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RGS10 deficiency ameliorates the severity
of disease in experimental autoimmune
encephalomyelitis
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Abstract

Background: Regulator of G-protein signaling (RGS) family proteins, which are GTPase accelerating proteins (GAPs)
that negatively regulate G-protein-coupled receptors (GPCRs), are known to be important modulators of immune cell
activation and function. Various single-nucleotide polymorphisms in RGS proteins highly correlate with increased risk
for multiple sclerosis (MS), an autoimmune, neurodegenerative disorder. An in-depth search of the gene expression
omnibus profile database revealed higher levels of RGS10 and RGS1 transcripts in peripheral blood mononuclear cells
(PBMCs) in MS patients, suggesting potential functional roles for RGS proteins in MS etiology and/or progression.

Methods: To define potential roles for RGS10 in regulating autoimmune responses, we evaluated RGS10-null and
wild-type (WT) mice for susceptibility to experimental autoimmune encephalomyelitis (EAE), a widely studied model
of MS. Leukocyte distribution and functional responses were assessed using biochemical, immunohistological, and flow
cytometry approaches.

Results: RGS10-null mice displayed significantly milder clinical symptoms of EAE with reduced disease incidence and
severity, as well as delayed onset. We observed fewer CD3+ T lymphocytes and CD11b+ myeloid cells in the central
nervous system (CNS) tissues of RGS10-null mice with myelin oligodendrocyte protein (MOG)35–55-induced EAE. Lymph
node cells and splenocytes of immunized RGS10-null mice demonstrated decreased proliferative and cytokine
responses in response to in vitro MOG memory recall challenge. In adoptive recipients, transferred myelin-reactive
RGS10-null Th1 cells (but not Th17 cells) induced EAE that was less severe than their WT counterparts.

Conclusions: These data demonstrate a critical role for RGS10 in mediating autoimmune disease through regulation
of T lymphocyte function. This is the first study ever conducted to elucidate the function of RGS10 in effector
lymphocytes in the context of EAE. The identification of RGS10 as an important regulator of inflammation might
open possibilities for the development of more specific therapies for MS.
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Background
Multiple sclerosis (MS) is a chronic neurodegenerative,
autoimmune disease of the central nervous system (CNS)
characterized by demyelination. Over 250,000–300,000 in-
dividuals in the United States currently suffer from MS,
and 200 new cases are diagnosed every week. Although it
has been 170 years since its first description, its etiology
remains unknown. Genetic predisposition, environmental
factors, and autoimmune inflammatory mechanisms play
an important role in the pathogenesis of MS [1, 2].
G-protein-coupled receptor (GPCR) signaling influences

various aspects of MS pathogenesis, including antigen
presentation, cytokine/chemokine production, and T cell
differentiation, proliferation, and infiltration (see review
[3]). GPCRs signal through heterotrimeric G proteins that
consist of an α subunit and a βγ heterodimer [4]. Regula-
tor of G-protein signaling (RGS) proteins contain an
evolutionarily conserved RGS domain that interacts with a
Gαi, Gαq/11, or Gα12/13 subunit with variable selectivity,
which accelerates the GTPase activating function of Gα
subunits [5–7]. RGS proteins differ widely in their size
and contain a variety of structural domains in addition to
the RGS domain and motifs that regulate their activity
and determine regulatory binding partners [6, 8] (reviewed
in [9–12]). In addition to its primary function as a nega-
tive regulator of G protein signaling, it is now appreciated
that the non-RGS regions of RGS proteins can sustain
non-canonical functions distinct from the inactivation of
Gα subunits or even from G protein signaling entirely
(reviewed in [10, 12, 13]). Larminie et al. reported that
there are tissue-specific patterns of RGS proteins in
human peripheral tissues and brain [14]. The RGS protein
expression profile in human lymphocytes [14] is quite
similar to that in rodent lymphocytes [15], although RGS
protein profiles in various subsets of immune cells still
need to be explored.
Recently, multiple lines of genetic evidence have

