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Abstract

Background: Patients with liver cirrhosis and minimal hepatic encephalopathy (MHE) show mild cognitive
impairment and spatial learning dysfunction. Hyperammonemia acts synergistically with inflammation to induce
cognitive impairment in MHE. Hyperammonemia-induced neuroinflammation in hippocampus could contribute to
spatial learning impairment in MHE. Two main aims of this work were: (1) to assess whether chronic hyperammonemia
increases inflammatory factors in the hippocampus and if this is associated with microglia and/or astrocytes activation
and (2) to assess whether hyperammonemia-induced neuroinflammation in the hippocampus is associated with
altered membrane expression of glutamate and GABA receptors and spatial learning impairment. There are no specific
treatments for cognitive alterations in patients with MHE. A third aim was to assess whether treatment with
sulforaphane enhances endogenous the anti-inflammatory system, reduces neuroinflammation in the hippocampus of
hyperammonemic rats, and restores spatial learning and if normalization of receptor membrane expression is
associated with learning improvement.

Methods: We analyzed the following in control and hyperammonemic rats, treated or not with sulforaphane: (1)
microglia and astrocytes activation by immunohistochemistry, (2) markers of pro-inflammatory (M1) (IL-1(, IL-6) and
anti-inflammatory (M2) microglia (Arg1, YM-1) by Western blot, (3) membrane expression of GABA, AMPA, and NMDA
receptors using the BS3 cross-linker, and (4) spatial learning using the radial maze.

Results: The results reported show that hyperammonemia induces astrocytes and microglia activation in the
hippocampus, increasing pro-inflammatory cytokines IL-13 and IL-6. This is associated with altered membrane
expression of AMPA, NMDA, and GABA receptors which would be responsible for altered neurotransmission and
impairment of spatial learning in the radial maze. Treatment with sulforaphane promotes microglia differentiation from
pro-inflammatory M1 to anti-inflammatory M2 phenotype and reduces activation of astrocytes in hyperammonemic
rats. This reduces neuroinflammation, normalizes membrane expression of glutamate and GABA receptors, and restores
spatial learning in hyperammonemic rats.
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Conclusions: Hyperammonemia-induced neuroinflammation impairs glutamatergic and GABAergic neurotransmission
by altering membrane expression of glutamate and GABA receptors, resulting in impaired spatial learning.
Sulforaphane reverses all these effects. Treatment with sulforaphane could be useful to improve cognitive
function in cirrhotic patients with minimal or clinical hepatic encephalopathy.

Keywords: Hepatic encephalopathy, Microglia activation, NMDA receptors, AMPA receptors, GABA receptors

Background

Patients with liver cirrhosis and minimal hepatic en-
cephalopathy (MHE) show attention deficits, mild cogni-
tive impairment, and spatial memory dysfunction [1-4].
Hyperammonemia is a main factor that acts synergistic-
ally with inflammation to induce cognitive impairment
in MHE [5-8]. Inflammation and neuroinflammation
also contribute to cognitive and motor deficits in situa-
tions such as post-operative cognitive dysfunction, aging,
and in some mental (schizophrenia) and neurodegenera-
tive (Alzheimer’s) diseases [9-15].

The mechanisms by which neuroinflammation impairs
spatial learning are beginning to be unveiled. Spatial
learning is mainly modulated in the hippocampus [16]
by mechanisms involving NMDA and AMPA receptors
for glutamate [17]. Sustained neuroinflammation in the
hippocampus alters membrane expression of glutamate
and GABA receptors and impairs spatial learning [18—20].

Animal models of MHE such as rats with portacaval
shunts also show neuroinflammation which contributes
to their cognitive and motor alterations, including spatial
learning impairment [20—24].

Chronic hyperammonemia similar to that present in
patients with liver cirrhosis and MHE impairs spatial
learning in rats in the absence of liver failure [24].
Hyperammonemia per se is enough to induce neuroin-
flammation in the cerebellum, the most susceptible region
in this model [25]. It has not been assessed whether
chronic hyperammonemia per se induces neuroinflamma-
tion in the hippocampus or alters membrane expression
of glutamate and GABA receptors. Two main aims of this
work were: (1) to assess whether chronic hyperammone-
mia increases inflammatory factors in hippocampus and if
this is associated with activation of microglia and/or astro-
cytes and (2) to assess whether hyperammonemia-induced
neuroinflammation in the hippocampus is associated with
altered membrane expression of glutamate and GABA
receptors and spatial learning impairment.

