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Abstract

Background: Altered cerebrospinal fluid (CSF) levels of lactate have been described in neurodegenerative diseases
and related to mitochondrial dysfunction and neuronal degeneration. We investigated the relationship between
CSF lactate levels, disease severity, and biomarkers associated with neuroaxonal damage in patients with multiple
sclerosis (MS).

Methods: One-hundred eighteen subjects with relapsing-remitting multiple sclerosis (RRMS) were included, along
with one-hundred fifty seven matched controls. CSF levels of lactate, tau protein, and neurofilament light were
detected at the time of diagnosis. Patients were followed-up for a mean of 5 years. Progression index (Pl), multiple
sclerosis severity scale (MSSS), and Bayesian risk estimate for multiple sclerosis (BREMS) were assessed as clinical
measures of disease severity and progression. Differences between groups and correlation between CSF lactate,
disease severity and CSF biomarkers of neuronal damage were explored.

Results: CSF lactate was higher in RRMS patients compared to controls. A negative correlation was found between
lactate levels and disease duration. Patients with higher CSF lactate concentration had significantly higher PI, MSSS,
and BREMS scores at long-term follow-up. Furthermore, CSF lactate correlated positively and significantly with CSF
levels of both tau protein and neurofilament light protein.

Conclusions: Measurement of CSF lactate may be helpful, in conjunction with other biomarkers of tissue damage,
as an early predictor of disease severity in RRMS patients. A better understanding of the alterations of mitochondrial
metabolic pathways associated to RRMS severity may pave the way to new therapeutic targets to contrast axonal
damage and disease severity.
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Background

Multiple sclerosis (MS) is a chronic autoimmune dis-
order of the central nervous system (CNS), presenting
with unpredictable clinical relapses and remissions and
by disability progression over time [1]. Neuropathologi-
cally, MS is characterized by an inflammatory reaction
in close relationship with diffuse neurodegenerative pro-
cesses [2]. Experimental evidence suggests that astroglial
activation and axonal damage are both present in the
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early stages of the disease, leading to neuronal injury, in-
flammatory demyelination, and neurodegeneration [3, 4].

In the last years, mitochondrial dysfunction and subse-
quent energy penalty have been hypothesized to drive
axonal degeneration and disease progression [5-7]. In this
context, neuronal lactate secretion in the cerebrospinal
fluid (CSF) of multiple sclerosis (MS) subjects has been
investigated with controversial results reporting either
increased, decreased, or unchanged levels [8—13]. Major
limitations of the published MS studies are the small sam-
ple sizes and high variability of patient cohorts.

Recent data indicate that other biomarkers associated
with neuroaxonal damage, such as tau protein (t-tau),
play an important role in modulating mitochondrial
function and dynamics [14]. To date, the impact of these
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neuronal markers on mitochondrial function and energy
metabolism has never been explored in MS.

The aim of our study was to investigate the following:
(1) the level of CSF lactate in patients with relapsing-
remitting multiple sclerosis (RRMS) compared to healthy
subjects; (2) the potential value of CSF lactate to predict
disease severity and progression; (3) the relationship be-
tween CSF lactate levels and both t-tau and neurofilament
light (NFL) protein.

Methods

The study was approved by the ethics committee of the
Tor Vergata Hospital in Rome, and informed consent
was obtained from all patients.

Study design

We collected CSF from 118 consecutive patients admit-
ted to the Neurology Clinic of Tor Vergata Hospital of
Rome and diagnosed as RRMS according to validated
criteria [15]. Subjects enrolled in the study were treated
with immunomodulatory or immunosuppressive therapies
always after CSF collection. Patients receiving steroids
in the 30 days before lumbar puncture (LP) were not
included.

One hundred fifty-seven age- and gender-matched
individuals, who underwent neurological investigation,
brain magnetic resonance imaging (MRI), and LP for
diagnostic purposes, were enrolled as control subjects.
They resulted negative for inflammatory or degenerative
disorders of the central and peripheral nervous system,
systemic diseases, and of abnormal cell count and/or
other abnormalities in the CSF. Subjects under treat-
ment with drugs interfering with central nervous system
(CNS) were also excluded.

At the time of confirmed diagnosis, all MS patients
started disease-modifying therapy. Second-line treatment
was also considered for patients who experienced at
least two relapses during 1 year of therapy with other
approved immunomodulatory agents.

