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Background: Harmful effects of activated microglia are due, in part, to the formation of peroxynitrite radicals,
which is attributable to the upregulation of inducible nitric oxide (NO) synthase (NOS2). Because NOS2 expression is
determined by Ca’-sensitive calcineurin (CN) dephosphorylating nuclear factor of activated T cells (NFAT), and
because Surl-Trpm4 channels are crucial for regulating Ca** influx, we hypothesized that, in activated microglia,
Surl-Trpm4 channels play a central role in regulating CN/NFAT and downstream target genes such as Nos2.

Methods: We studied microglia in vivo and in primary culture from adult rats, and from wild type, Abcc8—/— and
Trom4—/— mice, and immortalized N9 microglia, following activation of Toll-like receptor 4 (TLR4) by
lipopolysaccharide (LPS), using in situ hybridization, immunohistochemistry, co-immunoprecipitation, immunoblot,
gPCR, patch clamp electrophysiology, calcium imaging, the Griess assay, and chromatin immunoprecipitation.

Results: In microglia in vivo and in vitro, LPS activation of TLR4 led to de novo upregulation of Surl-Trpm4
channels and CN/NFAT-dependent upregulation of Nos2 mRNA, NOS2 protein, and NO. Pharmacological inhibition
of Surl (glibenclamide), Trpm4 (9-phenanthrol), or gene silencing of Abcc8 or Trom4 reduced Nos2 upregulation.
Inhibiting Sur1-Trpm4 increased the intracellular calcium concentration ([Ca”]i), as expected, but also decreased
NFAT nuclear translocation. The increase in [Ca®']; induced by inhibiting or silencing Surl-Trpmé4 resulted in
phosphorylation of Ca®*/calmodulin protein kinase Il and of CN, consistent with reduced nuclear translocation of
NFAT. The regulation of NFAT by Surl-Trpm4 was confirmed using chromatin immunoprecipitation.

Conclusions: Sur1-Trpm4 constitutes a novel mechanism by which TLR4-activated microglia regulate
pro-inflammatory, Ca®*-sensitive gene expression, including Nos2.

Background

Toll-like receptor 4 (TLR4)-mediated neuroinflamma-
tion figures centrally in a growing list of inflammatory
and degenerative conditions of the central nervous sys-
tem (CNS), including traumatic brain injury, ischemic
stroke, hemorrhagic stroke, Alzheimer’s disease, multiple
sclerosis, Parkinson’s disease, and amyotrophic lateral
sclerosis [1-4]. These conditions share the common
feature that endogenous molecules associated with in-
jury, known as alarmins or danger-associated molecular
patterns (DAMPs), converge upon TLR4 and initiate
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potentially deleterious inflammatory cascades [2, 5, 6].
Detrimental effects of chronically activated microglia,
which constitutively express TLR4 [7], have been identi-
fied in these conditions [8—11]. The ability to inhibit
pro-inflammatory actions of microglia following chronic
TLR4 activation has the potential to transform the treat-
ment of a variety of degenerative CNS diseases.

A key element in the harmful effects of chronic micro-
glial activation is peroxynitrite-mediated protein radical
formation, which is attributable, in part, to de novo up-
regulation of microglial inducible nitric oxide (NO) syn-
thase (NOS2) [12, 13]. Notably, NOS2 expression in
various cell types is dichotomously determined by two
factors whose activities are regulated by the concentra-
tion of intracellular calcium ([Ca**];): (i) calcineurin, the
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Ca**-sensitive phosphatase that, by dephosphorylating
nuclear factor of activated T-cells (NFAT), promotes its
nuclear translocation to induce Nos2 gene expression
[14, 15] and (ii) Ca®*/calmodulin protein kinase II (CaM-
KII), the Ca®*-sensitive kinase that, by phosphorylating
calcineurin, inhibits its phosphatase activity, thereby pre-
venting NFAT nuclear translocation and Nos2 gene ex-
pression [16, 17]. Thus, mechanisms regulating [Ca®");
may be crucial for nitrosative injury induced by activated
microglia [18—-20].

