Ma et al. Journal of Neuroinflammation (2016) 13:38
DOI 10.1186/512974-016-0504-z

Journal of Neuroinflammation

RESEARCH Open Access

Macrophage depletion reduced brain injury @
following middle cerebral artery occlusion

IN mice

Yuanyuan Ma', Yaning Li%, Lu Jiang?, Liping Wang', Zhen Jiang', Yongting Wang?, Zhijun Zhang®"

and Guo-Yuan Yang'?"

Abstract

Background: Macrophages are involved in demyelination in many brain diseases. However, the role of macrophages
in the recovery phase of the ischemic brain is unknown. The present study aims to explore the role of macrophages in
the ischemic brain injury and tissue repair following a 90-min transient middle cerebral artery occlusion in mice.

Methods: Clodronate liposomes were injected into mice to deplete periphery macrophages. These mice subsequently
underwent middle cerebral artery occlusion. F4/80" and CD68" cells were examined in the mouse spleen and brain to
confirm macrophage depletion at 14 days after middle cerebral artery occlusion. Modified neurological severity scores
were used to evaluate the behavioral function between 1 and 14 days after middle cerebral artery occlusion. MBP, Iba1,
and CD31 immunostaining were performed to determine myelin lesion, microglia activation, and microvessel density.

microvessel density.
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Results: Clodronate liposomes depleted 80 % of the macrophages in the mouse spleen and reduced macrophage
infiltration in the mouse brain. Macrophage depletion reduced the myelin damage in the ipsilateral striatum and
microglia activation in both the ipsilateral cortex and striatum, enhanced the microvessel density in the peri-infarct
region, attenuated brain atrophy, and promoted neurological recovery following middle cerebral artery occlusion.

Conclusions: Our results suggested that macrophage depletion is a potential intervention that can promote tissue
repair and remodeling after brain ischemia, reduce demyelination and microglia activation, and enhance focal

Background

Ischemic stroke is the second leading cause of death and
the most common cause of disability worldwide [1, 2].
There still lacks effective therapy except for timely endo-
vascular treatment and thrombolysis of ischemic stroke
onset [3, 4]. However, only 4-7 % of patients with acute
ischemic stroke are eligible for thrombolytic treatment
due to the narrow therapeutic time window and the risk
of hemorrhagic transformation [5]. It remains critical to
develop new strategies to reduce brain injury and promote
neurological function recovery after ischemic stroke [6].
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Ischemic stroke is caused by severe stenosis or occlusion
of a cerebral artery. It can subsequently lead to evere
neural injury, neuronal necrosis, and apoptosis. Necrotic
or apoptotic tissues release a variety of pro-inflammatory
cytokines and damage-associated molecular patterns
(DAMPs), which activate brain resident microglia and re-
cruit peripheral immune cells into the brain. Macrophages
and neutrophils are the key players in ischemia-induced
inflammatory response [7]. However, there are different
infusion patterns among macrophages, neutrophils, and
other immune cells in mice following middle cerebral
artery occlusion (MCAO). Periphery macrophages
infiltrate into the brain as early as 12 h and recruit more
neutrophils into the ischemic brain by releasing pro-
inflammatory cytokines and up-regulating adhesion
molecules in endothelial cells [8, 9]. The infiltration of
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neutrophils and lymphocytes is mostly limited at the early
stage of ischemic stroke while the infiltration of periphery
macrophages persists through the recovery phase of ische-
mic stroke [10]. The role of periphery macrophages during
ischemic stroke is under debate. On the one hand, macro-
phage infiltration was thought to exacerbate focal inflam-
matory response and further damage the brain [11-13].
Macrophages can specifically bind with myelin oligo-
dendrocyte glycoprotein (MOG) and infiltrate into the
ischemic brain, increase brain infarct volume, and exacer-
bate neurological deficit after 4 days of transient MCAO
in mice [14]. On the other hand, macrophages also partici-
pate in phagocytosis of necrotic debris at 3 and 6 days
after transient MCAO [15]. Macrophage infiltration at the
early stage of tissue injury is critical for tissue repair and
remodeling but is not as important during the late phase
of tissue recovery [16, 17]. In a mouse model of spinal
cord injury, periphery macrophages contributed to fibrotic
scar formation and inhibited axonal growth at the
recovery phase of spinal cord injury [18]. Based on these
reported observations, we hypothesized that the infiltra-
tion of periphery macrophages possibly is detrimental for
tissue repair at the recovery phase of ischemic stroke.

