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Docosahexaenoic acid (DHA) is an omega-3 (w-3) long-chain polyunsaturated fatty acid (LCPUFA) relevant for brain
function. It has largely been explored as a potential candidate to treat Alzheimer's disease (AD). Clinical evidence
favors a role for DHA in the improvement of cognition in very early stages of the AD. In response to stress or damage,
DHA generates oxygenated derivatives called docosanoids that can activate the peroxisome proliferator-activated
receptor y (PPARy). In conjunction with activated retinoid X receptors (RXR), PPARy modulates inflammation, cell
survival, and lipid metabolism. As an early event in AD, inflammation is associated with an excess of amyloid {3
peptide (AB) that contributes to neural insult. Glial cells are recognized to be actively involved during AD, and
their dysfunction is associated with the early appearance of this pathology. These cells give support to neurons,
remove amyloid {3 peptides from the brain, and modulate inflammation. Since DHA can modulate glial cell
activity, the present work reviews the evidence about this modulation as well as the effect of docosanoids on
neuroinflammation and in some AD models. The evidence supports PPARy as a preferred target for gene modulation.
The effective use of DHA and/or its derivatives in a subgroup of people at risk of developing AD is discussed.
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Background

Docosahexaenoic acid (DHA), an omega-3 (»-3) long-
chain polyunsaturated fatty acid (LCPUFA), is involved in a
wide range of cellular processes in mammalian cells. It
serves as a structural component and as a precursor for
bioactive compounds that modulate cell signaling and gene
expression [1]. Humans lack Al5-desaturase and Al2-
desaturase, and they do not produce aL.NA de novo, and it
is from this compound that eicosapentaenoic acid (EPA)
and ultimately DHA are produced [2, 3]. Consequently,
humans need to acquire DHA or its precursors, a-linolenic
acid (aLNA) and EPA, from food in order to fulfill bodily
requirements [2, 4]. DHA and its precursors are present in
oils from macroalgae [3] and cold water fish, from the latter
in relatively large quantities [1]. Alternatively, DHA can be
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synthesized from its precursor «LNA, which is found in oils
from seeds and green leafy vegetables [1, 3, 5].

DHA absorption and synthesis from aLNA and EPA
During fetal life and breast feeding, DHA is obtained
from the mother. After weaning, DHA derives from ani-
mal food, especially fish [1, 5, 6]. In nature, »-3 fatty
acids are mainly esterified as triacylglycerol (TAG) and
phospholipids (PLs) [2, 7]. TAG is hydrolyzed in the di-
gestive tract by lingual, pancreatic, and gastric lipases to
yield monoacylglycerols and free LCPUFAs [2, 7]. PLs
are hydrolyzed in the small intestine by calcium-
independent phospholipase A, (iPLA,) and other lipases
[7]. The products of TAG and PL hydrolysis are then
absorbed by enterocytes and reassembled into TAG and
PLs, which are then integrated into chylomicrons, high-
density lipoproteins, and very low-density lipoproteins,
finally reaching the liver via the lymphatic system and
the blood stream [2, 7].
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Alternatively, DHA can be obtained from oLNA or
EPA through chain elongation and desaturation pro-
cesses in the liver, involving A6-desaturase (A6D), elon-
gase complex activity, A5-desaturase, and [-oxidation of
tetracosahexaenoic acid to form DHA in the peroxi-
somes [8, 9]. Although oLNA is considered a poor
source for DHA production [4, 10, 11], a diet containing
only aLNA can give adequate amounts of DHA in hu-
man and rat livers [12, 13]. Nevertheless, higher levels of
aLNA and linoleic acid (LA) can potentially inhibit A6D
and DHA production through B-oxidation [14]. After
DHA is synthesized in the liver, it is esterified into PLs,
assembled into lipoproteins, and secreted into the blood
where it is hydrolyzed again by endothelial lipases and
taken up by tissues [7, 15].

DHA entrance into the brain by crossing the blood-brain
barrier

The central nervous system (CNS) has the second great-
est amount of lipids of the body and ~35 % are polyun-
saturated fatty acids (PUFA), being DHA and
arachidonic acid (AA), the two major PUFA [16, 17].
DHA is the most predominant fatty acid (FA) found at
the sn-2 position in PLs on neuronal and synaptic mem-
branes [18].

