an striatum induced by the multiple doses or a toxic dose of MAFig. S5.
pro-inflammatory changes (i.e., exacerbated activation Experimental design II. The time-dependent alterations in experimental
of Ml-type microglia). Thus, inhibition of ERK- parameters after MA (35 mg/kg, i.p. X 1) treatment (a). Effect of U0126,

dependent p47phox activation is critical for dopaminergic apocynin, or p47phox knockout on the MA-induced neurotoxicity (b).
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Fig. S6. Cytosolic and mitochondrial changes in the level of 4-
hydroxynonenal (HNE) adduct after the MA treatment (a), and the effect
of U0126, apocynin, or p47phox knockout on the increase in HNE level 2
h after MA (35 mg/kg, i.p. X 1) (b).Fig. S7. Cytosolic and mitochondrial
changes in the level of protein carbonyl after the MA treatment (a), and
the effect of U0126, apocynin, or p47phox knockout on the increase in
protein carbonyl level 2 h after MA (35 mg/kg, i.p. X 1) (b). Fig. S8. Mor-
phological changes in microglia after MA treatment in the striatum. Mor-
phological changes were determined by the analysis of cell skeleton (a,
b) or cell body size (c, d). Detailed figure legends are included in the

Additional file 1. (PDF 14030 kb)
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