To directly explore the role of periphery macrophages
during the recovery phase of ischemic stroke, we de-
pleted the periphery macrophages by intraperitoneally
injecting clodronate liposomes into mice at 1 day before
and 4 and 9 days after transient MCAO. This strategy
ensures persistent macrophage depletion during the
whole period of ischemic brain injury [17-19]. We aim
to explore (1) whether macrophage depletion facilitates
the neurological functional recovery during the recovery
phase after ischemic stroke, (2) whether macrophage de-
pletion reduces myelin lesion, (3) whether macrophage
depletion affects brain resident microglia response, and
(4) whether macrophage depletion enhances the micro-
vessel density.

Methods

Transient MCAO in mice

All animal procedures were carried out in accordance with
the guideline of the Institutional Animal Care and Use
Committee (IACUC) of Shanghai Jiao Tong University,
Shanghai, China. The experimental protocol is illustrated

Page 2 of 10

in Fig. 1. Forty-four adult male Institute of Cancer Re-
search (ICR) mice (Sippr-BK, Shanghai, China) weighing
25-30 g were used in the study. Transient MCAO surgery
was performed as described previously [20]. Briefly, mice
were anesthetized with ketamine/xylazine (100 mg/10 mg/
kg, Sigma, St. Louis, MO). After making an incision at the
midline of the neck, the left common carotid artery, exter-
nal carotid artery, and internal carotid artery were isolated.
A 6-0 silica-coated nylon suture was gently inserted
through the external carotid artery and advanced along
the internal carotid artery and stopped at the origin of
middle cerebral artery. After 90 min of ischemia, the su-
ture was withdrawn and reperfusion was achieved. The
successful ischemia and reperfusion were validated by
monitoring the changes of cerebral blood flow using a
laser Doppler flowmetry (Moor Instruments, Axminster,
Devon, UK). Animals were included into further charac-
terizations when the brain blood flow decreased for at
least 80 % compared to the baseline and returned to 80 %
of the baseline after suture withdrawal (Fig. 2). The mor-
tality rates of animals following MCAQO for the control
liposome (Vehicle), phosphate-buffered saline (PBS), and
clodronate liposome (CLP) groups were 21.4, 14.3, and
18.8 %, respectively. There was no significant difference of
the mortality among the groups.

Neurobehavioral examination

Neurobehavioral tests were carried out by two investiga-
tors who were blinded to the experimental groups using
a modified neurological severity score (mNSS) system.
mNSS ranges from 0 to 14, in which 0 represents nor-
mal and 14 represents the highest degree of neurological
deficiency [21]. mNSS is a comprehensive assessment of
neurological function including motor, sensory, balance,
and reflex tests. For the motor test, the bend and torsion
of limbs were observed by holding up the tail of the
mouse (0-3). The posture of walking on the floor was
also assessed (0—3). For the balance test, the mice were
placed on a beam. The neurological deficiency was
assessed according to whether the mouse could keep
balance on the beam, limbs fall off the beam, and walk
through the beam (0-6). For the sensory and reflex tests,
pinna and corneal reflex were examined, respectively (0-2).
The higher the scores, the more severe is the injury.

Sacrifice animals
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Fig. 1 A diagram of the experimental design. Mice were treated with clodronate liposomes 1 day before transient MCAO. Neurological functions
were assessed using modified neurological severity scores following 1, 3, 7, and 14 days after transient MCAO. The mouse brain was collected for
the immunohistochemistry, and the spleens were obtained for flow cytometry at 14 days after MCAO
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Fig. 2 Brain blood flow in mice during MCAO. a Representation of brain blood flow before MCAQ (as a baseline), after MCAO (when the cerebral
artery was occluded), and reperfusion (when the suture was withdrawn from the cerebral artery). b Percentage of brain blood flow reperfusion
(reperfusion/before MCAO) among groups. There was no significance on the percentage of brain blood flow reperfusion among groups. n=11-13
per group