Most of the DHA that constitutes the brain before birth
and during breast feeding is supplied from the mother
[19]. After weaning, DHA is supplied mainly by the liver,
where it can be synthesized from its precursors, aLNA,
and EPA [19]. DHA is incorporated into the brain from
the blood [20]. It has been shown that unesterified DHA
can diffuse through the blood-brain barrier (BBB) and
readily enter the brain [21]. However, DHA in the blood is
bound to serum albumin (SA), either as an unesterified
FA or esterified as DHA-lysophosphatidylcholine (DHA-
LPC) [22]. After being released from SA, DHA is able to
cross the BBB, mainly in the form of DHA-LPC [22]. Al-
though passive diffusion of DHA has been shown, PUFA
18 and 20 carbons long can enter the brain through FA
transporter proteins (FATP) and FA binding proteins
(FABP), as shown in human brain microvessel endothelial
cells [23]. Specially, FATP4, FABP5, and fatty acid translo-
case/CD36 mediate PUFA transport [23]. In the hippo-
campus of primates, FABP5 is expressed in neurons while
FABP7 is found in astrocytes [24], suggesting a possible
mechanism for DHA transport. Also, a previously identi-
fied orphan sodium-dependent LPC symporter, Mfsd2a,
has been implicated in the transport of DHA-LPC but not
free DHA across BBB microvessels [25]. In this sense, it
has been shown that DHA-LPC esterified at the sn-2 pos-
ition is captured by the brain more efficiently than free
DHA in rats [26, 27].

In the rat brain, there is evidence that astrocytes are
capable of synthesizing DHA continuously [28, 29] and
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that endothelial cells from microvasculature, astrocytes,
and neurons synthesize DHA and cooperate for DHA
accretion in the brain [30]. Interestingly, DHA accretion
decreases slightly after the administration of a high con-
centration of DHA in the mouse brain [21] and in cul-
tured astrocytes [29], suggesting that some mechanisms
regulate DHA entrance and synthesis when DHA levels
increase. However, in these experiments, DHA levels
were not affected importantly [21, 29]. Finally, it has
been suggested that DHA conservation mechanisms
might exist in the brain, as has been shown in retinal
pigment epithelium [31], suggesting that DHA entrance
and production in the brain are sensed and regulated.

DHA and DHA derivatives are involved in neuroprotection
through peroxisome proliferator-activated receptors
DHA in the brain of humans and other vertebrates par-
ticipates in normal growth, development, and function
[32], acting as a neurotrophic factor [33] and modulating
synaptic activity [34]. Interestingly, DHA-oxygenated de-
rivatives are known to be produced during strokes in the
murine brain [35] and to prevent leukocyte infiltration
in ischemic murine models [36], thus modulating in-
flammation in the brain.

DHA derivatives are produced from the DHA contained
in the acyl chains of PLs of cellular membranes. In the
cellular membrane, DHA is cut by the action of iPLA,
[37, 38]. Subsequently, lipoxygenases (LOX) [36, 37, 39,
40] and/or cyclooxygenase 2 (COX2, induced by stress
stimuli) [35, 41] produce di- and trihydroxylated DHA
derivatives, called resolvins or protectins (docosanoids)
[36, 37, 39-41]. The first DHA derivatives described
were called resolvins, due to their anti-inflammatory
activity in murine brain exudates [41]. In particular, the
7S,8R,17S-trihydroxy-docosa-4Z,9E,11E,13Z,15E,19Z-hex-
aenoic acid called resolvin D1 (RvD1) has been shown to
participate in resolution of inflammation [41, 42]. Another
studied DHA derivative that acts as a neuro-protector is
the 10R,17S-dihydroxy-docosa-4Z,7Z,11E,13E,15Z,19Z-
hexaenoic acid, called neuroprotectin or protectin D1
(NPD1) [36, 40], shown to halt the inflammatory response
by decreasing the number of cytotoxic T cells and their
migration, as well as the production of pro-inflammatory
mediators [36].

DHA is an endogenous ligand for retinoid X receptors
(RXR), which form heterodimers with peroxisome
proliferator-activated receptors (PPARs) to produce nu-
clear transcription factors RXR/PPAR, and these can
modulate gene expression in different cell types [38, 43].
Additionally, NPD1, but not DHA, activates the PPAR-y
isoform (PPARy) in human neuronal and glial cells [37].
DHA-oxygenated synthetic derivatives are also potent
activators of PPARy [44], and PPARs lead in the murine
model to the control of differentiation or neurons and
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astrocytes [45, 46]. Furthermore, PPARs modulate
COX2 activity in the murine brain [47], suggesting a
feedback loop in DHA signaling because COX2 partici-
pates in DHA oxygenation [35, 41]. Thus, DHA and
DHA derivatives can exert gene modulation through
RXR/PPARY activation, dimerization, and translocation
to the nucleus (Fig. 1).

