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Abstract

functional and histological recovery.

IL-25 following CNS trauma.

Background: The cytokine, interleukin (IL)-25, is thought to be critically involved in inducing a type 2 immune
response which may contribute to regeneration after central nervous system (CNS) trauma. We investigated
whether applying recombinant IL-25, locally or systemically, in a mouse model of spinal cord injury (SCI) improves

Findings: Repeated systemic administration of IL-25 did not influence functional recovery following SCI. In contrast,
a single local administration of IL-25 significantly worsened locomotor outcome, which was evident from a
decreased Basso mouse scale (BMS) score compared with phosphate-buffered saline (PBS)-treated controls. This was
accompanied by a significant increase in lesion size, demyelination, and T helper cell infiltration.

Conclusions: These data show for the first time that IL-25 is either ineffective when applied systemically or
detrimental to spinal cord recovery when applied locally. Our findings question the potential neuroprotective role of
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Findings

Introduction

For decades, it has been the general opinion that an im-
balanced immune response plays a major role in the
pathophysiology of central nervous system (CNS)
trauma and disease. Inflammation may prove problem-
atic for many repair processes [1] but may also exert
beneficial effects when closely regulated. The type 2 re-
sponse can be characterized by differentiation of CD4"
T helper type 2 (Th2) cells and the production of the
type 2 cytokines interleukin-4 (IL-4), IL-5, IL-9, and
IL-13 [2-4]. This in turn inhibits phagocytosis [5]
and suppresses inflammatory cytokines [6]. Therefore,
type 2 immune factors can contribute to immune
regulation by suppressing excessive pro-inflammatory
processes [7, 8].

We as well as others have shown that cytokines
associated with Th2 cells such as IL-4 [9-11] and IL-10
[12, 13], not only promote neuronal survival and regen-
eration but also improve functional outcome after CNS
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trauma such as SCI. IL-25 (also known as IL-17E) has
been suggested to be a key player in the origin of a type
2 response [2, 14]. While research has begun to unravel
its importance in immunity in general, conclusive data
on the role of IL-25 in the CNS is lacking. Although a
limited number of studies are currently available, these
tend to point towards a protective role of IL-25 in neuro-
inflammation (reviewed in [15, 16]). For example, IL-25
treatment suppresses Thl7 responses and disease
symptoms in experimental autoimmune encephalomy-
elitis (EAE) and is important in maintaining blood-
brain barrier function [17, 18]. IL-25 expression is
downregulated by pro-inflammatory cytokines such as
tumor necrosis factor-a and IL-1(B, which increase
acutely after trauma. Consistently, IL-25 is reduced in
the pro-inflammatory milieu of CNS lesions [17]. These
findings suggest that an increase in IL-25 may possess
the therapeutic potential to provide repair after CNS
trauma.

In the present short report, we tested whether recom-
binant murine IL-25, administered either as a single
dose locally to the spinal cord or via repeated systemic
injections, improves functional recovery after SCI in
mice. While no clinical effect was observed following
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systemic administration of IL-25, surprisingly, when ap-
plied locally, IL-25 lead to a significant decrease in loco-
motor recovery as well as a substantial increase in lesion
size, demyelination, and T helper cell infiltration.

Methods

A T-cut hemisection injury was performed as previously
described [19-22] in 10-week-old female BALB/c mice
(Harlan, The Netherlands). See supplementary materials
for details. Mice were treated with recombinant murine
IL-25 (500 ng or 1 pg; ImmunoTools, Germany) via two
different methods. Mice received either a single, local
application of IL-25 (1 pg), by placing a cytokine-
saturated gelfoam patch at the lesion site immediately
after injury, or systemic administration via repeated in-
traperitoneal (i.p.) injections (500 ng) once daily for
7 days starting 1 day before injury. The dose for the local
application of IL-25 was chosen based on pilot experi-
ments in our lab, where we observed a non-significant
trend towards a decreased functional recovery after SCI
following treatment with a lower dose (500 ng/ml; data
not shown). The dose for systemic administration was
chosen based on a previous study [17]. Control animals
were treated with vehicle, i.e., phosphate-buffered saline
(PBS) (n =7-10 mice/group). All experiments were per-
formed according to the guidelines of EU Directive
2010/63/EU on the protection of animals used for scien-
tific purposes and were approved by the local ethical
committee for animal experimentation at Hasselt
University.

Starting 1 day after surgery, functional recovery in SCI
mice was measured at regular time points for 3 weeks
using the Basso mouse scale (BMS) [23] as previously
described [19, 20, 22]. Histological analysis was per-
formed on mice receiving a local and systemic applica-
tion of IL-25 as previously described [20, 22]. The
following antibodies were analyzed: anti-glial fibrillary
acidic protein (GFAP; Sigma-Aldrich, Belgium), anti-
myelin basic protein (MBP; Millipore, Belgium), anti-
CD4 (BD biosciences, Belgium), and anti-ionized
calcium-binding adaptor molecule 1 (Iba-1; Wako,
Germany). See Additional file 1 for details.