There are no specific treatments for cognitive alter-
ations in patients with MHE. Current treatments are
mainly directed to reduce ammonia levels; however, they
are not satisfactory, and new treatments acting on brain
targets mediating the cognitive alterations could be more
effective [8]. As neuroinflammation mediates cognitive
impairment in MHE and other pathological situations

(see above), a mechanism to improve cognitive function
would be to enhance endogenous anti-inflammatory
systems to reduce neuroinflammation. This may be
achieved by using sulforaphane, which dissociates Nrf2
from keap-1, promoting its translocation to the nucleus
and enhancing antioxidant and anti-inflammatory re-
sponses [26-28]. A third aim of this work was to assess
whether chronic treatment with sulforaphane reduces
neuroinflammation in the hippocampus of hyperammone-
mic rats and restores spatial learning and if normalization
of receptors membrane expression is associated with
learning improvement.

Methods

Animal model

Male Wistar rats were made hyperammonemic by feed-
ing them an ammonium-containing diet as previously
described [29] (Fig. 1). The effects of this model of
hyperammonemia on body weight and food consump-
tion were reported in detail in [30]. The experiments
were approved by the Comite de Experimentacién y
Bienestar Animal (CEBA) of our Center and performed
in accordance with guidelines of the Directive of the
European Commission (2010/63/EU) for care and man-
agement of experimental animals. Ammonia levels in
brain of hyperammonemia rats increase from 166 to
190 % of control rats [25, 31], which is similar to the in-
crease found in models of hepatic encephalopathy such
as rats with bile-duct ligation [25, 31].

Treatment with sulforaphane

Rats were treated daily with sulforaphane (SEN, LKT La-
boratory, St. Paul, MN) or saline. Sulforaphane in sterile
saline was injected intraperitoneally at 0.5 mg/kg per
day. The dose was chosen based on previous studies in
the literature [32].

Treatment started 2 weeks after the ammonium diet
and maintained during all experiments (Fig. 1). Sulfo-
raphane did not affect body weight (Fig. 2) or food con-
sumption in control or hyperammonemic rats.

Ammonia determination in blood

Blood was taken from the tail vein on days 40-42 after
starting the ammonium diet (Fig. 1). Blood ammonia
was measured immediately after blood collection with



Hernandez-Rabaza et al. Journal of Neuroinflammation (2016) 13:41

Page 3 of 11

1 2 3 4 5

*First injection
Day 14

Fig. 1 Experimental design

(N [ N N N D N NN AMMONIUN DIET
1 1 | | | |

[ RADIAL MAZE

fFirst session
Days 28-30

6 7 8 WEEKS

SFN TREATMENT

I SACRIFICE
Days 50-53

fBIood extraction
Days 40-42

J

the Ammonia Test Kit II for the PocketChemBA sys-
tem (Arkay, Inc., Kyoto, Japan) following the manu-
facturer’s specifications.

Immunohistochemistry

Coronal 30-pum sections were cut on a cryostat and
stored at 4 °C in PB with 0.1 % azide. Free-floating sec-
tions were washed; endogenous peroxidase activity was
quenched with 3 % H,O, for 15 min; and sequential
incubations with blocking serum (normal goat serum or
horse serum) and primary antibodies (overnight 4 °C)
were performed. Primary antibodies were against Iba-1
(1:200) from Abcam (Cambridge, UK) and glial fibrillary
acidic protein (GFAP, 1:400) from Sigma (St. Louis,
MO). Incubation with biotinylated secondary antibodies
and with avidin-biotin-HRP complex (ABC kit, Vector,
CA, USA, 1:100) followed. The secondary antibodies
(1:200) used were DAB-H,O, substrates, used to label
antigenic sites. The stained sections were mounted on
slides, dehydrated, and coverslipped.