DHA modulates the inflammatory response in AD
Alzheimer’s disease (AD) is a neurodegenerative disease
that leads to dementia. It is characterized histologically
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Fig. 1 DHA modulation of gene transcription through the action of
RXR/PPARYy transcription factors heterodimers. DHA is cut from PLs
in cellular membranes by the action of iPLA,. DHA is oxygenated by
the action of LOX, or alternatively by the action of COX2. The products
of DHA oxygenation are docosanoids, such as NPD1 and RvD1. DHA is
a ligand for RXR and NPD1 for PPARy. Activation of RXR and PPARy
leads to the formation of RXR/PPARY, which binds to a PPAR response
element, in the promoter region of target genes [38], thus modulating
inflammation, lipid metabolism, and cellular differentiation. DHA
docosahexaenoic acid, PL phospholipids, iPLA, independent
phospholipase A,, LOX lipoxygenases, COX2 cyclooxygenase 2,
NPD1 neuroprotectin D1, RvDT resolvin D1, RXR retinoid X receptor,
PPARy peroxisome proliferator-activated receptors gamma, RXR/
PPARy heterodimers of nuclear transcription factors RXR and PPARy.
Activation is indicated by black arrows and modulation by the
black gaped arrow
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by amyloid deposits, constituted by aggregates of amyl-
oid B peptide (AP) and neurofibrillary tangles, con-
formed by aggregates of microtubule-associated tau
protein and cell loss [48, 49]. AP is the cleavage product
of amyloid B protein precursor (APP) by the f site cleav-
age enzyme 1 (BACEL) and the y-secretase complex.
Overproduction or inefficient removal of Af is thought
to trigger early damage in AD [48, 49]. A can be aggre-
gated into oligomeric soluble species, fibrils, and finally
amyloid plaques or deposits, leading to glia activation
and the induction of an inflammatory response [50, 51].

Participation of glial cells in AD

Glial cells, astrocytes, and microglia, the main support-
ive cells of neurons, are encountered near AP plaques
[52, 53]. Nevertheless, the role of glial cells in the path-
ology of AD is not clear. Whereas inactivated or dys-
functional glial cells increase the amyloid burden and
AD pathology, activation of glial cell leads to the pro-
duction of cytotoxic molecules like nitric oxide (NO),
thus contributing to inflammatory damage [50-53].

Astrocytes

Astrocytes are part of the BBB, providing protection to
neurons by secreting neurotrophic factors. They nurture
neurons and release neurotransmitters that sustain neur-
onal synaptic transmission [51-54]. In AD, astrocytes
are associated with the amyloid pathology and an in-
flammatory environment, and when activated, they ac-
quire a greater size and express higher levels of glial acid
fibrillary protein (GFAP) [52]. In addition, astrocytes can
become dysfunctional by AP, especially by toxic oligo-
meric species that lead to calcium dyshomeostasis and
finally disrupt astrocytic support of neuronal synaptic
function (reviewed in [55]). Astrocytes are structural
components of the BBB, and cerebral-vascular deficien-
cies increase the influx and buildup of A in the brain.
This further contributes to the sustained activation of
glia (microglia and astrocytes) and to the secretion of
two pro-inflammatory molecules, tumor necrosis factor-
a (TNF-a), and interleukin-1f (IL-1p), which in turn
disrupts glutamatergic transmission [55]. In addition,
astrocytes express proteins that are involved in the
clearance of AP. The failure of neprilysin, insulin-
degrading enzyme, and matrix metalloproteinase 9
(proteolytic enzymes) to degrade AP promotes the
buildup of AP in the brain parenchyma, the activation
of glial cells, and even a greater AP secretion by astro-
cytes (reviewed in [56]). Moreover, apolipoprotein E
(APOE) is needed for AP clearance by astrocytes, and
bearing APOE ¢4 allele decreases A clearance and in-
creases AP deposition [57]. The sustained activation of
astrocytes increases the production of cytotoxic media-
tors, such as NO, complement protein, and reactive
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oxygen species (ROS) [57]. For example, increased pro-
duction of the complement factor 3 protein in the pres-
ence of AP and the activation of the nuclear
transcription factor kappa-light-chain-enhancer of acti-
vated B cells (NF-kB) has been suggested to impair the
synaptic function of neurons and the behavior of mice
in a model of AD [58]. However, these results are con-
troversial, and the rational of the experimental methods
has been debated [59]. Finally, activated astrocytes lead
to the release of chemokines such the C-X-C motif lig-
and 10 (CXCL10), which in turn attracts microglia to
AP sites through the C-X-C chemokine receptor 3
(CXCR3) [52, 53] (Fig. 2).