highlighted roles for RGS family proteins in mediating
autoimmune disease: (1) The International Multiple Scler-
osis Genetics Consortium (IMSGC) identified RGS1 as a
novel MS susceptibility locus [16]; (2) SNPs of RGS1,
RGS7, RGS9, and RGS14 are highly correlated with a
diagnosis of MS, Crohn’s disease (CD), and ulcerative
colitis (UC) [16–20]; (3) The mRNA levels of RGS10 are
higher in the peripheral blood mononuclear cells (PBMC)
from patients with MS, CD, and UC compared to those in
unaffected individuals [21]. The transcript level of RGS1 is
higher in MS patients as reported in the gene expression
omnibus profile database [22]. However, the mechanisms
via which RGS proteins modulate the onset or progression
of autoimmune diseases and/or whether RGS proteins
influence lymphocyte function or migration in preclinical
models of MS has never been explored. Specifically,
RGS10 is one of the smallest RGS family proteins and is
highly expressed in the brain, thymus, and lymph nodes
[6, 23–25]. We have previously shown that RGS10 is a
negative regulator of microglial and macrophage activa-
tion [26–28]. In this study, we investigated the role of
RGS10 in T cells in the mouse experimental autoimmune
encephalomyelitis (EAE) model of MS.

Methods
Mice
Generation of RGS10-null mice (C57BL/6) has been de-
scribed previously [27]. The 2D2 TCR mice C57BL/6J
mice were purchased from The Jackson Laboratory (Bar
Harbor, ME). Eight to 12-week-old male mice were used
for experiments, except where indicated. Experimental
procedures involving use of animal tissue were performed
in accordance with the NIH Guidelines for Animal Care
and Use and approved by the Institutional Animal Care
and Use Committee at Emory University School of Medi-
cine in Atlanta, GA. Unless noted, mice were euthanized
by intraperitoneal Euthasol injection.

EAE induction
RGS10-null mice and wild-type (WT) littermates (C57BL/
6 background) were actively immunized with myelin
oligodendrocyte protein (MOG)35–55 as described to initi-
ate EAE [29, 30]. Briefly, mice were injected subcutane-
ously (s.c.) with 100 μg of MOG35–55 peptide emulsified in
complete Freund’s adjuvant (CFA) supplemented with
250 μg of heat-inactivated Mycobacterium tuberculosis
H37 RA. In addition, mice received an intraperitoneal
(i.p.) pertussis toxin injection (250 ng) at the time of
sensitization and 48 h later. Mice were monitored daily
for clinical signs, and disease was evaluated as described
[31]. For induction of EAE by adoptive transfer, mice were
injected with MOG35–55/CFA and pertussis toxin as
described above. Splenocytes and draining lymph node
cells were harvested on day 9 after immunization and
expanded in vitro with 10 μg/ml of MOG35–55 and recom-
binant mouse (rm) IL-12 (10 ng/ml, R&D Systems) to
induce Th1 cells or rmIL-23 (10 ng/ml, R&D Systems) to
induce Th17 cells for additional 72 h. Cells were then
harvested, washed once with saline, counted and injected
i.p. into 5- to 6-week-old WT naïve recipient mice (10
million cells per mouse) i.p. Mice were followed clinically
up to at least day 30 post-transfer.