The measurement of brain atrophy volume

The mice were sacrificed following 14 days of transient
MCAO and perfused with 0.9 % saline followed by 4 %
paraformaldehyde. The brain samples were removed and
post-fixed in 4 % paraformaldehyde for 6 h and dehydrated
in 30 % sucrose until the brain sank into the bottom of a
15-ml tube. Then the brains were frozen in —80 °C for
2 days and cut into 20-um sections from the anterior
commissure to the hippocampus. A total of 20 coronal
sections were mounted on the slide and used for cresyl
violet staining. The distance between adjacent sections
was 200 pm. The other sections used for immunohisto-
chemistry were collected in the anti-freezing solution and
stored at —20 °C until use. The atrophy area was measured
using the Image] software (National Institutes of Health,
Bethesda, MD). The atrophy volume was calculated with

the formula V= ZT {(Sn 4+ /Sy * Sy + Sn+1) * g] , in

which /1 was the distance between two adjacent sections
and S, and S, . ; were the atrophy areas of two adjacent
sections [22, 23].

Macrophage depletion and clodronate liposome
administration

Clodronate liposomes were widely used to deplete periph-
eral macrophages [24, 25]. Clodronate was encapsulated
in liposomes with a concentration of 7 mg clodronate per
milliliter, a concentration that can ensure the depletion of
90 % of macrophages within 24 to 36 h after systemic
administration [26]. Clodronate liposomes (F70101C-A,
FormuMax Scientific, Inc., Palo Alto, CA) were intraperi-
toneally injected at 1 day before and 4 and 9 days after
transient MCAQ. Control liposomes (F70101C-A, Formu-
Max Scientific, Inc., Palo Alto, CA) and PBS were used as
the controls. The dose of clodronate liposomes was
adjusted according to the manufacturer’s instructions
(0.2 ml/20-25 g). The efficiency of macrophage depletion

was verified at 14 days after MCAO by examining the
number of F4/80" macrophages in the spleen and CD68"
macrophages in the brain by flow cytometry and
immunostaining.

Spleen cell isolation and flow cytometry

Flow cytometry was performed on the spleen samples col-
lected on day 14 after MCAQO. The mice were deeply
anesthetized and the spleens were removed and collected
in a 1.5-ml tube. To obtain single cell suspension, the
spleens were grinded in PBS using a mechanical tritur-
ation method through a 100-pm cell strainer (Corning,
New York, NY). The cell suspension was centrifuged for
5 min at 1000 rpm at 25 °C, and the supernatant was dis-
carded. Red blood cells were removed by re-suspending
the cells in red blood cell lysis buffer (NH4CI 8.29 g,
KHCO3 1 g, EDTA-2Na 37.2 mg, diluted in distilled
water, at pH = 7.4) for 30 s. Then the cell suspension was
centrifuged for 5 min at 1000 rpm at 25 °C again and the
supernatant was discarded. After washing in PBS, the cells
were re-suspended in 1 ml PBS. Single cell suspension of
200 pl was incubated with fluorescence-conjugated rat—
anti-mouse F4/80-FITC (1:200, BioLegend, San Diego,
CA) for 30 min at 4 °C. Then the cells were centrifuged
for 5 min at 2500 rpm at 25 °C. After discarding the
supernatant, the cells were washed once with PBS. Then
the cells were re-suspended in 300 ul PBS and analyzed by
a flow cytometry (BD Biosciences, San Jose, CA). A mini-
mum of 10,000 events were acquired for each sample.

Western blot

The ischemic striatum was collected and sonicated in
the protein lysis buffer (RIPA with protease cocktail in-
hibitor, phosphatase inhibitor). The brain homogenate
was centrifuged at 12,000 rpm and the supernatant was
collected. Protein concentrations were determined with
a BCA kit (Thermo Scientific, Waltham, UK). Equal
amounts of protein were loaded onto 15 % resolving gel
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Fig. 3 Clodronate liposome treatment depleted macrophages in the spleen. a Flow cytometry analysis shows the percentage of F4/80"
macrophages in the spleen of Vehicle (b), PBS (c), and CLP (d) groups at14 days after MCAQ. b Bar graph shows quantification of the percentage
of F4/80" macrophages in the spleen of Vehicle, PBS, and CLP groups. Data are mean + SD, n = 5-8 per group. **p < 0.01, CLP vs. Vehicle or PBS.
CLP = clodronate liposomes, PBS = phosphate-buffered saline, Vehicle = control liposomes