Ca®" influx via the microglial plasma membrane can
occur by multiple mechanisms, including [21] (i) voltage-
operated Ca®* entry (VOCE) channels, which are activated
by depolarization of the plasma membrane; (ii) store-
operated Ca®* entry (SOCE) channels, which are opened
upon depletion of intracellular Ca®* stores; and (iii)
receptor-operated Ca”* entry (ROCE) channels, which are
triggered by extracellular ligand binding events. Available
data on VOCE channels in microglia are limited [20, 22].
In “electrically non-excitable” cells that do not generate
all-or-none action potentials, such as microglia [19, 23],
SOCE and ROCE channels serve as the major routes of
Ca®* entry [18-21, 24, 25].

The entry of Ca®" into a cell is governed by the elec-
trochemical gradient for Ca®*, with the electrical gradi-
ent being determined by the cell membrane potential
[26]. Sulfonylurea receptor 1 (Surl)-regulated ion chan-
nels have been shown to play critical roles as negative
regulators of Ca”' influx. In cells that utilize VOCE
channels, the opening of Surl-Kir6.2 (ATP-sensitive po-
tassium channel (Karp)) channels hyperpolarizes the
cell, thereby inactivating VOCE channels and reducing
Ca** influx [27]. Conversely, in cells that utilize predom-
inantly non-voltage-operated SOCE and ROCE channels,
such as microglia [20], the opening of transient receptor
potential melastatin 4 (Trpm4) or Surl-Trpm4 channels
depolarizes the cell, thereby reducing the inward driving
force for Ca%* [26, 28-31]. Notably, Trpm4 and Surl-
Trpm4 channels are activated by intracellular Ca**, with a
rise in [Ca®*]; linked directly to membrane depolarization,
thereby providing negative feedback to Ca®* entry through
SOCE or ROCE channels [26].

Recent evidence indicates that Surl inhibition results
in robust anti-inflammatory effects in CNS injury. In
models of cerebral ischemia and spinal cord injury, glib-
enclamide inhibition of Surl is associated with enhanced
microglial phagocytosis and improved neurological func-
tion, with these effects attributed to inhibition of micro-
glial Surl-Kir6.2 (Karp) channels [32-35]. In models of
subarachnoid hemorrhage and multiple sclerosis, gene
suppression or pharmacological inhibition (glibencla-
mide) of Abcc8/Surl significantly ameliorates neuroin-
flammation and improves neurological function, with
these effects attributed to inhibition of Surl-Trpmé4
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channels [36-38]. Importantly, inhibition of Abcc8/Surl
does not distinguish between Surl-Kir6.2 (Katp) and
Surl-Trpm4 channels.

Here, we hypothesized that microglia activated by
TLR4 ligation upregulate Surl-Trpm4 channels and that,
in TLR4-activated microglia, Surl-Trpm4 channels play
a central role in regulating [Ca®*]; and thus the expres-
sion of Ca®*-sensitive genes such as Nos2.

Methods

Reagents

Lipopolysaccharide (LPS) [from E. coli R515 (Re),
TLRgrade™] and FK506 were purchased from Enzo Life
Sciences (Farmingdale, NY, USA). Papain, dispase II,
glibenclamide, 9-phenanthrol, diazoxide, SKF-96365,
A23187, 1,2-bis(2-Aminophenoxy)ethane-N,N,N",N"-tet-
raacetic acid acetoxymethyl ester (BAPTA-AM), KN-93,
and Percoll were purchased from Sigma-Aldrich (St.
Louis, MO, USA). 11R-VIVIT was purchased from EMD
Millipore (Billerica, MA, USA). The TLR4 signaling in-
hibitor, TAK-242, was purchased from Invivogen (San
Diego, CA, USA). Artificial cerebrospinal fluid (aCSF)
was purchased from Tocris Bioscience (Avonmouth,
Bristol, UK). All culture media, sera, antibiotics, DNase
I, Fluo-4-AM, and pluronic were obtained from Thermo
Fisher Scientific (Waltham, MA, USA). All drugs and
Fluo-4-AM  were solubilized in dimethylsulfoxide
(DMSO) vehicle. Papain, dispase II, and DNase I were
solubilized in culture media. Sera and antibiotics were
added directly to culture media.