Tissue processing and LFB staining
At the time of sacrifice, the spinal cords were removed and
fixed in 4 % paraformaldehyde for 24 h and then embedded
in paraffin. Sections were cut at 20 μm on a microtome and
stained by Luxol fast blue (LFB) to reveal demyelinated
areas. For LFB staining, the sections were fixed in 4 % PFA
for 10 min, followed by washing in 1× PBS for 5 min. The
sections were cleaned by xylene for 10 min and then was
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hydrated in 100 % EtOH for 5 min and 95 % EtOH for
5 min. The sections were stained in Luxol fast blue solution
for 1 h and 45 min, followed by a rise of 95 % EtOH for
5 min and Milli-Q water for 3 min. The sections were
differentiated for 10 s in lithium carbonate solution, then
10 s in 70 % EtOH, 10 s in milli-H2O, and 5 s in lithium
carbonate again, and 5 s in 70 % EtOH. Images of RGS10
EAE sections were captured under ×20 objective lens on a
Nikon 90i microscope using thresholding analysis on image
J software by an investigator blinded to treatment history.
Mononuclear cell isolation and flow cytometry
Mononuclear cells from the spinal cord were isolated
by mechanical and enzymatic dissociation methods
followed by Percoll gradient (70/30 %) centrifugation [32].
T cells (CD45+CD3+), neutrophils (CD11b+Ly6G+), B
cells (CD19+), myeloid cells (Ly6G-CD11b+), Th1
(CD4+T-bet+), or Th17 (CD4+RORγt+) were analyzed
by flow cytometry. Flow cytometry data were acquired
using an LSRII instrument and analyzed using FlowJo
Software.
T cell recall proliferation and cytokine secretion
Spleen and lymph nodes were collected from RGS10-null
or WT mice at day 10 post-MOG35–55/CFA immunization.
Single-cell suspensions were prepared by mechanical dis-
ruption in RPMI-1640 medium supplemented with 10 %
FBS, 100 IU/ml penicillin, 100 μg/ml streptomycin, 1×
non-essential amino acids, 1 μM sodium pyruvate, 50 mM
2-ME, and 2 mM L-glutamine; 2 × 105 cells per well in a
96-well plate were activated by different concentrations of
MOG35–55 or plate-bound anti-CD3 (5 μg/ml, 145-2C11,
eBioscience) plus soluble anti-CD28 (5 μg/ml, 37.51,
eBioscience) for 72 h and proliferation was assessed via
MTS assay (Promega). Supernatants were collected after
72 h of culture, and cytokine levels were measured by
mouse multiplexed Meso Scale Discovery ELISAs (Meso
Scale Discovery) [27].
DC and CD4+ T cell isolation and in vitro antigen
presentation assay
Dendritic cells (DCs) were isolated from the spleens and
lymph nodes of RGS10-null or WT mice. Tissues were
incubated with CD90.2 beads to deplete T cells followed
by positive selection using CD11c beads (Miltenyl Bio-
tech). CD4+ T cells were isolated from the spleens of 6-
week-old 2D2 TCR mice using the CD4+ T cell isolation
kit II (Miltenyl Biotech); 2 × 104 DCs were incubated
with 1 × 105 CD4+ T cells in the presence of different
concentrations of MOG35–55 for 72 h, and T cell prolif-
eration was assessed via MTS assay.
Chemotaxis assay
A BD transwell system with a pore size of 5 μm
(Corning, Lowell, MA, USA) was used for the migration
assay. In the bottom compartment, CXCL-12 (10 nM,
R&D System) was added in chemotaxis buffer (0.5 %
BSA)/RPMI-1640. As a chemokinesis control, we in-
cluded CXCL-12 (10 nM) in both the bottom and top
compartments. CD4+ T cells (1 × 105) were seeded in the
top compartment, and after a 2-h incubation (37 °C, 5 %
CO2), the inserts were removed, and the cells that had
migrated through the filter to the lower chamber were
counted by flow cytometry. Polystyrene beads (15.0 μm
diameter, Polysciences, Warrington, PA, USA) were
added to each well to allow the cell count to be normal-
ized. A ratio was generated and percent input migration
was calculated.
In vitro T cell differentiation
Naïve T cells (CD4+CD25−) from 6–8-week-old
RGS10-null or WT male mice were isolated from
the spleen using Miltenyi beads. T cells (2 × 105