for electrophoresis. The proteins were transferred onto a
nitrocellulose membrane (Whatman Inc., Florham Park,
NJ) and incubated with the primary antibodies of MBP
(1:1000 dilution, Abcam, Cambridge, MA) and p-actin
(1:1000 dilution, Abcam, Cambridge, MA) at 4 °C over-
night. After washing three times using a TBST buffer, the
membrane was incubated with horseradish peroxidase
(HRP)-conjugated anti-rat or anti-mouse immunoglobulin
G for 1 h at room temperature, washed, and then reacted
with an enhanced chemiluminescence substrate (Pierce,
Rockford, IL). The result of chemiluminescence was semi-

quantified using the Image] software (National Institutes
of Health, Bethesda, MD).

Immunohistochemistry

Myelin basic protein (MBP) immunostaining was per-
formed following DAB immunostaining protocol (Vector
Labs, Burlingame, CA) as previously described with minor
modifications [20]. Briefly, the brain sections were incu-
bated with 0.3 % H,O, for 30 min at room temperature.
After rinsing with PBS, 0.3 % Triton X-100 was added for
10 min, then the coronal sections were incubated with
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Fig. 4 Clodronate liposome treatment reduced macrophage infiltration in the brain after MCAQ. a Represemaﬂve images of CD68" macrophages
(green) of the ipsilateral striatum in Vehicle (a), PBS (b), and CLP (c) groups at 14 days after MCAQ. Scale bar = 100 pm. Quantification of the number of
CD68™ macrophages in the peri-infarct region of the ipsilateral striatum (d). b Representative images of CD68" macrophages (green) and DAPI-stained
cells (blue) of the ipsilateral striatum in Vehicle (e), PBS (f), and CLP (g) groups at 14 days after MCAO. Scale bar = 20 pm. Quantification of the percentage of
CD68"/DAPI cells in the peri-infarct region of the ipsilateral striatum (h). Data are mean + SD, n =4 per group. **p < 0.01, CLP vs. Vehicle or
PBS. CLP = clodronate liposomes, PBS = phosphate-buffered saline, Vehicle = control liposomes
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Fig. 5 Macrophage depletion improved neurological outcomes in mice
following transient MCAQ. a A series of cresyl violet stained coronal
sections represented the brain atrophy in CLP, PBS, and Vehicle groups
at 14 days after MCAO (a). Quantification of the brain atrophy volume is
presented by the brain volume of contralateral subtracted ipsilateral
hemisphere at 14 days after MCAO (b). Quantification of brain volume
presented by ratio of ipsilateral/contralateral hemisphere brain
volume at 14 days after MCAO (c). Data are mean +SD, n=7-8
per group. **p <0.01, CLP vs. Vehicle or PBS. b Bar graph shows
the mNSS assessment in CLP, PBS, and Vehicle groups at 1, 3, 7,
and 14 days after MCAQ. Data are mean +SD, n=5-8 per group.
*p < 0.05, CLP vs. Vehicle or PBS. mNSS = modified neurological

severity scores

horse serum for 1 h at room temperature. The brain sec-
tions were then incubated in a primary antibody of MBP
(1:500, Abcam, Cambridge, MA) at 4 °C overnight. After
rinsing with PBS for three times, the brain sections were
incubated with a biotinylated secondary antibody and
Vectastain ABC solution (Vector Labs, Burlingame, CA)
for 1 h. The brain sections were then examined under an
optical microscope. Three fields in the peri-infarct region
of the ipsilateral striatum and the corresponding contralat-
eral striatum were imaged in each section. A total of five
sections (taking every other section spaced 200 pm apart)
were evaluated for each mouse. The mean integrated
optical density (IOD) was measured by the Image] Pro
Plus 6.0 software (Media Cybernetics, Bethesda, MO). The
ratio of mean IOD between the ipsilateral and contralat-
eral was used for further analysis.