Microglia

Microglial cells are the immune-competent cells of the
CNS and the primary phagocytic cell responding to Af.
When isolated and exposed to AP, microglia from AD
brain tissue shows elevated expression of interleukin 1
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(IL-1), TNF-qa, interleukin 6 (IL-6), and interleukin 12
(IL-12). This strongly suggests that either AP or amyloid
plaques can initiate the activation of microglia and the
subsequent release pro-inflammatory molecules in the
AD brain [52, 53]. Depending on their activation state,
microglia may contribute to the toxic milieu in AD. Like
macrophages, microglia exhibit the pro-inflammatory
(M1) phenotype, characterized by the expression of cyto-
toxic genes TNF-aq, IL-1, IL-6, IL-12, and interleukin 18
(IL-18), as well as impaired phagocytic capacity [57]. The
anti-inflammatory (M2) phenotype, on the other hand, is
characterized by expression of anti-inflammatory mole-
cules interleukin 4 (IL-4), interleukin 10 (IL-10), interleu-
kin 13 (IL-13), and transforming growth factor  (TGF-f),
as well as by increased phagocytic capacity without pro-
duction of the toxic NO [57]. However, these two states of
activation are assumed to be the extremes of a variety of
activation states, and all can contribute differently to AD
progression [57]. In addition, aging can enhance
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Fig. 2 Participation of glial cells in AD. T AB is secreted by the action of BACET and y-secretase, thus forming aggregates of AR (oligomers, insoluble
fibrillary aggregates and plaques), 2 microglia (M2- like phenotype) and astrocytes capture and degrade AR peptides, 3 AB aggregates can activate or
harm microglia and astrocytes, promoting the production of pro-inflammatory cytokines and mediators, 4 dysfunction of microglia and astrocytes
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microglia’s sensitivity, exacerbating the inflammatory re-
sponse [53, 57], thus favoring the M1 phenotype by de-
creasing the phagocytic ability of microglia. Nevertheless,
microglia are activated and migrate to amyloid deposits
early in the pathogenesis of a mouse model of AD [60]. In
old AD patients, microglia from the hippocampus is the
prominent proliferating cell population surrounding amyl-
oid deposits [61]. Also, an increased number of activated
microglia are detected in the dentate gyrus of hippocam-
pus in the triple transgenic mouse model of AD (3xTg-
AD) before overt plaque deposition [62], suggesting that
microglia respond early in the pathology of AD and be-
come more active than astrocytes. It is unclear whether
this contributes to the pathology or is a mechanism to
contain AP damage. Additionally, microglia are more ef-
fective than astrocytes for phagocyting fibrillar AP, except
when the latter are associated to APOE, apolipopro-
tein J (APOJ), al-antichymotrypsin, or serum amyloid
P-complement Clq protein, which are present in
amyloid plaques. Furthermore, the same proteins im-
pair phagocytosis of oligomeric AP by astrocytes [63].
Thus, the data suggests that both microglia and astro-
cytes may have differential roles in inflammation dur-
ing the pathology of AD and that their dysfunction
may contribute to the damage in AD (Fig. 2).

DHA and its derivatives as modulators of glial cell activity
A large amount of evidence, in cellular and animal
models under neurotoxic stimuli, has suggested that
DHA can prevent inflammation by modulating glial cell
activity [64—67]. In vitro, DHA diminishes the activation
of microglia, the production of pro-inflammatory cyto-
kines such as TNF-q, IL-1f, and IL-6, and the produc-
tion of the chemokines C-C motif ligand 2 (CCL2), C-C
motif ligand 3 (CCL3), and CXCL10 [67]. In microglia
derived from mice, DHA decreases the release of NO
that is induced by lipopolysaccharide (LPS) or interferon
y (IEN-y) and myelin [68]. DHA reduces production of
the pro-inflammatory cytokines and NO induced
through toll-like receptors type 3 and 4 (TLR3 and
TLR4) [69]. This is explained in part by DHA incorpor-
ation in the cellular membrane phospholipids that im-
pairs the presentation of antigens, including LPS by
TLR4 and its associated receptor CD14 molecule
(CD14), thus preventing NF-«B activation and synthesis
of IL-1p and TNF-a [70]. On the other hand, DHA in-
hibits p38 mitogen-activated protein kinase (p38 MAPK)
phosphorylation [67, 71], thus inhibiting the expression
of inflammatory molecules, and promotes the activation
of PPARy [71], which modulates lipid and glucose me-
tabolism. In microglia exposed to LPS, DHA inhibits the
pro-inflammatory characteristics of microglia, including
enlarged lipid bodies (lipid droplets, composed of neu-
tral lipids, mainly phospholipids, sterols, triacylglycerols,
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sterol esters, and proteins) [72], involved in the pro-
duction of inflammatory mediators [73] and NO.
Hence, this mechanism of DHA lessens dendritic
damage associated with inflammation in hippocampal
slices of mice [74].

In vitro and in vivo, microglia pro-inflammatory activ-
ity is associated with an ameboid-like phenotype and the
expression of pro-inflammatory cytokines and chemo-
kines related to the M1 macrophage phenotype. DHA
treatment reduces ameboid morphology in Miiller’s glia
(microglia) in the retina [75] and leads to a phenotype
with extended branches and the expression of molecules
of the M2 macrophage phenotype, related to termination
of inflammation [68]. Nevertheless, it is also possible
that DHA inhibits the synthesis of pro-inflammatory
mediators without inducing a change in phenotype of
microglia, despite prompting the inhibition of p38
MAPK phosphorylation and the activation of PPARY, re-
lated to anti-inflammatory action [71]. Furthermore, DHA
anti-inflammatory effects are accompanied by an increase
in the phagocytic activity of microglial cells [68]. In a hu-
man microglial cell line (CHME3), DHA stimulates Ap
phagocytosis and promotes an anti-inflammatory profile
[76]. Apart from its anti-inflammatory action, DHA pro-
motes antioxidant activity in BV-2 microglia, by up-
regulation of heme oxygenase-1 (HO-1) and protein
kinase B (AKT) activation [77]. In addition, increased total
glutathione levels have been found in microglia cells under
DHA administration [69], supporting DHA role in anti-
oxidant activity in these cells, which could protect them
against the oxidative damage associated with AD.