Analysis of activation of astrocytes and microglia
Analysis of GFAP and Iba-1 staining was performed in
the CA1 region of the hippocampus using the Image]
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Fig. 2 Sulforaphane treatment does not affect body weight. The
body weight at 2, 3, 4, and 6 weeks of ammonium diet are shown
for control (C) and hyperammonemic (HA) rats treated with vehicle
(V) or sulforaphane (SFN). Values are the mean + SEM of 7 rats per
group. Values significantly different from control rats are indicated
by asterisks. **p < 0.01, ***p < 0.001

software. Brain sections from four animals per group
were used. Astrocytes and microglia activation was
assessed by measuring the cell perimeter in eight ran-
domly selected areas (0.45 mm?) per section according
to [33]. The perimeter length for each group is expressed
as percentage of values for control rats.

Analysis of proteins content by Western blot

The animals were sacrificed (Fig. 1) by decapitation and
the whole hippocampi were dissected and homogenized
in 66 mM Tris-HCI (pH 7.4), 1 % SDS, 1 mM EGTA,
10 % glycerol, 1 mM sodium ortho-vanadate, and 1 mM
sodium fluoride containing protease inhibitor cocktail
(Roche, Mannheim, Germany). Samples were subjected
to electrophoresis and immunoblotting as in [34]. Pri-
mary antibodies were against Iba-1,Ym-1 (1:2000) from
Abcam (Cambridge, UK), IL-1B (1:500) from R&D SYS-
TEMS, Minneapolis, USA; IL-6 (1:500) from Biosource,
Camarillo, USA; IL-4 and IL-10 (1:1000) from Abcam
(Cambridge, MA) and TNF-a (1:500) from R&D SYS-
TEMS (Minneapolis, USA), Arg-1 from BD Bioscience
(NJ, USA), and glial fibrillary acidic protein (GFAP)
(1:5000) from Sigma (St. Louis, MO, USA). As a control
for protein loading, the same membranes were also
incubated with anti-actin (Abcam, Cambridge, MA;
1:1,000). Secondary antibodies were anti-rabbit, anti-
goat, or anti-mouse IgG (1:2000) conjugated with alka-
line phosphatase (Sigma, St. Louis, MO). The images
were captured using the ScanJet 5300C (Hewlett- Pack-
ard, Amsterdam, The Netherlands) and band intensities
quantified using the Alpha Imager 2200, version 3.1.2
(Alphalnnotech Corporation, San Francisco).

Analysis of membrane surface expression of glutamate
and GABA receptors

Membrane surface expression of glutamate and GABA
receptors in whole hippocampal slices was analyzed as
described by [35], by cross-linking with BS3.

Transverse hippocampal slices (400 um) were obtained
using a manual chopper. Slices were added to Eppendorf
tubes containing ice-cold standard buffer with or with-
out 2 mM BS; (Pierce, Rockford, IL). Incubation with
gentle agitation proceeded for 30 min at 4 °C. Cross-
linking was terminated by quenching the reaction with
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100 mM glycine (10 min, 4 °C). Slices were suspended in
ice-cold lysis buffer containing protease and phosphatase
inhibitors and homogenized rapidly by sonicating for
20 s. Samples treated or not with BS; were analyzed by
Western blot using antibodies against AMPA-GluR1
(1:1000, Calbiochem), AMPA-GIuR2 (1:1000, Millipore),
NMDA-NR1 (1:1000, BD Pharmigen), NMDA-NR2A
(1:1000, Millipore), GABA, ol (1:1000, Abcam), and
GABA, o5 (1:500, Abcam). The surface expression of
the receptors was calculated as the difference between
the intensity of the bands without BS3 (total protein)
and with BS3 (non-membrane protein).

Spatial learning in the 8-arm radial maze
Spatial learning was assessed as described in [36].

After 2 days of pre-training, training was performed
during 5 days (five trials per day) (Fig. 1). The task in-
volved locating four pellets, each placed at the end of a
different arm according to a random configuration. Con-
figurations were specific for each rat and were kept in-
variable throughout training. The number of right choices
(first visits to baited arms) and spatial learning errors (first
visits to un-baited arms) were calculated for each day. A
learning index defined as number of right choices-learning
errors was used to evaluate learning of the task. A criterion
of a learning index was determined in 10 points.

Statistical analysis

Results are expressed as mean + SEM. Data were ana-
lyzed by analysis of variance (ANOVA). Newman-Keuls
multiple post hoc comparisons were made after the
ANOVA to explore main and interaction effects. Signifi-
cance levels were set at a < 0.05.