Animals and surgical procedure

We certify that all applicable institutional and govern-
mental regulations concerning the ethical use of animals
were followed during the course of this research. Animal
experiments were performed under a protocol approved
by the Institutional Animal Care and Use Committee
(IACUC) of the University of Maryland, Baltimore and
in accordance with the relevant guidelines and regulations
as stipulated in the United States National Institutes of
Health Guide for the Care and Use of Laboratory Animals.
All efforts were made to minimize the number of animals
used and their suffering.

Prior to surgery, sterile mini-osmotic pumps (1007D,
0.5 pL/h; Alzet, DURECT Corporation, Cupertino, CA,
USA) were loaded per the manufacturer’s instructions
with sterile normal saline (NS; Quality Biological Inc.,
Gaithersburg, MD, USA) for sham controls, or 0.416 mg/
mL LPS diluted in NS, to deliver 5 pg/day LPS. The
pumps were attached to sterile brain infusion kits (Alzet;
Brain Infusion Kit 2). Male Wistar rats aged 8—12 weeks
(Harlan, Indianapolis, IN, USA) were anesthetized (60 mg/
kg ketamine plus 7.5 mg/kg xylazine, immunoprecipitation
(IP)) and allowed to breathe air spontaneously. Body



Kurland et al. Journal of Neuroinflammation (2016) 13:130

temperature was measured rectally and maintained
throughout surgery at 37+1 °C using a heating pad
(Harvard Apparatus, Holliston, MA, USA). Surgical inci-
sion sites were prepared using iodine and alcohol, and a
sterile environment was maintained throughout the pro-
cedure. Rats were mounted in a stereotactic apparatus
(Stoelting Co., Wood Dale, IL, USA). A midline scalp inci-
sion was made to expose the skull. A 1-mm burr hole was
made over the right striatum [AP, +0.75 mm; ML, +1.7 mm
relative to bregma], and the dura was opened sharply. A
pre-loaded mini-osmotic pump was attached to a brain in-
fusion kit, and the needle was advanced through the burr
hole to a final depth of 5 mm under stereotaxic guidance.
Cyanoacrylate glue was used to secure the applicator to the
dorsal surface of the skull.

Wild-type (WT) male C57BL/6] mice were obtained
from The Jackson Laboratory (Bar Harbor, ME, USA).
Male Abcc8-/- and Trpm4-/- mice were obtained as
described previously [39, 40]. Mice were housed under
pathogen-free conditions in the animal facility of the
University of Maryland School of Medicine. Mice were
anesthetized (60 mg/kg ketamine plus 7.5 mg/kg xyla-
zine, IP) and allowed to breathe room air spontaneously.
Body temperature was measured rectally and maintained
throughout surgery at 37+1 °C using a heating pad
(Harvard Apparatus, Holliston, MA, USA). All surgical
incision sites were prepared with iodine and alcohol, and
a sterile environment was maintained during surgical
procedures. Mice were mounted in a stereotactic appar-
atus (Stoelting Co.). A midline scalp incision was made
to expose the skull. A 1-mm burr hole was made over
the right striatum (AP, +1 mm; ML, +1.5 mm; DV, -2 mm
relative to the bregma), and the dura was opened sharply.
A pre-loaded neurosyringe (Stoelting Co.), mounted on
the stereotactic frame and containing either sterile aCSF
or LPS (0.1 pg/pL) in aCSE, was advanced to the final co-
ordinates. Solution (5 pL) was infused slowly over 5 min.
The syringe was left in place for an additional 5 min to
minimize backflow and then was removed prior to sterile
wound closure.