Supplementation of DHA in rodents and humans dem-
onstrates anti-inflammatory action and tissue protection
in microglia. DHA enhanced photoreceptor survival and
converted activated microglia into a quiescent phenotype
in retinal sections of retinoschisin (Rslh)-deficient mice
[78], resembling that of phagocytic non-inflammatory
microglia. After induction of cerebral ischemia, DHA re-
duces central macrophage/microglia activation, leukocyte
infiltration, peripheral leukocyte activation, and expression
of TNF-a, IL-1p, IL-6, monocyte chemotactic protein-1
(MCP-1), and the CCL2 receptor (CCR2). Also, post-
stroke oxidative stress decreases with DHA supplemen-
tation, as demonstrated by low c-Jun N-terminal kinase
(JNK) phosphorylation, as well as activation of c-Jun
phosphorylation and activating protein-1 (AP-1), and
an elevated expression of NF-E2-related factor-2 (Nrf2)
and HO-1 [79]. In rats with injured sciatic nerve, DHA
treatment significantly reduces neurogenic pain and
neuronal damage by reducing allograft inflammatory
factor 1 (AIF, also known as induction of brown adipo-
cytes, iba-1), positive satellite cells (macrophages or
microglia) and expression of the pro-apoptotic p53 pro-
tein in the dorsal root ganglia (DRG) [66]. The review
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of Hjorth and Freund-Levi deals with DHA and EPA
action on microglial cells [80].

DHA modulation of astrocytes also demonstrates fine
tuning of neuronal activity through inhibition of pro-
inflammatory mediators and an important regulation of
astrocytic activity. Astrocytes cultured from the rat brain
and pre-incubated with DHA prevent the cytotoxic effects
of excessive unconjugated bilirubin (UCB) and increase
the activity of superoxide dismutase (SOD), catalase
(CAT), and glutathione peroxidase (GPx), therefore con-
tributing to the antioxidant defense [81]. DHA-treated as-
trocytes also decrease the production of TNF-a and IL-6
while attenuating the phosphorylation of both p38 and
p42/44 MAKP, suggesting modulation of TLR4 [82].
Following in vitro ischemia, DHA prevents calcium
dyshomeostasis and endoplasmic reticulum stress (ERS) in
astrocytes by acting on inositol 1,4,5-triphosphate re-
ceptors, attenuating the phosphorylation of eukaryotic
initiation factor 2a (EIF2a) and activating transcription
factor-4 (ATF-4) following in vitro ischemia [83]. Im-
portantly, DHA modulates glutamate transmission by
regulating glutamate transport in astroglia [84] and
thus can potentially alleviate the dysregulation of cal-
cium homeostasis and glutamatergic transporters asso-
ciated with AD [55]. The importance of DHA levels in
glutamate recycling by astrocytes has been explored by
Latour and collaborators, showing that low levels of
DHA in rats are associated with increased astroglial ex-
pression of GFAP and decreased uptake of glutamate
by astrocytes [85].

Like DHA, the docosanoid NPD1 promotes a ramified,
non-inflammatory microglial phenotype and attenuation of
choroidal neo-vascularization when administered topically
in the eye of mice [86]. The NPD1 isomer 10S,17S-dihy-
droxy-docosa-4Z7,7Z,11E,13Z,15E,19Z-hexaenoic acid
(DiHDoHE) has similar effects as DHA on calcium
dyshomeostasis and ERS in astrocytes [83].

RvD1 inhibits LPS and IFN-y-induced TNF-« release
in astrocyte cultures by inhibition of the extracellular-
regulated mitogen-activated protein kinase (ERK) [87].
In peripheral blood mononuclear cells (PBMC) from AD
patients, incubated with A, RvD1 promotes the phago-
cytosis of AP in vitro, inhibits apoptosis through the
chemokine receptor G protein-coupled receptor 32
(GPR32), and promotes anti-inflammatory profiles by
up-regulation of the interleukin 1 receptor antagonist
(IL1IRN), the integrin B 2 protein (ITGB2), and NF-kB
expression, along with the down-regulation of pro-
inflammatory cytokines, such as IL-1 and IL-6 [88]. In
summary, DHA and its derivatives down-regulate the
expression of pro-inflammatory mediators related to
cytotoxic cell damage, while up-regulating the expres-
sion of anti-inflammatory mediators. This profile pre-
vents the recruitment of resident or incoming immune
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cells and promotes phagocytic and antioxidant activity.
The effects of DHA and its derivatives are summarized
in Table 1.