For quantification of astrogliosis (GFAP) and microglia/
macrophage infiltration (Iba-1), TissueQuest immuno-
fluorescence analysis software (TissueGnostics GmbH,
v3.0) was used, as previously described [24]. Pictures were
taken using a Nikon Eclipse 80i microscope (Nikon,
Brussels, Belgium). See Additional file 1 for details.

To study the effect of IL-25 on cell survival in vitro,
we used a human astrocytoma cell line (CCF) [25], a hu-
man glial (oligodendrocytic) hybrid cell line (MO3.13)
[26], an immortalized murine BV-2 cell line [27], and
primary cortical neuronal cells as previously described
[3]. All cell types were grown under optimal conditions
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and treated with selected concentrations of IL-25 (5 ng/
ml, 50 ng/ml, 500 ng/ml, and 1 pg/ml) for 72 h to meas-
ure viability. See Additional file 1 for details.

Statistical analyses were performed using GraphPad
Prism software (GraphPad Software Inc., USA). Differ-
ences between treatment groups in lesion size, demyeli-
nated area, and T cell numbers were calculated using the
Mann-Whitney U test. Differences in astrogliosis and
microglia/macrophage infiltration, as well as in the BMS
data, were analyzed using the two-way ANOVA for re-
peated measurements (with Bonferroni post hoc tests).
Differences were considered to be significant when p <
0.05. Data in graphs are presented as mean + SEM.

Results and discussion

In this short report, we investigated whether increasing
levels of IL-25, a potential inducer of a type 2 immune
response, can promote functional recovery in a mouse
model of SCI. Considering the widespread expression of
the receptor A subunit of the IL-17 receptor which
forms a complex with the receptor B subunit upon bind-
ing with IL-25 [28], we aimed to distinguish between
local and systemic effects of treatment. We found that
local application of IL-25 led to a significant worsening
in motor performance following injury compared with
PBS controls (Fig. 1a; *p < 0.05). At the histological level,
these results were accompanied by a 30 % increase in le-
sion size (Fig. 1b, g, h; ***p <0.001) and demyelinated
area (Fig. 1c, i, j; **p <0.01). Surprisingly, systemic IL-25
treatment did not influence functional recovery (Fig. 2a).
Furthermore, there was no effect of systemic IL-25 treat-
ment on lesion size or demyelinated area (Fig. 2b, c).

We also analyzed the presence of microglia/macro-
phages (Figs. 1d, k, 1 and 2d) as well as astrogliosis
(Figs. 1e, g, h and 2e), by quantifying the number of Iba-
1+ and GFAP+ cells, respectively. However, no signifi-
cant differences were found between IL-25 treated and
control groups, in both local and systemic treatment.
Following quantification of perilesional CD4" T cells, we
found a significant increase in the number of cells in tis-
sue sections from mice treated locally with IL-25, com-
pared with PBS controls (Fig. 1f, m, n; ***p <0.001).
There was no effect of systemic IL-25 treatment on the
number of CD4" T cells (Fig. 2f). The precise role of T
cells following CNS injury is still subject to discussion.
Although they may display beneficial effects under cer-
tain conditions, accumulation of endogenous T cells may
be considered detrimental [7, 20].

We also investigated the effect of IL-25 in vitro on cell
viability. However, we observed no significant effects of
various concentrations of IL-25 on survival of oligoden-
drocytes, astrocytes, microglia, or primary cortical neur-
onal cells (Additional file 2: Figure S1A-D). These
results may be consistent with the lacking effect of
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Fig. 1 Local application of IL-25 decreases functional outcome and increases lesion size, demyelination, and T cell infiltration following SCI in
mice. (@) Mice receiving local application of IL-25 show a statistically significant decrease in functional outcome when compared to those receiving
PBS, as measured by the BMS (*p < 0.05), n = 9-10 mice/group. (b) Lesion size and (c) demyelinated area were quantified by staining for (g, h) GFAP
and (i, j) MBP, respectively, as depicted by the dotted white line. Image analysis revealed a significant increase in (b) lesion size and (c) demyelinated
area in animals treated locally with 1L-25, compared with the PBS control group. Quantification of (d) Iba-1" and (e) GFAP™ cells after SCI using
TissueQuest software revealed no significant difference in (k, I) microglia/macrophages numbers or (g, h astrogliosis between animals receiving PBS or
IL-25. (f) Significantly more CD4" T cells are present in the spinal cord sections of the (n) IL-25-treated mice, compared with (m) PBS-treated mice,