After their admittance, all patients underwent CSF and
blood tests, complete neurological evaluation, and brain
(and in selected cases also spinal) MRI scan. Clinical sta-
tus was assessed during outpatient scheduled visits every
3 months. Demographic and clinical data were collected
from medical records. MS disease onset was defined as
the first episode of focal neurological dysfunction suggest-
ive of MS. Disease duration was estimated as the number
of years from onset to the most recent assessment of dis-
ability. Clinical activity was defined as the occurrence of
any clinical relapse, during the follow-up period.

Relapses were defined as the occurrence of new or re-
current neurological symptoms not associated with fever
or infection lasting for at least 24 h. The annualized re-
lapse rate (ARR) was defined as the number of relapses
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per year. In addition, the number of relapses in the first
2 years of the disease course and the time until the first
relapse were used as clinical indexes of inflammatory ac-
tivity. Disability was determined by a trained neurologist
using the expanded disability status scale (EDSS) (http://
www.neurostatus.net/index.php?file=start), a ten-point
scale measuring neurological disability by rating nine
different neurological domains [16]. Sustained EDSS
progression was defined as a one-point increase persist-
ing for at least 6 months. The EDSS score, assessed
every 6 months after diagnosis, was used in combination
with disease duration to calculate two measures of dis-
ease severity: the progression index (PI) and the multiple
sclerosis severity scale (MSSS). The PI was defined as
the current EDSS score divided by disease duration
expressed in years. The MSSS is an algorithm that re-
lates EDSS scores to distribution of disability in patients
with comparable disease duration [17]. MSSS has advan-
tages over the PI such as being more stable over time
and more accurate when comparing disease severity
using single assessment data. We also considered the
Bayesian risk estimate for multiple sclerosis (BREMS)
score that was calculated using gender, age at onset, and
clinical events during the first year of the disease to
identify individual risk of secondary progression [18].

CSF sampling and analyses

All CSF samples were obtained through LP performed in
lateral decubitus. CSF samples were collected in poly-
propylene tubes using standard sterile techniques. Each
CSF sample was divided in two aliquots: 2 ml of CSF
sample were used for biochemistry analysis including
total cell count and lactate levels; 3 ml of CSF sample
were centrifuged at 1300 rpm for 10 min after with-
drawal to remove cellular elements and immediately
stored at —80 °C until used. Biochemistry assays were
carried out using commercially available kits following
the manufacturer’s instruction. NFL was detected in CSF
samples using commercial ELISA kit (Uman Diagnostics
NF-light® assay, Umea, Sweden). The levels of NFL in
CSF were measured by fitting data to a four-parameter
standard curve using GraphPad Prism Software Package
(San Diego, CA, USA).CSF levels of t-tau were quanti-
fied with standard procedures, using commercially avail-
able ELISA test (FujireBio, Tokyo, Japan). The biomarker
concentrations were calculated using a standard sigmoid
curve equation (www.fdi.com).

Statistical analysis

Data distribution was analyzed through Kolmogorov-
Smirnov test. Between group comparisons of CSF lac-
tate, NFL and t-tau levels were performed by means of
Mann-Whitney test. Within the MS group, the relation-
ships between the CSF levels of lactate, NFL, and t-tau
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with other clinical and radiological variables were evalu-
ated using Spearman’s correlation analysis and partial
correlation analysis to adjust the results for age and gen-
der. P value of <0.05 was considered to be statistically
significant.

Results

The demographic features and clinical characteristics of
RRMS patients are shown in Table 1. The median
follow-up duration was 5 years. EDSS values ranged
from 0 to 3.5.

CSF lactate levels are higher in RRMS patients compared
to controls

CSF lactate was higher in RRMS patients compared to
controls (p=0.008) (Fig. 1). Lactate levels correlated
with age at the time of LP both in the RRMS (r,=0.19;
p=0.001) and control (r,=0.30; p <0.001) groups (not
shown).

CSF lactate levels correlate with future measures of
disease severity

A negative correlation was found between lactate levels
and disease duration in MS patients (ry=-0.21; p=
0.008). In contrast, lactate levels did not correlate with
clinical disability assessed by the EDSS at the time of
CSF withdrawal. At long-term follow-up, there were sig-
nificant correlations between lactate levels at diagnosis
and BREMS (r,=0.152; p=0.048), PI (r,=0.227; p=
0.006), and MSSS (rs=0.178; p = 0.026) scores among all
MS cases (Fig. 2).