cells/well) were incubated in flat-bottomed 96-well
plates at 37 °C for 3 days with plate-bound anti-CD3
(1 μg/ml) plus soluble anti-CD28 (1 μg/ml) in the pres-
ence of (i) anti-IL-4 neutralizing antibody (10 μg/ml,
11B11, eBioscience) and rm IL-12 (10 ng/ml) for Th1
differentiation or (ii) anti-IL-4 (10 μg/ml) and anti-IFN-γ
neutralizing antibodies (10 μg/ml, R4-6A2, BD Bio-
science), rmIL-6 (20 ng/ml, R&D System), and human
TGF-β1 (3 ng/ml, R&D System) for Th17 differentiation.
Phorbol myristate acetate (PMA) (50 ng/ml) and ionomycin
(1 μg/ml) plus protein transport inhibitor (eBioscience)
were added for the last 5 h of the culture period. The
percentages of IFNγ+ and IL-17A+ CD4+ T cells were
analyzed by flow cytometry.
Statistical analysis and power
Power analyses, outlined in the 3rd Edition of Design
and Analysis, by Geoffrey Keppel, were used to esti-
mate group sizes. The number of animals was based
on our published work [33], and our studies and esti-
mates per group for physiologic outcome measures
yielded power values >0.80 with α = 0.05. Animal EAE
scoring data were analyzed using the non-parametric
Mann-Whitney t test. Comparison of quantitative data
between two groups was assessed using the Student’s
t test. Comparison between two groups for in vitro
experiments was analyzed by two-way ANOVA
followed by the Bonferroni post hoc test for p values.
p < 0.05 was considered statistically significant. Spe-
cific statistical tests used for each experiment are in-
dicated in the figure legend.



Table 1 Clinical EAE in actively immunized WT and RGS10-null
mice

Incidence of
clinical EAE (%)

Mean day of
onset (SEM)

Mean maximum
score (SEM)

WT 18/19 (95 %) 9.7 (0.4) 3.20 (0.3)

KO 10/17 (59 %)* 11.7 (0.3)* 1.85 (0.4)**

Data are pooled from two independent experiments
*p < 0.05, incidence of EAE and mean day of onset, determined by Fisher's
exact test and Student’s t test respectively
**p < 0.01, mean maximum scores determined by Mann-Whitney U test
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Results
RGS10-null mice displayed milder clinical and histological
EAE
We hypothesized that RGS10 modulates CNS auto-
immunity by regulating T lymphocyte infiltration and/or
effector functions. To test this possibility, we induced EAE
in WT and RGS10-null mice by active immunization with
MOG35–55. We found that RGS10-null mice induced to
develop EAE by active immunization exhibited less severe
clinical signs in the acute phase of disease (approximately
day 9 through day 15 post-immunization (p.i.). Clinical
symptoms remained mild through day 35 p.i. (Fig. 1).
Consistent with the clinical findings, LFB staining ana-

lysis and blinded measures of myelination area revealed
that RGS-null mice displayed less demyelination at day
32 p.i.) (Fig. 1b, c). LFB staining in naïve CNS tissues
and at day 12 p.i. showed no differences between
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Fig. 1 RGS10-null mice displayed attenuated EAE. EAE was induced
by active immunization and mice were monitored daily for clinical
disease. a Mean clinical scores (±SEM) of male wild type (WT, n = 19)
and RGS10-null mice (n = 17). *p < 0.001, Mann-Whitney U test.
b Photomicrograph and c quantification of CNS demyelination
(Luxol fast blue staining) in WT and RGS10-null EAE mice at day 32
post-immunization. *p < 0.05, Student’s t test
genotypes (data not shown). In summary, RGS10-null
mice had significantly lower EAE incidence and delayed
onset of disease, as well as lower mean maximum clin-
ical scores (Table 1). Potential causes for the phenotype
of RGS10-null mice in EAE include, but are not limited
to (1) functional defects of antigen presenting cells
(APCs), such as DCs, (2) a defect in T cell proliferation
or effector functions such as or cytokine secretion, (3) a
defect in the expansion of autoreactive T cells, and/or
(4) a defect in infiltration of effector T cells into the
CNS.