Results

Blood ammonia levels were 18 +3 pum in control rats
and were significantly (p < 0.001) increased in hyperammo-
nemic rats to 54 +7 pum. Sulforaphane did not affect am-
monia levels in control (18 +3 pm) or hyperammonemic
(49 + 6 pum) rats. These data show that the effects of sulfo-
raphane are not due to reduction of hyperammonemia.

Hyperammonemic rats show activation of microglia and
astrocytes in the hippocampus which is reversed by
sulforaphane
Hyperammonemic rats show activation of microglia in
hippocampus, with a significant (p < 0.01) reduction of
the perimeter length to 78 +3 % of control rats. Treat-
ment with sulforaphane restored perimeter length in
hyperammonemic rats to 100 +3 % of control rats and
slightly reduced it (p <0.05) in control rats to 88 +2 %
of untreated control rats (Fig. 3a—d, i).
Hyperammonemic rats also show astrocytes activation,
with altered morphology (Fig. 3g vs. Fig. 3e) and increased
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perimeter length (Fig. 3j), which increased to 127 +9 % of
controls (p < 0.05). Sulforaphane treatment reduced acti-
vation of astrocytes which returned to normal morph-
ology (Fig. 3h vs. Fig. 3g) and to normal perimeter
length (127 £ 8 % of controls) (Fig. 3j).

The presence of neuroinflammation was confirmed by
analyzing the content of inflammatory markers by west-
ern blot in the whole hippocampus (Fig. 4). Hyperam-
monemic rats show increased levels (p <0.05) of the
pro-inflammatory cytokines IL-6 and IL-1(, which
reached 151 + 19 and 142 + 7 % of controls, respectively.
Treatment with sulforaphane normalized the levels of
IL-6 and IL-1f, which returned to 88 +7 and 106 + 11 %
of controls, respectively (Fig. 4a, b).

TNEF-a levels were increased in hyperammonemic rats
(115 £ 9 % of controls), but the effect was not statistically
significant. Sulforaphane reduced TNF-a in hyperammo-
nemic rats to 94+7 % of controls and increased in ion
control rats, non significantly, to 117+7 % of controls.
The levels of anti-inflammatory cytokine IL-10 were re-
duced (p < 0.05) in the hippocampus of hyperammonemic
rats to 79+ 6 % of controls and were not normalized by
sulforaphane, remaining at 80+ 7 % of controls (Fig. 4c).
The levels of IL-4 were not affected by hyperammonemia
(104 + 8 % of controls) or sulforaphane (87 + 11 %).

To assess whether the anti-inflammatory effect of sulfo-
raphane is due to promotion of differentiation of microglia
from pro-inflammatory M1 to anti-inflammatory M2
phenotype, we analyzed the content of M2 markers.
Hyperammonemia tended to reduce the M2 markers
Arginase 1 (Arg-1) and Ym-1, but the effects were
not statistically significant. Treatment of hyperammo-
nemic rats with sulforaphane increased (p < 0.05) the hip-
pocampal levels of Arg-1 and Ym-1 to 123 + 17 and 168 +
32 % of controls, respectively. However, sulforaphane did
not affect Arg-1 and Ym-1 in control rats (Fig. 4d, e).

Hyperammonemia alters membrane expression of GABA,
AMPA, and NMDA receptors in the hippocampus and
sulforaphane reverses these changes

It has been shown that neuroinflammation may affect
neurotransmission by altering membrane expression of
glutamate and GABA receptors [18-20]. We therefore
assessed whether neuroinflammation in the hippocam-
pus of hyperammonemic rats is associated with altered
membrane expression of these receptors.