After entering age and gender as control variables in a
partial correlation analysis, CSF lactate levels at the time
of LP still showed a significant correlation with PI (r=
0.36; p < 0.001) and MSSS (r=0.22; p = 0.02, one-tailed).
Conversely, after correction for age and gender, CSF lac-
tate correlation with BREMS lost its significance.

To better investigate the correlation between lactate
and the inflammatory process typical of MS, RRMS sub-
jects were categorized according to the absence (Gd—; n =
60) or the presence (Gd+; n =58) of contrast-enhancing
lesions at baseline MRI. Our analysis showed that CSF

Table 1 Demographic and clinical characteristics of enrolled
subjects

Variable Subject group
Control subjects Multiple sclerosis
(n=157) (n=118)
Gender (M/F) 40/117 38/80
Age (years) 40+15.23 313+£9.14
Disease duration (years) N/A 7+586
EDSS N/A 1.25+0.74

Data are mean + standard deviation
M male, F female, EDSS expanded disability status scale, N/A not applicable
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levels of lactate were similar in the Gd+ group compared
to the Gd- group (p = n.s.), suggesting no involvement of
this biomarker in the acute stage of inflammation. In
addition, non-significant correlations were found between
CSF lactate levels, CSF leukocyte count, or relapse rate.
Furthermore, lactate levels were similar among patients
categorized according to the presence of oligoclonal bands
(present n = 87; absent # = 31) (not shown).

CSF lactate levels correlate with neuronal markers of
axonal damage

The CSF levels of lactate showed a positive correlation
with t-tau (rs = 0.263; p = 0.005) and NFL (r, = 0.305; p =
0.01), well-recognized markers of neuronal damage
(Fig. 3). However, after correcting for age and gender,
the correlation of CSF lactate with t-tau and NFL lost its
significance.

Discussion

Our study shows a correlation between CNS energy me-
tabolism, as measured by means of CSF lactate concen-
tration, and MS disease severity.

In the last decade, increasing evidence suggests that
mitochondrial dysfunction and concomitant oxidative
damage play a role in the pathogenesis of MS, leading to
an energy imbalance and driving neuroaxonal degener-
ation [5-7, 19]. Under normal homeostatic conditions,
brain lactate is produced through anaerobic glycolysis by
neurons to meet acutely increased energy demands and
by astrocytes to be shuttled to neurons as a substrate for
mitochondrial oxidative metabolism [20, 21]. It is well
known that measurement of CSF lactate concentration
is a useful biomarker in mitochondrial disorders, since
increased CSF lactate levels may represent the result of
accumulating energetic metabolites due to mitochon-
drial dysfunction [22]. Moreover, the concentration of
cerebral lactate directly depends on its rate of produc-
tion in the brain, because blood and CSF lactate concen-
trations are independent from one another [23, 24].

Indeed, data evaluating the CSF lactate levels in MS
patients are not consistent across the studies, most
probably due to the small size and high variability of pa-
tient cohorts. Proton-magnetic resonance spectroscopy
(IH MRS) studies showed that MS patients have higher
levels of CSF lactate [12, 13]. MRI studies showed a
correlation between CSF lactate concentration and the
number of inflammatory plaques [8, 11]. In contrast,
data reporting decreased CSF lactate levels in the early
stages of MS or comparable concentration have also
been published [9, 10, 25]. In our study, carried out in a
large cohort of RRMS patients, we noted a significant in-
crease of CSF lactate levels, possibly due to the deranged
use of energetic substrates caused by the impairment of
oxidative phosphorylation cycle.
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Fig. 1 CSF lactate levels are higher in RRMS patients compared to controls. Dot plots of CSF lactate concentration data distribution for
relapsing-remitting MS (RRMS, n=118) and healthy control subjects (CTRL, n=157). Horizontal bars represent group mean; dotted lines

RRMS patients

No significant correlation was observed between CSF
lactate levels and the number of contrast-enhancing
lesions, IgG index, CSF leukocyte count, or relapse, sug-
gesting that increased anaerobic pathways and acute in-
flammation are independent events and supporting the
hypothesis that focal inflammation and neurodegenera-
tion may disconnect early in the disease course [26].