RGS10-null dendritic cells efficiently stimulate CD4+ T cell
activation
We asked if the milder EAE in RGS10-null mice was
due to impaired APC function. To test this possibility,
we evaluated the ability of RGS10-null or WT CD11c+
DCs to activate MOG35–55-specific 2D2 CD4+ T cells.
We found that RGS10-null DCs stimulated proliferation
of MOG35–55-specific 2D2 CD4+ T cells as well as their
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Fig. 2 RGS10-null dendritic cells (DCs) displayed intact antigen
presentation capacity. DCs derived from WT and RGS10-null mice
were incubated with CD4+ T cells from 2D2 TCR mice for 72 h in
the presence of the indicated concentrations of MOG35–55. As a positive
control, CD4+ T cells from 2D2 TCR mice were stimulated in vitro with
anti-CD3/CD28 (5 μg/ml) for 72 h. T cell proliferation was measured by
MTS incorporation assay (n= 3 mice per group)
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Fig. 3 (See legend on next page.)
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(See figure on previous page.)
Fig. 3 RGS10-null naïve CD4+ T cells displayed intact mitogen-mediated activation and polarization into Th1 or Th17. a CD4+ T cells were
isolated from spleens of WT and RGS10-null mice. Cells were treated with PMA (20 ng/ml)/ionomycin (1 μM) or anti-CD3/CD28 (5 μg/ml) in vitro
for 72 h. Proliferation was measured by MTS incorporation assay and (b) cytokine production was measured by multiplexed immunoassays (MSD).
*, p < 0.05, ***, p < 0.001, two-way ANOVA. c Splenic naive T cells (CD4+ CD25−) were isolated from WT and RGS10-null mice. Cells were differentiated
in vitro under Th1 (top panels) or Th17 (bottom panels) polarization conditions as described in the “Methods” section. PMA/ionomycin and protein
transport inhibitors were added for the last 5 h of the culture period. Cells were then stained with mAbs to surface markers and intracellular cytokines
and analyzed by flow cytometry. CD4+ T lymphocytes were evaluated for IFNγ and IL-17A expression. Representative FACS plots indicate the percentage of
CD4+ T cells that stained positive for IFNγ or IL-17A. Two independent experiments with similar results were performed (n=2–3 mice in each experiment)
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WT counterparts (Fig. 2). This suggests that peripheral
RGS10-null DCs are competent in their ability to acti-
vate autoreactive CD4+ T cells.
RGS10-null CD4+ T cells have normal proliferative and
cytokine response to mitogen stimulation
We have previously shown that young (3–7-month
old) RGS10-null mice do not display any abnormal-
ities in immune cell distribution within the CNS and
peripheral lymphoid tissues [34]. We found no differ-
ences between naive WT and RGS10-null mice with
respect to absolute numbers of CD4+ and CD8+ T
cells, B cells, and monocytes within the spleens,
blood, and brain [34]. To determine whether CD4+ T
cells from RGS10-null mice have defects in their abil-
ity to respond to mitogenic stimuli, we stimulated
CD4+ cells from RGS10-null vs. WT mice with either
(i) anti-CD3/CD28 antibodies or (ii) a combination of
PMA and ionomycin (Fig. 3). In response to these
mitogens, CD4+ T cells from RGS10-null mice prolif-
erated to the same extent as cells from WT animals.
In fact, CD4+ T cells from RGS10-null animals
secreted higher levels of IFN-γ, IL-2, and IL-5 com-
pared to WT cells. Thus, RGS10-null CD4+ T cells
do not exhibit defects in proliferation or cytokine se-
cretion when stimulated non-specifically through the
T cell receptor (anti-CD3/anti-CD28) or when the T
cell receptor is bypassed via activation with phorbol
ester and calcium ionophore (PMA/ionomycin). Col-
lectively, our data suggest that RGS10-null T cells do
not have inherent, global defects in TCR signaling
and that RGS10-null DCs are competent in their abil-
ity to present antigen to T cells.
Next, we asked whether RGS10-null T cells were cap-