Animals were euthanized by IP injection of pentobar-
bital (>100 mg/kg), followed by perfusion of NS intracar-
dially. For microglia, RNA, and protein isolation, brains
were rapidly harvested and processed using standard
techniques, described below. For mice whose brains
were to be used for histology, NS perfusion was followed
by perfusion with 10 % neutral buffered formalin. The
brain was removed, immersion fixed 24 h in formalin,
and cryoprotected 48 h in 30 % sucrose prior to
cryosectioning.

In situ hybridization
Digoxigenin (DIG)-labeled probes (Integrated DNA Tech-
nologies, Coralville, IA, USA) were designed to hybridize
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to nucleotides located within coding sequences of rat
Abcc8, Trpm4, and Kcenjll genes. The following anti-
sense sequences were used as probes: Abcc8: 5'-
GCCCGGGCACCCTGCTGGCTCTGTGTGTCCTTC
CGCGCCTGGGCATCG-3"; Trpm4: 5-CCAGGGC
AGGCCGCGAATGGAATTCCCGGATGAGGCTGTA
GCGCTGCG-3'; and Kenjll: 5'-GCCACTTGAGGT
CCACCAGCGTGGTGAACA-3. Corresponding sense
sequences were used as negative controls. In situ
hybridization (ISH) was performed on 10-pm-thick sec-
tions on glass slides using an ISH Kit (Biochain Institute,
Inc., Newark, CA, USA) according to the manufacturer’s
protocol. Sections were washed twice with DEPC-PBS and
then were treated with 10 pg/mL proteinase K at 37 °C for
10 min. Slides were washed in DEPC-PBS, rinsed with
DEPC-H,0, and pre-hybridized with ready-to-use pre-
hybridization solution (BioChain Institute) for 3 h at
50 °C. The DIG-labeled probes were diluted in
hybridization buffer (BioChain Institute) and applied at
4 ng/uL. Sections were incubated at 45 °C for 16 h. Post-
hybridization washing and immunological detection, using
anti-DIG-HRP and Tyramide Signal Amplification with
cyanine 3 (TSA™-Cy3; Perkin Elmer, Waltham, MA,
USA), were performed as recommended by the manufac-
turer. Finally, slides were rinsed in distilled H,O and then
immunolabeled for P2Y12 using a fluorescent secondary
antibody (Alexa Fluor 488), as described below. The red
fluorescence indicates Abcc8, Trpm4, or Kcnjll mRNA;
green fluorescence indicates immunohistochemical stain-
ing for microglia.

Unbiased measurements of signal intensity within re-
gions of interest (ROIs) were obtained using NIS-
Elements AR software (Nikon Instruments, Melville, NY,
USA). The area that was evaluated was a square, 1000 x
1000 pm, centered on the tip of the needle track in the
striatum, in the coronal section 200 pm rostral to the
site of injection. The pixels occupied by specific P2Y12
labeling (>2x background) within this square were de-
fined as the ROI. Specific labeling for Abcc8, Trpm4, or
Kcnjl1 within the ROI was defined as pixels with signal
intensity greater than twice that of the background.
Specific ISH labeling within the ROI was normalized to
saline-injected control. Results, expressed as fold change
in the microglial expression of mRNA, were obtained
from five independent experiments.

Immunofluorescence labeling

Coronal cryosections (10 pm) on glass slides were blocked
(5 % goat or 2 % donkey serum, + 0.2 % Triton X-100 for
1 h at room temperature) and then incubated overnight at
4 °C with primary antibodies. After several rinses in
phosphate-buffered saline, the slides were incubated for
1 h with fluorescent-labeled species-appropriate secondary
antibodies (1:500; Alexa Fluor 488 and Alexa Fluor 555;
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Invitrogen, Molecular Probes, Eugene, OR, USA) at room
temperature. Omission of primary antibody was used as a
negative control. The sections were coverslipped with polar
mounting medium containing antifade reagent and 4',6-
diamidino-2-phenylindole (DAPI; Invitrogen, Eugene, OR,
USA) and were examined using epifluorescence microscopy
(Nikon Eclipse 90i; Nikon Instruments Inc., Melville, N,
USA). Immunofluorescent labeling of microglial cells cul-
tured on glass chamber slides was carried out similarly, fol-
lowing a 15-min fixation in 4 % paraformaldehyde.