The membrane expression of the alpha-1 subunit of
GABA receptors is increased (p <0.01) in hyperammo-
nemic rats to 141 + 10 % of controls (Fig. 5a) while that
of the alpha-5 subunit is reduced (p <0.05) to 40+ 6 %
of controls (Fig. 5b). Sulforaphane reverses these effects,
and membrane expression of the alpha-1 and alpha-5
subunits return to 90+ 12 and 102 +22 % of controls,
respectively.
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Fig. 3 Hyperammonemia induces activation of microglia and astrocytes in the hippocampus, which are reversed by sulforaphane. Activation of
microglia and astrocytes in the CA1 region of the hippocampus was assessed by immunohistochemistry in control (C) and hyperammonemic
(HA) rats treated with vehicle (V) or sulforaphane (SFN). Microglia and astrocytes were stained with Iba-1 (a-d) and GFAP (a-h) antibodies,
respectively. i-l The perimeter of the cells was measured using the ImageJ analysis software after setting an intensity threshold and size
filter. The results were expressed as percentage of values in control rats for microglia (i) and astrocytes (j). Values significantly different
from control rats are indicated by asterisks. Values significantly different from hyperammonemic rats are indicated by a. *p < 0.05, **p < 0.01, “p < 0.05,
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The membrane expression of both NR1 (Fig. 5¢) and
NR2A (Fig. 5d) subunits of NMDA receptors is in-
creased (p<0.01) in hyperammonemic rats to 145+ 12
and 124 + 6 % of controls, respectively. Sulforaphane re-
verses these effects, and membrane expression of the
NR1 and NR2A subunits return to 82+ 11 and 86 +8 %
of controls, respectively (Figs. 5¢ and 4d).

Concerning AMPA receptors, the membrane expression
of the GluR1 subunit is increased (p <0.05) in hyperam-
monemic rats to 133 + 11 % of controls (Fig. 5e) while the
expression of the GluR2 subunit is reduced (p <0.05) to
8217 % of controls (Fig. 5f). Sulforaphane reversed the
effects on GluR1, which membrane expression returned
to 85+9 % of controls (Fig. 5e), but not the effect on
GluR2, which expression remained at 73 + 6 % of controls
(Fig. 5¢).

Hyperammonemia impairs spatial learning in the radial
maze, and sulforaphane restores it
We used two parameters to quantify learning ability in
the radial maze: the learning index and the trials needed
to reach the learning criterium. In control rats, the
learning index increased progressively during the 5 days
of tests. Control rats improved their performance across
the days. In two-way RM ANOVA, the effect of training
days was very significant, p < 0.001. The difference was sig-
nificant when comparing day 1 with days 3 and 4 (p <0.01)
or with day 5 (p <0.001), also when comparing day 2 with
day 5 (p<0.05). In hyperammonemic rats, improvement
across the days was lower. The difference was significant
only when comparing days 1 or 3 with day 5 (p < 0.05).
With two-way ANOVA with repeated measures, the
statistics were: interaction effect between treatment and
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Fig. 4 Hyperammonemia increases pro-inflammatory M1 markers IL-13 and IL-6 in the hippocampus. Sulforaphane reduces M1 markers and increases
M2 markers Arginase 1 and Ym-1. The hippocampal content of IL-6 (@), IL-13 (b), IL-10 (), Arginase 1 (d), and Ym-1 (e) was analyzed by Western blot in
control (O) and hyperammonemic (HA) rats treated with vehicle (V) or sulforaphane (SFN). Representative images are shown. Values are the mean + SEM
of 8-12 rats per group. Values significantly different from control rats are indicated by asterisks. Values significantly different from hyperammonemic rats
are indicated by a. *p < 0.05, *p < 001, “p < 0.05, “p < 0.01

training, F = 1.8 and p = 0.067; training effect, F =30 and
p <0.0001; treatment, F=4.7 and p = 0.0098, and match-
ing F=3.5 and p<0.0001. Learning index was signifi-
cantly lower in hyperammonemic rats at days 3 and 4
(2.7 £0.9 and 5.7 * 1.6, respectively) than that in control
rats (11.3 £ 0.9 and 11.9 + 1.7, respectively). Sulforaphane
treatment significantly (p <0.01) improved learning
index in hyperammonemic rats to 9.1+ 0.9 and 9.0+ 1.5
on days 3 and 4, respectively (Fig. 6a).

Hyperammonemic rats needed more trails (26 +2, p <
0.05) than controls (16 + 2) to reach the learning criterion,
confirming reduced learning. Sulforaphane improved
learning ability in hyperammonemic rats, reducing to
20 £2 the number of trials to reach the criterion,
which was not different from controls (Fig. 6b).

The reduced learning ability of hyperammonemic rats
is also reflected in the lower number of rats reaching the
learning criterion along the training days (Fig. 6¢). The
difference is statistically significant (p < 0.05, in two-way
ANOVA) on days 3 and 5. Treatment with sulforaphane
increased the number of rats reaching the criterion on
each day, which was not different from control rats.