Activation of PPARYy is involved in the modulation of glia
by docosanoids

Although there is no clear evidence that DHA is a direct
ligand of PPARYy, in silico and in vitro analysis suggests
that carboxyl group of DHA can form hydrogen bonds
with four of the five amino acids in the ligand-binding
pocket of the PPARy molecule [44]. Furthermore,
synthetic-oxygenated derivatives of DHA, such as 5E-4-
hydroxydocosahexaenoic acid (4-HDHA) and 5E-4-
oxodocosahexaenoic acid (4-oxoDHA), bind and activate
PPARY even more potent than pioglitazone [44]. RvD1
promotes the expression of markers in microglia associ-
ated with tissue remodeling and healing activity. In this
sense, RvD1 enhances IL-4 as well as the activation of
the signal transducer and activator of transcription 6
(STAT6) and the PPARy transcriptional factors [64].
Additionally, NPD1 activates PPARy in human neurons
and glial cell co-cultures. Despite the important decrease
in AP secretion caused by NPDI, its inflammatory re-
sponse has not been evaluated [37]. Moreover, activation
of heterodimeric PPARY/RXRa results in increased
phagocytosis of AP by microglia [89]. In this sense,
PPAR-a isoform agonists diminish the inflammatory re-
sponse of microglia [65], thus making PPARs or PPARy
potential modulation targets of docosanoids. Neverthe-
less, it is necessary to establish methods for delivering a
particular docosanoid in humans (Fig. 3).

DHA and its derivatives modulate the cellular lipidic
environment and amyloid production

DHA modulation of the lipid composition and
organization of cellular membranes has been greatly stud-
ied. Particularly, it is well known that cholesterol levels are
modulated by DHA [90-92]. DHA acyl chains incorporate
directly into the lipid raft micro-domains and exclude
cholesterol, thus changing protein organization, clustering
activity, and signaling [33, 91, 92]. Alternatively, DHA
halts cholesterol synthesis and reduces the y-secretase
contents in lipid rafts and activity of BACE1 [93]. Thus,
the effects of DHA on the lipidic composition of cellular
membranes are of particular interest, because in the brains
of AD patients, highly ordered membrane lipid rafts have
been found with increased levels of cholesterol, which in
turn contain increased levels of BACEL that suggests in-
creased amyloidogenic processing of APP [94].

In the same sense, DHA administration to transgenic
APPswe/PS1dE9 mice, which overproduce AP, has proven
to lessen AP production while decreasing the ratio of
omega-6/omega-3 [95]. Additionally, DHA stimulates the
production of the soluble amyloid precursor protein o
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Table 1 Anti-inflammatory effect of DHA or derivatives on glial cells
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DHA or derivative Cell type Effect

Model Reference

DHA Astrocytes —TNF-a and IL-6

+Antioxidant enzymes

In vitro primary cell culture from rat brain [83-86]

—Calcium dyshomeostasis

+Glutamate uptake
—ERK
—MAPK

RvD1 Astrocytes —TNF-a and ERK

DHA Glia —TNF-a
)
—IL-6
—MCP-1 and CCR2
DHA Microglia +Phagocytic activity
—p38 MAPK
—TNF-a
—IL-1B8
—IL-6

In vivo and in vitro primary cell culture from [89]
rat and human cell line

In vitro primary cell culture from rat brain [79]

In vitro primary cell culture from rat and mice [67-71, 771
brain and cell lines

CCL2, CCL3, and CXCL10

-NO
+Glutathione
-NOS
—COX2
—TLR4 and CD14
—NFkB
DiHDoHE Microglia —Ameboid morphology
DHA Macrophages/Microglia —Infiltration
—CD45"9M/CD11p"Mo"

Choroidal neovascularization in rats [88]

Neurologic pain in rats [66, 79]

—Pro-inflammatory cytokines Cerebral ischemia in rats

+Anti-oxidative pathway

DHA Mdller glia —Ameboid morphology

Retina of CLN6N“F mice [75]

+ increase or activation,— decrease or inhibition, CCL2 C-C motif ligand 2, CCL3 C-C motif ligand 3, CCR2 CCL2 receptor, CD14 receptor cluster of differentiation 14,
COX2 cyclooxygenase 2, DHA docosahexaenoic acid, DiHDoHE 10S,17S-dihydroxy-docosa-4Z,7Z,11E,13Z,15E,19Z-hexaenoic acid, ERK extracellular-regulated
mitogen-activated protein (MAP) kinase, IL-18 interleukin 1B, IL-6 interleukin 6, MCP-1 monocyte chemotactic protein-1, NF-kB nuclear factor kappa-light-chain-

enhancer of activated B cells, NO nitric oxide, p38 MAPK p38 mitogen-activated protein

kinase, RvD1 resolvin D1, TLR4 toll-like receptor type 4, TNF-a tumor necrosis

factor-a, CD45™9"/CD116"9" activated macrophage/microglia [79], CD45 protein tyrosine phosphatase, receptor type C, CD11b integrin subunit alpha M (ITGAM),

CLN6"“ mouse a mouse with natural occurring neuronal ceroid lipofuscinoses (NCLF) al

(sAPPq), the alternative non-toxic product of the APP
cleavage, and decreases Af secretion [96]. The DHA de-
rivative  2-hydroxydocosahexaenoic acid (20HDHA)
shows similar effects on amyloidosis [97], and NPD1 de-
creases AP secretion and protects a primary co-culture of
human neurons and glia by increasing sAPPqa, which fur-
ther increases NPD1 production [98]. In addition, NPD1
down-regulates BACE1 expression and activity through
the activation of PPARy [37], a known target of docosa-
noids [44]. Thus, apart from altering the lipidic profile of
cellular membranes, DHA can also modulate the enzymes
involved in APP processing and AP production.