The following primary antibodies were used: goat anti-
ionized Ca2+—binding adapter molecule 1 (Ibal) (1:1,000;
Wako Chemicals, Richmond, VA, USA); rabbit anti-
P2Y12 (1:200; Anaspec, Fremont, CA, USA); mouse
anti-ED1 (1:500; EMD Millipore); rabbit anti-Surl
(1:200, custom [41]); rabbit anti-Trpm4 (1:200, custom
[41]); goat anti-Kir6.2 (1:200, G-16, Santa Cruz); and
mouse anti-NFATc1 (1:200, Santa Cruz).

For quantitative immunohistochemistry, all tissue and
cells were immunolabeled as a single batch, and all im-
ages were collected using uniform parameters of magni-
fication and exposure, as previously described [37].
Unbiased measurements of signal intensity within ROIs
were obtained using NIS-Elements AR software (Nikon
Instruments). Segmentation analysis was performed by
computing a histogram of pixel intensity for a particular
ROI. Quantification of microglial expression of Surl,
Trpm4, and Kir6.2 in vivo was performed as described
above for ISH, using P2Y12 immunolabeling as the ROL

For quantification of nuclear translocation of NFATc1
in vitro, the nuclei of 50 cells or more were analyzed,
with the ROI defined by DAPI labeling. Specific labeling
for NFATc1 within the ROI was defined as pixels with
signal intensity greater than twice that of the back-
ground. Specific labeling within the ROI was normalized
to DAPIL. Results were obtained from five independent
experiments.

Isolation and culture of primary adult microglia

A highly enriched population of microglia was isolated
by Percoll density centrifugation from adult rat brains
and adult WT, Abcc8-/-, and Trpm4-/- mouse brains
using a protocol described previously [42]. Briefly, an
adult rat or mouse was perfused with ice-cold saline and
the intact brain was collected and placed onto a 35-mm
dish in 2-mL ice-cold serum free cell culture medium.
The brain was finely minced with a razor blade, trans-
ferred to a 15-mL tube containing 3 mL of dissociation
medium [papain (1 mg/mL), dispase II (1.2 U/mL), and
DNase I (20 U/mL) in serum free medium] and incubated
at 37 °C with constant agitation for 30 min. The enzymes
were neutralized by adding 5 mL of culture medium con-
taining serum, and debris was removed by 5-min centrifu-
gation at 250xg, followed by a resuspension of the pellet
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in serum-free medium. Following gentle trituration, the
cell suspension was filtered sequentially through 100-, 70-,
and 40-pm mesh cell strainers (Thermo Fisher Scientific).
Debris was removed by 5-min centrifugation at 250xg,
and the pellet was resuspended in 4 mL 37 % standard iso-
tonic Percoll (SIP). Homogenized brain tissue suspended
in 37 % SIP was transferred to a new 15-mL tube, under-
laid with 4 mL 70 % SIP and overlaid with 4 mL 30 % SIP
following by 2 mL of Hank’s balanced salt solution
(HBSS). Following centrifugation at 300xg for 40 min at
18 °C, a distinct interphase layer containing microglia
could be observed. This layer was carefully removed and
washed by centrifugation twice, as described above.

The purity of isolated cells was determined by quan-
titative real-time polymerase chain reaction (qPCR).
Microglia from one rat were suspended in Dulbecco’s
modified Eagle’s medium (DMEM)/F12 plus 10 % fetal
bovine serum (FBS) to a concentration of 5 x 10° cells/
mL and plated onto 6-well culture dishes (Corning).
Microglia from one mouse were suspended in DMEM/
F12 plus 10 % FBS to a concentration of 5 x 10° cells/
mL and plated onto two wells of a 96-well plate (Corn-
ing) to allow for paired analysis of control versus LPS
treatment conditions from one animal. All experiments
with primary microglia were begun following an over-
night incubation at 37 °C with 5 % CO..