Discussion
The data reported are summarized in Fig. 7 and show
that hyperammonemia induces activation of astrocytes

and microglia in the hippocampus, increasing the levels
of pro-inflammatory cytokines IL-1 and IL-6 and redu-
cing the anti-inflammatory IL-10. The levels of TNF-a
were increased but not significantly. There was also a
tendency to reduce the levels of the M2 microglia
markers Arg 1 and Ym-1 which did not reach statistical
significance. These data clearly show that hyperammone-
mia promotes M1 microglia activation and neuroinflamma-
tion. The fact that the changes in some markers reach
statistical significance while others did not suggest that
hyperammonemia induces stronger effects on some pro-
inflammatory mechanisms (e.g., activation of M1 microglia)
than on others. The milder effects could be masked by the
variability of the data, not reaching statistical significance.

This is associated with altered membrane expression
of AMPA, NMDA, and GABA receptors which would
be responsible for altered neurotransmission and impair-
ment of spatial learning in the radial maze.

Sustained inflammation in the hippocampus impairs
spatial learning in different situations including post-
operative cognitive dysfunction [37], rats injected with
the bacillus Calmette-Guérin in the hippocampus [38] or
with lipopolysaccharide [39], and rats with hepatic
encephalopathy [20]. Altered long-term potentiation
(LTP) in the hippocampus would mediate spatial
learning impairment [22].
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Fig. 5 The membrane expression of the alpha-1 (@) and alpha-5 (b) subunits of GABA4 receptor, GIuR1 (e) and GIuR2 (f) subunits of AMPA
receptors, and NR1 (c) and NR2A (d) subunits of NMDA receptors is altered in the hippocampus of hyperammonemic rats and is normalized by
treatment with sulforaphane. Membrane expression of each subunit in the hippocampus was analyzed using the BS3 cross-linker procedure as
described in the Methods section. Samples incubated in the absence or presence of BS3 were subjected to Western blotting using antibodies for each
of the subunits. Representative images are shown. Samples in the absence of BS3 represent the total amount of each protein. Samples in the
presence of BS3 represent the non-membrane fraction. The intensities of the bands were quantified, and membrane expression was calculated
as the difference of intensity between samples without and with BS3. Values are expressed as percentage of control rats and are the mean +
standard errors of 8-12 rats per group. Values significantly different from control rats are indicated by asterisks and from hyperammonemic rats

by a. *p < 0.05**p < 0.01, “p < 0.05, ““p < 0.001
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\

It is considered that LTP in hippocampus is the basis
for spatial learning [40], and the main form of LTP is a
consequence of an increased membrane expression of
AMPA receptors triggered by activation of NMDA re-
ceptors [41]. The mechanism linking glial activation and
neuroinflammation with impaired spatial learning would
be an altered LTP in the hippocampus as a consequence
of the altered membrane expression of AMPA, NMDA,
and GABA receptors. IL-1B in the hippocampus impairs
LTP [42, 43], and this could be due to altered membrane
expression of glutamate and GABA receptors. IL-1f
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alters membrane expression of GABA, receptors [19, 44]
and GluR1 receptors [45].

We show here that in hyperammonemic rats, there is
a strong alteration in the membrane expression of
GABA, AMPA, and NMDA receptors, with selective in-
creases of alpha-1 subunit of GABA receptors, NR1 and
NR2A subunits of NMDA receptors and GluR1 subunit
of AMPA receptors, and reduced membrane expression
of alpha-5 subunit of GABA receptors and GluR2 sub-
unit of AMPA receptors. This must result in significant
alterations in neurotransmission which would contribute
to the altered LTP reported for rats with chronic hyper-
ammonemia [46, 47]. Impaired LTP would, in turn, con-
tribute to impair spatial learning in the radial maze.

In this work, we have used a model of chronic hyper-
ammonemia without liver failure. It has been shown that
most effects induced by chronic hyperammonemia (in-
cluding neuroinflammation) are also present in rats with
liver failure (e.g., [25]). Hyperammonemia plays an im-
portant role in HE; however, other factors are also in-
volved [5-7]. It would be therefore useful to repeat these
studies in an animal model with liver failure (such as
rats with bile-duct ligation).