3 weeks after SCI. Scale bars of representative photomicrographs: (g-I) =500 um, m 4+ n =50 um. Data represent mean + SEM. ***p < 0.001, **p < 0.01,

systemic IL-25 treatment in vivo. They also indicate that
the toxic effect observed locally is not caused by a direct
effect on the above cell types. This suggests that local
administration of IL-25 following SCI activates an indir-
ectly mediated cascade of detrimental immune events.
Although a member of the rather pro-inflammatory
IL-17 family, IL-25 plays a somewhat different role in
the context of CNS inflammation. IL-25 messenger RNA
(mRNA) is highly expressed in polarized Th2 cells [14],

and IL-25 administration in mice drives the Th2 re-
sponse, by elevating IL-4 and IL-13 levels [14, 16]. Sys-
temic IL-25 regulates the development of autoimmune
inflammation mediated by IL-17-producing cells and
suppresses EAE symptoms in a relapse-remitting model
[14]. Additionally, the delivery of IL-25 to the CNS in
two different models of neuroinflammation was able to
drive microglia and macrophages to a more anti-
inflammatory and tissue-protective phenotype [29].
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Fig. 2 Systemic application of IL-25 has no effect on functional or histological outcome following SCI in mice. (a) Repeated i.p. administration of
IL-25 has no significant effect on functional outcome when compared to those receiving PBS, as measured by the BMS, n=7 mice/group.
Sections were stained for GFAP and MBP to determine the (b) lesion size and (c) demyelinated area, respectively. Image analysis revealed no
significant difference in (b) lesion size or (c) demyelinated area in animals treated systemically with IL-25, compared with the PBS control group.
Quantification of (d) Iba-1" and (e) GFAP" cells after SCI using TissueQuest software revealed no significant difference in microglia/macrophages
numbers or astrogliosis between animals receiving PBS or IL-25. (f) There was no significant difference in the number of CD4" T cells present in
spinal cord sections of IL-25-treated mice, compared with PBS-treated mice. Data represent mean + SEM, n =7 mice/group

In contrast to the above positive effects on neuroin-
flammation, our results indicate that systemic adminis-
tration of IL-25 after SCI in mice is ineffective in
improving functional outcome. This result was surpris-
ing given that we as well as others have shown that
treatment with cytokines which induce a type 2 re-
sponse, such as IL-4 and IL-10, are neuroprotective fol-
lowing SCI [11, 12]. Differences in systemic versus local
administration is a well-known phenomenon [30-32],
and our results are consistent with this as local applica-
tion of IL-25 decreased functional recovery after SCI.
Furthermore, we observed that a lower local dose of IL-
25 (500 ng/ml) leads to a non-significant trend towards
a decrease in functional outcome after SCI (data not
shown), indicating that route of administration and dos-
ing are important factors which must be considered
prior to use of cytokine therapy.

Interestingly, it was previously demonstrated that
intraspinal treatment with IL-10 exacerbated damage and
lesion size, while when given systemically, it improved re-
covery after SCI [12]. Taken together, these data reiterate
the well-recognized fact that the route of administration is

of pivotal importance when determining a therapeutic
outcome. Additionally, Mearns et al. recently questioned
the role of IL-25 in Th2 cell differentiation and the induc-
tion of potentially beneficial Th2-cell responses [33]. In
contrast to previous reports, the authors used reporter
mouse technology to show that IL-25 is dispensable dur-
ing differentiation and development of Th2 cells [33]. In
our study, IL-25 failed to have an effect systemically and
even worsened functional outcome when applied locally.
This suggests that the direct involvement of IL-25 in driv-
ing a Th2 response remains questionable. Furthermore,
based on the current opinion on the role of Th2 cytokines
following CNS injury [8], it is safe to suggest that factors
which regulate the type 2 immune response are, in turn,
key players in CNS pathology.

In this short report, we show for the first time that IL-
25 is either ineffective when applied systemically or det-
rimental to spinal cord recovery when applied locally.
These findings indicate that the potential positive effects
of IL-25 and its involvement in driving a beneficial type
2 immune response need to be carefully reconsidered
prior to its use therapeutically.
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Additional files

Additional file 1: Supplementary Materials. Detailed description of
materials and methods used throghout the manuscript, provided as
supplementary information. (DOCX 35 kb)

Additional file 2: Figure S1. IL-25 has no effect on mature
oligodendrocyte, astrocyte, microglia, or primary neuron cell viability. (A)
MO3.13 cells were differentiated to mature oligodendrocytes using PMA
for 72 h and were treated for 48 h with selected concentrations of IL-25.
(B, C) The astrocytic and microglial cell lines (CCF and BV2, respectively)
were treated for 48 h with selected concentrations of IL-25. (D) Primary
neurons were incubated with selected concentrations of IL-25 for 48 h in
the presence or absence of B27. B27 deprivation induced a decreased cell
viability, but IL-25 treatment had no effect on this. The selected
concentrations of IL-25 used for all cell types were 5 ng/ml, 50 ng/ml,
500 ng/ml, and 1 pg/ml. Cell survival was measured using an MTT assay,
and values are expressed as percentage of the control. (A-D) There was
no significant effect observed on cell viability in all cell types tested. Data
represent mean + SEM of one representative experiment (from two to
three independent experiments) ***p < 0.001. (PDF 316 kb)
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BMS: Basso mouse scale; CNS: central nervous system; GFAP: glial fibrillary
acidic protein; i.p.: intraperitoneal; Iba-1: ionized calcium-binding adaptor
molecule 1; IL: interleukin; MBP: myelin basic protein; PBS: phosphate-
buffered saline; SCI: spinal cord injury.
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