able of differentiating into Th1 or Th17 effector cells. For
this, naive T cells from RGS10-null and WT mice were
isolated and then differentiated into Th1 or Th17 cells
under in vitro polarization conditions [35]. We found
similar proportions of IFNγ+ and IL-17+ cells among
RGS10-null vs. WT CD4+T cells that were differentiated
under Th1 or Th17 conditions, respectively. Thus, CD4+
T cell-expressed RGS10 is dispensable for Th1 and Th17
differentiation in vitro (Fig. 3c).
RGS10-null lymphocytes proliferate and produce
cytokines at significantly lower levels than WT LN cells in
MOG-recall assay
To further characterize T cell proliferation and ef-
fector functions in RGS10-null animals, we examined
autoantigen-specific recall responses. RGS10-null or
WT mice were immunized with MOG35–55. Ten days
later, draining (inguinal) lymph node cells and splenocytes
were isolated and re-stimulated with MOG35–55 for 3 days.
Upon re-stimulation with MOG35–55 in vitro, draining
lymph node cells and splenocytes from RGS10-null mice
proliferated less and produced cytokines at levels signifi-
cantly lower than their WT counterparts (Fig. 4a, b).
Lymph node cells and splenocytes from RGS10-null mice
produced cytokines including IFN-γ, IL-17, and IL-10 at
levels significantly lower than WT cells upon re-
stimulation with MOG35–55 in vitro (Fig. 4c). These data
indicate that RGS10-null mice might have an impairment
in the generation or maintenance of autoreactive T cell
populations after initial activation, which may contribute
to the attenuated EAE phenotype in RGS10-null mice.

RGS10-null mice displayed attenuated neuroinflammation
Next, we examined cellular infiltration within the CNS
and the peripheral lymphoid tissues of RGS10-null and
WT mice. We explored the possibility that milder EAE
in RGS10-null mice could be due to reduced leukocytic
infiltration into the CNS. We found no significant differ-
ence in the percentages and numbers of Th1 or Th17
cells in draining the lymph node and spleen at day 15
p.i. between genotypes, as determined by flow cytometry
(data not shown). However, there were significantly
fewer infiltrating leukocytes (CD45+), specifically, CD3+
T cells and CD11b+ myeloid cells in CNS tissues of
RGS10-null mice. Conversely, the spinal cords from
RGS10-null and WT mice contained comparable num-
bers of B cells and neutrophils (Fig. 5a). We also found
that the fraction of CD45high myeloid cells among
CD11b+ gated cells in RGS10-null EAE mice is reduced
relative to that in WT EAE mice, which suggests that
there are relatively fewer activated microglia or infiltrat-
ing macrophages in the CNS of RGS10-null EAE mice
compared to those of WT EAE mice (Fig. 5b). We also
examined the composition of T lymphocytes within the
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Fig. 4 RGS10-null lymphocytes displayed attenuated recall response to MOG35–55. WT and RGS10-null mice were immunized with MOG35–55

as described in the “Methods” section. Ten days later, (a) lymph node cells or (b) splenocytes were isolated and re-stimulated ex vivo with the
indicated concentrations of MOG35–55 peptide for 72 h. Proliferation was assessed via MTS incorporation assay. c After 72 h, cytokine secretion by
WT and RGS10-null MOG35–55-re-stimulated lymph node cells was determined by MSD assay. **p < 0.01, ***p < 0.001, two-way ANOVA with
Bonferroni post hoc test (n = 3–4 mice per group)

Lee et al. Journal of Neuroinflammation  (2016) 13:24 Page 7 of 12
CNS. Consistent with our observations of fewer CD3+
CD4+ T cells in RGS10-null CNS tissues (Fig. 5a), we
found that RGS10-null CNS tissues contained signifi-
cantly fewer Th1 (T-bet+) cells and Th17 (RORγt+) cells
than their WT counterparts (Fig. 5c). Notably, the rela-
tive proportion of T-bet+ and RORγt+ cells within the
CD4+ T lymphocyte population did not significantly
differ between WT and RGS10-null mice, suggesting that
RGS10 does not preferentially impact Th1 vs. Th17
differentiation within the CNS (data not shown). Col-
lectively, our results demonstrate that there is signifi-
cantly reduced inflammation in the CNS of RGS10-null
mice induced to develop EAE, which is consistent with
the reduced demyelination observed in RGS10-null mice
with chronic EAE (day 32 p.i.) (Fig. 1b, c).