nd alterations in the ceroid-lipofuscinosis, neuronal 6 (CLN6) gene

DHA prevents AP toxicity by directly interacting
with Ap monomers or oligomers, thus preventing fi-
bril formation, and lipid peroxidation, as well as in-
creasing the viability of neuronal cells in vitro [99].
Additionally, 20HDHA acid, a DHA derivative, pro-
motes AP monomer insertion into the cellular mem-
brane (rather than the oligomeric or fibrillar Afp
species), thus suggesting the prevention of A
oligomerization and derived toxicity [97]. Furthermore,
it has been observed that AP short species (25-35) form
annular structures that solubilize artificial lipid mem-
branes. Increasing DHA levels in the cellular membrane
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pro-
inflammatory
cytokines
IL-1
IL-6

Microglial cell
AP phagocytosis
anti-inflammatory profile
ILIRN
ITGB2
NF-kB
Tissue remodeling and
healing activity
IL-4
Fig. 3 DHA and docosanoids modulate the activation of microglia. DHA and/or docosanoids activate RXR/PPARy heterodimers that promote
transcription of anti-inflammatory cytokines and acquisition of M2 anti-inflammatory profile [74-78]. IL-1 interleukin 1, ILTRN interleukin 1 receptor
antagonist, /TGB2 integrin B 2 protein, /-4 interleukin 4, /-6 interleukin 6, NF-kB nuclear factor kappa-light-chain-enhancer of activated B cells, A8
amyloid B peptide, DHA docosahexaenoic acid, NPDT neuroprotectin D1, RvD1 resolvin D1, RXR/PPARy heterodimers of nuclear transcription factors

RXR and PPARy, M1 pro-inflammatory microglia, M2 anti-inflammatory microglia, green arrows anti-inflammatory and clearance action

J

prevents its solubilization and promotes the disruption of
AP annular structures [100].

DHA treatment in AD: from research to clinical evidence
Since cognitive deficits are the clinical hallmark of AD,
any prospective treatment has to be able to ameliorate
cognitive deficiencies in animal models and finally in
humans. In this regard, DHA has proven to be protect-
ive against cognitive deficits in transgenic and non-
transgenic murine models of AD by restoring dendritic
spine molecular functionality [101, 102], reducing AP
load, helping against AP toxicity [103—106], decreasing
tau pathology [107], and increasing cerebral blood vol-
ume [108]. Furthermore, administration of 20HDHA in
the 5XFAD transgenic mouse model of AD improved
memory and restored cell proliferation in the dentate
gyrus without changing the content of A plaques, sug-
gesting that cell proliferation is a major component of
memory recovery in mice [109].

In patients with AD (from the OmegaAD study), DHA
supplementation increased DHA levels in cerebral spinal
fluid and directly correlated with soluble interleukin-1 re-
ceptor type II, an inhibitor of IL-1, and the modulation of
genes involved in the inflammatory response [110, 111].
This suggests an anti-inflammatory effect of DHA in
humans. However, DHA has proven to be ineffective in
improving cognition in AD patients with mild to moderate
dementia, although some data demonstrate effectiveness

in treating patients with mild cognitive impairment (MCI,
a prodrome to AD) and participants with memory com-
plaints [112].

What could explain DHA ineffectiveness, despite all
the data pointing to DHA benefits? APOE €4 is a risk
factor for developing AD and has been shown to further
reduce the effectiveness of DHA treatment. A clinical
study conducted in conjunction with the Alzheimer’s
Disease Cooperative Study (ADCS) showed that 2 g/day
of DHA had no effect on the cognitive state or brain at-
rophy of AD patients. Nevertheless, AD patients nega-
tive for APOE &4 showed mild though not significant
effectiveness of this treatment [113]. In this sense, influ-
ence of the APOE e4 allele on DHA metabolism has
been studied in healthy individuals, showing lower levels
of DHA in plasma and a lower half-life of DHA in the
body [114]. Also, when comparing mice carrying the
APOE ¢4 allele with those having the APOE €2 allele,
the former show lower brain uptake of DHA [115].
APOE proteins are found on the surface of chylomicron
particles after lipid consumption and serve as ligands for
low-density lipoprotein receptors, thus regulating the
transport of FA. The APOE genotype (g2, €3, or e4)
modifies the rate of clearance of w-3 FA, and APOE &4
accelerates the clearance of w-3 FA, increasing pB-
oxidation of DHA [116] and potentially disrupting lipid
metabolism [117]. However, the authors suggest that re-
sults on DHA metabolism are inconclusive and that the
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analysis need to be improved [116, 117]. Interestingly,
astrocytes from an AD mice model treated with liver X
receptor (LXR) agonists express APOE. Moreover, con-
ditioned medium of primary astrocytes from AD mice
increased AP phagocytosis that relies on APOE and LXR
expression [118]. DHA in combination with the LXR
agonist bexarotene increases APOE expression, which in
turn increases phagocytosis and reduces inflammatory
mediators in astrocytes [119]. Interestingly, bexarotene
also induces APOE €4 lipidation, which increases the
generation of APOE e4—Af complexes and reduces AP
pathology as well as synaptic damage in a mouse model
expressing human APOE [120], suggesting a potential
role of bexarotene for treating AD pathology and defect-
ive APOE &4; however, bexarotene safety must be guar-
anteed [120].