Treatment with sulforaphane promotes in hyperam-
monemic rats the differentiation of microglia from the
pro-inflammatory M1 to the anti-inflammatory M2
phenotype, increasing the levels of the M2 markers Arg-
1 and Ym-1. This effect is not observed in controls. This
may be attributed to the fact that in control rats, micro-
glia is not activated, remaining in resting state, not
reaching M1 phenotype. It is not possible therefore to
promote its differentiation from M1 to M2. In control
rats, sulforaphane increases IL-6 levels while in hyper-
ammonemic rats reduces them. As discussed above, the
reduction in hyperammonemic rats would be due to the
promotion of microglia differentiation from M1 to M2
phenotype. In control rats, the increase of IL-6 would be
a consequence of Nrf2 activation by sulforaphane. It has
been reported that the promoter for IL-6 contains a
functional antioxidant response element which is acti-
vated by Nrf2 and that Nrf2 is a potent activator of IL-6
gene transcription in vivo [48]. Sulforaphane did not re-
store the levels of IL-10 in hyperammonemic rats, suggest-
ing that a minor part of the effects of hyperammonemia
cannot be restored by sulforaphane or that this restoration
may take a longer time.

Sulforaphane also reduces astrocyte activation in
hyperammonemic rats. This may be due to a direct
effect of sulforaphane on astrocytes. It is also possible
that astrocyte activation could be a consequence of
microglial activation. If this were the case, sulforaphane
would be reducing astrocyte activation indirectly, by
promoting differentiation of activated microglia to the
anti-inflammatory form M2. It has been shown that
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sulforaphane crosses the blood-brain barrier (reviewed
in [49]). It is therefore very likely that the effects of
sulforaphane would be due to a direct action on hip-
pocampal microglia and/or astrocytes.

Sulforaphane has been proposed to be beneficial to
treat cancer and enhance the anti-tumor activity of can-
cer therapies [50-52]. The main mechanism by which
sulforaphane exerts this beneficial effect was traditionally
thought to be through Nrf2-mediated induction of phase
2 detoxification enzymes. However, it is becoming clear
that multiple mechanisms activated in response to
sulforaphane contribute to its chemoprotective action,
including suppression of cytochrome P450 enzymes,
induction of apoptotic pathways, suppression of cell
cycle progression, inhibition of angiogenesis, and anti-
inflammatory activity [50, 51].

Sulforaphane exerts anti-inflammatory effects in some
pathological situations such as lipopolysaccharide-
induced lung injury [53], experimental autoimmune en-
cephalomyelitis [54], kainate-induced hippocampal cell
death [55], and experimental parkinsonism in mice [56].
The mechanisms by which sulforaphane reduces inflam-
mation involves both Nrf2-dependent [53] and inde-
pendent [57] mechanisms. At the peripheral level,
sulforaphane protects from T cell-mediated autoimmune
disease by inhibition of IL-23 and IL-12 in dendritic cells
and antagonizing Thl7-related inflammation in mice
[54, 58]. At the brain level sulforaphane activates
Nrf2 and antioxidant phase II genes and heme oxy-
genase [26, 56].

Here, we show that sulforaphane also reduces microglial
activation and pro-inflammatory factors in hippocampus

by an additional mechanism: promoting differentiation of
microglia from the pro-inflammatory M1 to the anti-
inflammatory M2 phenotype.

Conclusions

The results reported show that hyperammonemia induces
activation of astrocytes and microglia in the hippocampus,
increasing the levels of pro-inflammatory cytokines IL-1
and IL-6. This is associated with altered membrane ex-
pression of AMPA, NMDA, and GABA receptors which
would be responsible for altered neurotransmission and
impairment of spatial learning in the radial maze. Treat-
ment with sulforaphane promotes differentiation of
microglia from the pro-inflammatory M1 to the anti-
inflammatory M2 phenotype and reduces activation of
astrocytes in hyperammonemic rats. This reduces neu-
roinflammation, normalizes the membrane expression of
glutamate and GABA receptors in hippocampus, and re-
stores spatial learning ability in hyperammonemic rats.
Treatment with sulforaphane could be useful to improve
cognitive function in cirrhotic patients with minimal or
clinical hepatic encephalopathy.
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