RGS10-null CD4+ T cells displayed attenuated chemotaxis
The resistance of RGS10-null mice to EAE could be
explained by a defect in generation or maintenance of
autoreactive T cell populations; however, given the re-
duced frequency of T cells in the spinal cords of RGS10-
null mice with EAE (Fig. 5), it is also possible that RGS10-
null CD4+ T cells have defects in their ability to traffic
into the CNS. Thus, we next examined whether RGS10
regulates CD4+ T cell migration to chemokines in vitro.
We found that, compared to WT cells, RGS10-null CD4+
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Fig. 5 RGS10-null mice with symptomatic EAE have fewer leukocytes in the CNS. Mononuclear cells from the spinal cord were isolated from
MOG35–55-immunized WT (n = 3–4) and RGS10-null (n = 4) mice at day 15 p.i. as described in the “Methods” section. Cells were then stained
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shows the T-bet+ (Th1) and RORγt+ (Th17) cells among CD3+ CD4+ gated cells. *, p < 0.05, **, p < 0.01, two-way ANOVA
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T cells displayed attenuated migration in response to
CXCL12 (a ligand for CXCR4) (Fig. 6b) and CCL19 (ali-
gand for CCR7) (data not shown). Notably, CXCR4 and
CCR7 protein were expressed at similar levels in WT vs.
RGS10-null CD4+ T cells, suggesting that attenuated
migration is not due to abnormal receptor expression
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(Fig. 6a and data not shown). Rather, RGS10 may regulate
signaling pathways downstream of chemokine receptors
on CD4+ T cells.
Impaired Th-1-mediated neuroinflammation in RGS10-null
mice
To determine whether the decreased EAE disease
severity in the RGS10-null mice was due to autoreactive
T cell-intrinsic defects, we performed adoptive transfer
experiments. Encephalitogenic, MOG35–55-reactive Th1
or Th17 cells from WT or RGS10-null mice were trans-
ferred to WT recipient mice. Our results showed that
the recipients of Th1 cells from RGS10-null EAE mice
developed attenuated disease compared to mice that
received WT Th1 cells. Conversely, the recipients of
Th17 cells from RGS10-null mice developed clinical
EAE that was statistically indistinguishable from recipi-
ents of WT Th17 cells. These findings suggest that a key
determinant of the EAE phenotype in RGS10-null mice
is impaired Th1 cell function and/or trafficking (Fig. 7).
Discussion
Although EAE has limitations as a model for MS [36],
studies of patient material and preclinical animal models
support the notion that autoreactive T cells mediate the
initial stages of MS pathology and that EAE models
recapitulate key aspects of the myelin-reactive T cell
response in MS [37–39]. Here, we utilized EAE not only
as an MS model but also as a tool to elucidate roles for
RGS10 in CD4+ T cell-mediated CNS autoimmune
disease.
We previously showed that RGS10 plays a critical role in

inflammatory microglial activation via negative regulation
of NF-κB signaling [27]. Chronic peripheral administration
of lipopolysaccharide (LPS) in RGS10-null mice caused
chronic microgliosis and loss of dopaminergic (DA) neu-
rons [26]. Therefore, our initial hypothesis was that RGS10-
null mice would develop more severe EAE than their WT
counterparts. Instead, we observed that RGS10-null mice
displayed significantly milder EAE (Fig. 1 and Table 1).
Moreover, there was less demyelination and leukocytic infil-
tration in CNS in RGS10-null EAE mice (Figs. 1 and 5).
Lymphocytes from RGS10-null mice exhibited reduced
proliferation and cytokine production in MOG35–55 recall
assays (Fig. 4). Conversely, WT and RGS10-null DCs were
comparable in their ability to stimulate proliferation of
MOG35–55-reactive CD4+ T cells (Fig. 2). Our data suggest
that RGS10 does not influence antigen presentation func-
tions of DCs derived from peripheral lymphoid tissues, but
we cannot exclude potential roles for RGS10 in governing
APC functions within the CNS.
RGS10 has been reported to oppose the chemokine-