For macrophage, microglia, and microvessel immuno-
staining, the brain sections were incubated in the primary
antibodies of CD68 (1:200, AbD Serotec, Kidlington, UK),
Ibal (1:200, WAKO, Osaka, Japan), and CD31 (1:150,
R&D, Minneapolis, MN) at 4 °C overnight. After rinsing
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with PBS for three times, the brain sections were incu-
bated with the secondary antibodies: Alexa Fluor 488-
conjugated donkey anti-rat, Alexa Fluor 488-conjugated
donkey anti-rabbit, or Alexa Fluor 594-conjugated donkey
anti-goat (1:500, Invitrogen, Carlsbad, CA) for 1 h at room
temperature. Then the brain sections were rinsed with
PBS for three times and incubated with 4, 6-diamidino-2-
phenylindole (DAPI, Life Technologies, Mulgrave, VIC,
Australia) for 5 min at room temperature. After rinsing
with PBS, the brain sections were covered and sealed with
mounting medium (Vector Labs, Burlingame, CA) for fur-
ther study. Negative controls (without primary antibodies)
were included in each immunohistochemistry experiment.
Additional figures show this in more detail (see Additional
file 1).

Cell and vessel counting

The brain tissues were visualized using a confocal micro-
scope (Leica, Solms, Germany). For Ibal® microglia
counting, the field in the peri-infarct region of the cortex
and striatum was imaged per section. For CD68" macro-
phages and CD31" microvessels, three fields in the peri-
infarct region of the striatum were imaged per section. A
total of five sections with a 200-pum interval were selected
per mouse. The number of positive cells was counted by
the investigators who were blinded to the experimental
groups. DAPI-stained nuclei were counted by the Image]
Pro Plus 6.0 software (Media Cybernetics, Bethesda, MO).
The average number of positive cells per section and the
percentage of the positive cells to total cells stained by
DAPI were used for data analysis [27].

Statistical analysis

Data were presented as mean + SD. Statistical significance
among groups were evaluated by one-way ANOVA
followed by the Bonferroni (homogeneity of variance) or
the Tamhane test (heterogeneity of variance) using the
SPSS 18.0 software (SPSS Inc., Chicago, IL). For non-
parametric analysis, the Kruskal-Wallis test and Mann—
Whitney U test were applied. A value of p<0.05 was
considered significant.

Results

Macrophages were successfully depleted by clodronate
liposome treatment

To deplete periphery macrophages during transient
MCAO, the mice were subjected to clodronate liposome
injection. At 14 days after injection, 80 % of F4/80" mac-
rophages were depleted in the spleen in the clodronate
liposome-treated mice compared to the control mice
(Fig. 3, p<0.05), this result suggested the success of
macrophage depletion. Animals that received clodronate
liposomes showed no visible disorders such as infection,
reduced appetite, or inhibition of motor activity.
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Macrophage infiltration was reduced in the brain of MCAO

after clodronate liposome injection

To further clarify whether periphery macrophage deple-
tion could reduce macrophage infiltration in the brain,
we examined the number of CD68" macrophages in the
peri-infarct region of the ipsilateral striatum. We found
that macrophages were reduced in the clodronate
liposome-treated mice compared to the control mice
(Fig. 4, p<0.05); this result indicated that periphery
macrophage depletion could reduce macrophage infiltra-
tion in the brain after ischemia.

Macrophage depletion reduced the brain atrophy volume
and neurological deficits in MCAO mice

To analyze the influence of macrophage depletion on
tissue repair, we measured the brain atrophy volume at
14 days after MCAO. The result showed that the brain
atrophy volume was much smaller in the clodronate
liposome-treated mice than that in the control mice
(Fig. 5a, p<0.05). To examine the role of macrophage
depletion on neurological outcomes, we assessed the
neurological deficits using the mNSS system at 1, 3, 7,
and 14 days after MCAO. The results showed that
neurological scores were lower at 3 days and maintained
at low level for 14 days after MCAO in the clodronate
liposome-treated mice compared to the control mice
(Fig. 5b, p < 0.05).
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Macrophage depletion reduced myelin lesion in
ischemic mice

Myelin, a major component of the white matter, is vulner-
able to ischemia, and the loss of myelin contributes to
impaired neurological outcomes. To understand why
macrophage depletion facilitated the recovery of ischemic
stroke, we examined MBP expression to assess the myelin
lesion using immunostaining and western blot. The results
showed that MBP expression was higher in the clodronate
liposome-treated mice compared to the control mice
(Fig. 6, p<0.05), suggesting that macrophage depletion
reduced myelin lesion.