There is evidence of DHA deficiency in the plasma from
patients diagnosed with AD [121-124]. However, there is
controversy concerning DHA levels between AD patients
and cognitive normal subjects [125]. Epidemiological stud-
ies associate scarce DHA consumption with an increased
risk of AD [113]. In a similar sense, mouse models evi-
dence reduced DHA during the aggravation AD pathology
[126]. DHA is the major w-3 PUFA in synaptic mem-
branes. A decreased level of DHA in hippocampus synap-
ses is characterized by altered synaptic transmission and
glutamate release by neurons [127], deficient uptake of
glutamate by astrocytes, and altered extracellular levels of
glutamate [85]. However, restoration of DHA levels by o-
3 supplementation improves altered synaptic transmission
and glutamate release [127].

In light of these findings in humans, DHA metabolism
in AD patients with APOE &4 may be especially dis-
rupted, and the effectiveness of DHA treatment might
be compromised. This suggests a possible subgroup for
DHA administration: those at risk for developing AD
with no overt cognitive deterioration and without bear-
ing the APOE &4 allele.

In this respect, effectiveness of fish oil or DHA-
enriched fish oil has been proved in recent studies.
DHA -enriched fish oil supplementation in MCI has been
observed in a double-blind Malayan study. Subjects over
60 years old received DHA-enriched fish oil during a
year, a treatment that improved memory and attention
[128]. Other supplements containing -3, including
DHA, have also shown stabilization of the cognitive state
in MCI, but as found in previous studies, neither im-
provement nor stabilization was observed in AD patients
[129]. Finally, a recent published retrospective study
evaluated the effect of fish oil consumption on cognition
and brain volume in normal individuals as well as MCI
and AD patients. By using a generalized estimating
equation (GEE) model to analyze incomplete longitu-
dinal data on the Alzheimer’s Disease Neuroimaging
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Initiative (ADNI) from inception to August 2010, it was
found that in all cases, fish oil consumption was associ-
ated with increased brain volume and a better cognitive
performance, except in APOEe4 carriers as observed in
former studies [130].

However, the efficacy of DHA alone has to be reevalu-
ated as it may be more effective in combination with
other nutrients including vitamin B [131], or compounds
such as bexarotene [119]. Alternative treatments may in-
clude the activation of PPARs with agonists or DHA de-
rivatives [132]. Overall, a reevaluation of ®-3 and
especially DHA may provide valuable information about
DHA effectiveness on MCL

Conclusions

DHA is a natural compound that can easily be obtained
from animal sources, especially cold-water fish. DHA
can easily cross the BBB, especially in the form of the
DHA-LPC, and therefore, it is suitable as a therapeutic
agent for neurological disorders. DHA, free or bound in
to PLs, is incorporated into cellular membranes, where
it is released and transformed into docosanoids (oxygen-
ated derivatives) to exert its function within the cells via
RXR and PPARy. Although DHA has been associated
with protection, based on the modification of cellular
membrane fluidity, increasing data suggest that DHA’s
action can be attributable to a signaling cascade in which
docosanoids exert their action by regulating gene ex-
pression of anti-inflammatory and other protective path-
ways. The neurodegenerative disease of Alzheimer has a
complex etiology in which the deposition of AP plays an
important role. Inflammation is an early event in AD
that contributes to increased neuronal damage, espe-
cially due to the dysfunction of glial cells. This dysfunc-
tion leads to the lack of clearance of AP, which further
increases the over-activation of glial cells. Overall, a
harmful environment is created, withdrawing support to
neurons and favoring plaque formation.

In animal models and in vitro, DHA and its derivatives
have proven to regulate gene expression of inflammatory
mediators, as well as enzymes involved in lipid metabol-
ism and AP processing. Activation of PPARy has been
shown to mediate some of the effects promoted by DHA
and its derivatives in neurons and glial cells. Therefore,
based on the current evidence, DHA or its derivatives
can help to prevent or retard inflammatory aspects of
the pathology of AD. This aspect of the disease has been
considered to be an important player in the determin-
ation of the outcome of AD. On the other hand, patients
carrying the APOE &4 allele show disrupted metabolism
of DHA. Further evaluation of this trait is needed. New
longitudinal studies considering early symptoms of cogni-
tive deterioration associated to AD, including MCI, DHA
metabolism in APOE &4 participants, and inflammatory
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status, might help to conclude whether people at risk of
developing AD can potentially be treated with DHA.
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