stimulated signaling that is needed for T cell adhesion
mediated by α4β1 and αLβ2 [40]. Thus, upregulation of
adhesion to α4β1 and αLβ2 ligands in response to
CXCL12 and CCL21 was significantly stronger in RGS10
deficient cells, suggesting that RGS10 inhibits integrin-
mediated adhesion by repressing Gαi-dependent signaling
[40]. CXCL12 (SDF-1α) is a pleiotropic chemokine that
participates in the regulation of tissue homeostasis, im-
mune surveillance, inflammatory responses, and cancer
development (reviewed in [41]). Although our studies did
not directly address the role of RGS10 in T cell migration
in vivo, our data demonstrate that RGS10-null CD4+ T
cells display attenuated migration to CXCL12 in in vitro
transwell assays (Fig. 6). Thus, RGS10-null CD4+T cells
and other RGS10-deficient immune cells might also
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display impaired migration during homing and/or infiltra-
tion into the CNS. Combined with defects in T cell activa-
tion and pathogenic Th cell differentiation within effector
tissues (Figs. 4 and 5), a migration defect could account
for the observed reduction in immune cell infiltration in
the CNS of RGS10-null mice with EAE.
There are a number of immune-based therapeutic

drugs available or in development for the treatment of
MS. However, a major challenge for the field has been
the inability to predict which treatment will work best
for any given individual due to lack of mechanistic infor-
mation about each individual’s disease [42]. Another
pressing challenge in the field is that there is no therapy
to specifically target pathogenic cells without disrupting
the beneficial or disease-limiting components of the
immune system. Indeed, many current MS drugs have
broad effects on the immune system. For example,
agents such as Tysabri (natalizumab, a monoclonal anti-
body (mAb) against the α4 integrin adhesion molecule) and
Gilenya (fingolimod, a small molecule sphingosine-1-
phosphate receptor modulator) significantly alter leukocyte
homing, while Lemtrada (alemtuzumab, a mAb directed
against CD52) depletes immune cells. These approaches
can lead to significant side effects, which may include
increased vulnerability to infections. Therefore, it is import-
ant to identify biomarkers that can better inform clinicians
to choose the most appropriate treatment for a patient. A
comprehensive understanding of which immune cell sub-
sets are key contributors to pathogenicity and molecules
that regulate their activity might lead to the development of
novel and more effective treatments for MS.
The primary function of RGS proteins is believed to be

the regulation of heterotrimeric G protein signaling at the
plasma membrane. However, our findings as well as those
of others [43–45] reveal that RGS proteins translocate to
the nucleus and are found in high abundance at other
intracellular sites. This suggests that RGS10 may have
functions other than modulating G-protein signaling.
In vitro-generated Th1 cells from RGS10 null mice in-
duced EAE that, overall, was less severe than disease
caused by WT T cells upon transfer into immunocompe-
tent hosts, suggesting roles for RGS10 in regulating Th1-
mediated autoimmune CNS inflammation (Fig. 7). How-
ever, we do not exclude T cell-independent roles for
RGS10 in EAE. Indeed, RGS10 protein is expressed by
various immune cells, including neutrophils, dendritic
cells, and macrophages [34]. Future studies involving con-
ditional deletion or enhancement of RGS10 in specific
leukocyte subsets will provide additional opportunities to
investigate this possibility in more depth.
Conclusions
Our novel findings demonstrate a critical role for RGS10
in mediating autoimmune disease through regulation of
lymphocyte function. This is the first study ever con-
ducted to elucidate the function of RGS10 in effector
lymphocytes in the context of EAE. The identification of
RGS10 as an important regulator of inflammation will
open possibilities for development of more specific tar-
geted therapies for the treatment of MS and perhaps
other chronic inflammatory neurological conditions.
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