Macrophage depletion reduced microglia activation both
in the cortex and striatum

Brain resident microglia activation participates in myelin
lesion induced by ischemia, and periphery macrophage
infiltration might contribute to microglia activation [10].
To further explore the effect of macrophage depletion
on microglia activation, we examined microglia activa-
tion by Ibal immunostaining. We found that microglia
displayed a classical ramified shape, with long and thin
processes in the cortex and striatum in the macrophage
depletion group (Fig. 7a). Microglia displayed distinct
cell morphology with a larger cell body and more
processes in the control groups compared to the macro-
phage depletion group. Furthermore, we found that
macrophage depletion significantly reduced the number
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Fig. 6 Macrophage depletion reduced myelin lesion. a Light brown boxes show the interested areas in the ipsilateral striatum (a). Photomicrographs
show MBP-stained myelin in the peri-infarct region of the ischemic striatum in Vehicle (b), PBS (c), and CLP (d) groups at 14 days after
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of microglia both in the ipsilateral cortex and striatum
(Fig. 7b, p < 0.05). These data suggested that macrophage
depletion reduced microglia activation at least at 14 days
after MCAO.

Macrophage depletion enhanced the microvessel density
in MCAO mice

Macrophages were reported to reduce the microvessel
density in diabetic mice, while the microvessel density in
the peri-infarct region contributed to recovery after
brain injury [22, 23]. Therefore, we explored whether
macrophage depletion affected the microvessel density

during MCAO. We counted CD31" microvessels in the
peri-infarct region of the ipsilateral striatum (Fig. 8a—c).
The number of CD31" microvessels increased by 40 %
in the macrophage depletion mice compared to the con-
trol mice (Fig. 8d, p<0.05). The result suggested that
macrophage depletion could increase the microvessel
density in the peri-infarct region of the lesion striatum.

Discussion

In this study, we found that macrophage depletion
improved neurological outcomes and promoted tissue
repair for 14 days after MCAQO. The beneficial outcomes
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Fig. 8 Macrophage depletion enhanced the microvessel density in the
peri-infarct region of mice brain after MCAO. Photomicrographs show
that CD31" microvessels in the peri-infarct region of the ipsilateral
striatum in Vehicle (a), PBS (b), and CLP (c) groups at 14 days after
MCAO. Scale bar =100 um. Bar graph shows the quantification of the
number of CD317 cells in the peri-infarct region of the ipsilateral
striatum (d). Data are mean + SD, n =4 per group. **p <001, CLP vs.
Vehicle or PBS

of macrophage depletion correlate with the decrease of
myelin loss and microglia activation and the increase of
focal microvessel density.

We aimed to explore whether macrophage depletion
affects the neurological function recovery at the recovery
phase of MCAO. To achieve the maximum efficiency of
macrophage depletion, mice were subjected to clodro-
nate liposome injection at 1 day prior to transient
MCAO. We gave two additional injections of clodronate
liposomes at a 4-day interval until 14 days after transient
MCAO [19]. The success of macrophage depletion was
verified by quantifying F4/80" macrophages in the spleen
at 14 days after MCAO, which showed a reduction of
80 % F4/80" macrophages in the clodronate liposome-
treated mice compared to the control mice. Macrophage
infiltration was also reduced in the brain after ischemia,
which was validated by immunostaining of CD68" mac-
rophages in the brain. Our results showed that persistent
macrophage depletion reduced the brain atrophy volume
and improved the neurological outcomes at 14 days after
MCAO, which suggested that macrophages could im-
pede the neurological function recovery after ischemic
stroke.