Interestingly, CSF lactate correlated significantly with
PI, MSSS, and BREMS scores, suggesting an association
between altered energy metabolism and MS severity,
that may start during the relapsing-remitting phase of
the disease. Moreover, we observed that CSF lactate
concentrations significantly correlated with age both in
patients and controls, indicating an age-related increase
in CSF lactate independent of MS pathology [27]. Age at
onset is considered a prognostic factor of MS severity; it
may thus represent a possible confounding factor limiting
the significance of our results. However, after correcting
for age and gender, CSF lactate still significantly correlated
with clinical scores of disease severity measured up to
5 years later, indicating that energy metabolism in the
brain is related to MS severity apart from age. Conversely,
after correction for age and gender, CSF lactate correla-
tions with BREMS, t-tau, and NFL lost their significance.
This result may indicate that CSF lactate may depend on
increased glial and/or neuronal metabolism as expected
during MS activity. Indeed, although glucose is usually
assumed to be the main energy source for living tissues,
there are some indications that lactate is preferentially
metabolized by neurons in the brain of several mamma-
lian species [28, 29]. According to the lactate-shuttle
hypothesis, glial cells are responsible for transforming

glucose into lactate and for providing lactate to the
neurons [30, 31].

We found no correlation between CSF lactate levels
and neurologic disability as assessed by the EDSS in
accordance to previous studies [12].

It is well established that CSF tau and NFL levels rep-
resent biomarkers of acute neuroaxonal damage [32].
Experimental studies suggested that tau protein may
cause neuronal injury by altering the targeting and func-
tion of synaptic mitochondria throughout many mecha-
nisms. In fact, mitochondria are transported along axons
by the motor protein kinesin; it seems that tau is able to
bind this kinesin and compete with other cargos, pre-
venting their attachment and subsequent transport, that
are crucial for proper synaptic activity [33, 34]. Tau may
also directly influence mitochondrial function by redu-
cing mitochondrial membrane potential and ATP levels
increasing susceptibility to oxidative stress, by affecting
the complex I of the respiratory chain or by interfering
with both mitochondrial fission and fusion [14, 35].

Remarkably, inflammation and myelin loss in the CNS
in MS increase the energy demand of a neuron due to
ineffective nerve conductance and thus challenge the
mitochondrial machinery [5]. Presumably as a compen-
satory mechanism, the density of mitochondria as well
as the transport velocity in the axons increases in
demyelinated neurons [36]. Mitochondria from the
motor cortex of MS patients display abnormal reduc-
tions in the activity of complexes I and III, which are
not limited to the areas of myelin loss [37]. Recently, it
has been hypothesized that these mitochondrial changes
are amplified in neuronal cell bodies, causing energy
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pathies [14]. The inverse relationship between CSF levels
of lactate and disease duration in our MS patients is also
consistent with this hypothesis.

Interestingly, NFL reflects acute axonal loss due to in-
flammatory mechanisms [38]. In fact, levels of NFL were
higher in MS patients with relapse activity compared to
patients in remission and correlated with the presence of
contrast-enhancing lesions or of CSF oligoclonal bands
[39, 40]. Increased NFL levels in CSF of RRMS patients
were normalized by anti-inflammatory treatment, such
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as natalizumab [41]. Furthermore, NFL implies prognostic
value for conversion from clinically isolated syndrome
(CIS) to definite MS [32, 42]. In our study, increased CSF
lactate significantly correlated with the concentration of
NFL in the CSF of RRMS patients. We proposed that
higher CSF levels of NFL in patients with more impaired
energy state may reflect subtle and overlapping forms of
axonal damage, causing metabolic adaptations that be-
come progressively detrimental for neurons. This hypoth-
esis is also supported by the constant release of NFL into
CSF previously found during all stages of MS, even in the
absence of relapses or new MRI activity [43].

Conclusions

Early mitochondrial dysfunction may be reversible and a
valuable new target for treatment [44]. The results of the
present study point to impaired energy metabolism and
mitochondrial function as important mechanisms contrib-
uting to disease severity in MS, supporting the concept
that therapies aimed at ameliorating mitochondrial injury
might be helpful to prevent disability accumulation/
progression in MS patients.
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