Both peripheral infiltrated macrophages and brain resi-
dent microglia activation were implicated in demyelination-
associated diseases such as globoid cell leukodystrophy,
multiple sclerosis, spinal cord injury, and traumatic brain
injury [28-31]. LPS injection-induced brain inflammation
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resulted in myelin lesion, which was accompanied by en-
hanced microglia activation and morphological transition
[32]. The number of periphery macrophages correlated
with the severity of tissue damage [33]. Macrophage infil-
tration and brain resident microglia activation contributed
to myelin damage via producing pro-inflammatory cyto-
kines, chemokines, reactive oxygen species, and glutamate
[34]. Ibal* and CD68" cells infiltrated around the damaged
myelin after MCAO, the result suggested that these cells
were implicated in ischemia-induced myelin lesion [35].
However, these past studies could not elucidate the specific
contribution of brain resident microglia activation and infil-
trated macrophages to myelin lesion, because Ibal and
CD68 are markers for both brain resident microglia and
peripheral infiltrated macrophages [36, 37]. In our study,
we specifically depleted the peripheral macrophages by in-
traperitoneal injection of clodronate liposomes; thus, the
Ibal™ cells in the cortex and striatum were dominated by
brain resident microglia. There were less Ibal® microglia
accumulated in the peri-infarct region of the ipsilateral cor-
tex and striatum in the macrophage depletion mice com-
pared to the control. In addition, macrophage depletion
also caused microglia morphological changes in the ipsilat-
eral cortex and striatum in MCAO mice. Microglia dis-
played a large cell body and thick and short processes in
the control brain while displaying small round cell body
and ramified morphology in the clodronate liposome-
treated mice. These results suggested that peripheral mac-
rophages participated in re-populating microglia in the
peri-infarct region after MCAO and contributed to exacer-
bating myelin damage. The peripheral macrophages could
be a potential target for the development of intervention
strategies to treat ischemic myelin damage.

Macrophages are critical in promoting angiogenesis by
releasing pro-angiogenic factors or supporting the
process of microvessel sprouting in tumor [38]. Infiltra-
tion of macrophages within 24 h after limb amputation
is essential for limb regeneration and tissue recovery via
enhancing the microvessel density in the salamanders
[25]. To explore whether macrophage depletion affected
angiogenesis after ischemic stroke, we examined CD31"
microvessels in the peri-infarct region of the striatum at
14 days after ischemia. We found that the number of
CD31" cells increased in the peri-infarct region of the
ischemic striatum in the macrophage depletion mice
compared to the control. This result suggested that
macrophage depletion enhanced the microvessel density.
Studies demonstrated that macrophage depletion attenu-
ated kidney injury by up-regulating stromal cell-derived
factor-1 (SDF-1) expression [39]. SDF-1 could enhance
pro-angiogenic factors such as CCL and vascular
endothelial growth factor (VEGF) expression and pro-
mote angiogenesis under different pathological condi-
tions [22, 40]. Therefore, one possible explanation for
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the macrophage depletion to enhance the microvessel
density is possibly the up-regulation of pro-angiogenic
factors such as VEGF or chemokines such as SDF-1 in
the brain. Furthermore, macrophage depletion may im-
prove neurological function via promoting bone marrow
stem cell mobilization to the ischemic brain [41]. The
relationship of macrophages and the mobilization of
bone marrow stem cells during ischemic stroke awaits
further investigation.

Conclusions

Although macrophage depletion prior to ischemic stroke
onset is inappropriate for clinical application, it is con-
ducted to explore the role of macrophages during ischemic
stroke. Our results showed that macrophage depletion is
beneficial for reducing brain injury and promoting tissue
recovery following 14 days of ischemic stroke. However, the
mechanism by which macrophage depletion improved
recovery after ischemia needs to be further investigated. In
conclusion, we explored the role of macrophages at the re-
covery phase of ischemic stroke via peripheral macrophage
depletion induced by clodronate liposomes. Our results
showed that macrophage depletion reduced the brain atro-
phy volume and improved neurological outcomes after
MCAO. Alleviation of ischemic brain injury induced by
macrophage depletion may be due to the reduced myelin
lesion and microglia activation and the enhanced microves-
sel density. Our study suggested that temporary inhibition
of peripheral macrophages could be a promising interven-
tion strategy for the ischemic stroke therapy.

Additional file

[ Additional file 1 Supplementary figures and figure legends. (437 kb) ]
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