RNA isolation and quantitative real-time polymerase
chain reaction
The MIQE guidelines [43] were consulted for the prep-
aration, handling, and analysis of qPCR samples. Micro-
glial cells were homogenized in Trizol Reagent (Thermo
Fisher Scientific), and total RNA was isolated with
Direct-zol™ RNA MiniPrep Kit (Zymo Research; Irvine,
CA, USA). To avoid contamination by genomic DNA,
RNA was further purified with Amplification Grade
DNase I (Invitrogen). The concentration of total RNA
was determined by measuring the optical density at 260
and 280 nm. The quality of RNA was evaluated using an
Agilent Bioanalyzer (Agilent Technologies; Santa Clara,
CA, USA); samples with an RNA integrity number
(RIN) <7 were excluded from analysis.

cDNA was synthesized from 1 pg of total RNA of each
sample using SuperScript III Reverse Transcriptase (RT)
Supermix (Thermo Fisher Scientific). Generated cDNAs
were stored at —20 °C. qPCR reactions (25 pL), consisted
of 1 uL cDNA template, Platinum SYBR Green SuperMix-
UDG with ROX (2x concentrated, Thermo Fisher
Scientific), specific primers, and ultra-pure H,O. The
abundance of various mRNA in the samples was deter-
mined by qPCR (ABI PRISM 7300; Applied Biosystems,
Carlsbad, CA, USA). Reactions were incubated at 50 °C
for 2 min and 95 °C for 2 min, followed by 40 cycles of
95 °C for 15 s and 60 °C for 30 s, followed by melting
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curve analysis. No-template and no-RT reactions were
used as negative controls in every experiment. The ab-
sence of PCR inhibitors in the reactions was determined
using the Alien Reference RNA qPCR Detection Kit (Agi-
lent Technologies). Rps18 and glyceraldehyde 3-phosphate
dehydrogenase (Gapdh) mRNA were measured as refer-
ence genes to normalize the samples. The primers used in
this study are listed in Table 1. Melting curve analysis was
used to confirm the validity of experimental results.

Patch clamp electrophysiology

Patch clamp electrophysiology was performed as de-
scribed [41, 44, 45]. Whole cell recordings were per-
formed using a nystatin perforated patch technique, to
minimize the disturbance of the intracellular mileu that
causes rapid rundown of Trpm4 currents [46, 47]. Ny-
statin, 50 mg, (Calbiochem, San Diego, CA, USA) was
dissolved in DMSO, 1 ml. Working solutions were made
before the experiment by adding 16.5 pL nystatin stock
solution to 5 mL of the base pipette solution to yield a
final concentration of nystatin of 165 pg/mL and DMSO
3.3 uL/ml.

To record whole cell macroscopic currents under
“physiological” conditions, the extracellular solution
contained (mM) NaCl 130, KCI 10, CaCl, 1, MgCl, 1,
HEPES 32.5, glucose 12.5, and pH 7.4 and the pipette
solution contained (mM) KCI 55, K,SO, 75, MgCl, 8,
and HEPES 10, and nystatin, 165 pug/mL, pH 7.2.

To record whole cell macroscopic currents exclusive
of K" channels, the extracellular solution contained
(mM) CsCl 145, CaCl, 1, MgCl, 1, HEPES 32.5, glucose
12.5, and pH 7.4 and the pipette solution contained
(mM) CsCl 145, MgCl, 8, and HEPES 10, and nystatin,
165 pg/mL, pH 7.2.

The following parameters were used: holding poten-
tial, -50 mV; ramp pulses were from —-100 to +100 mV,
4 mV/msec, applied every 15 s.

Steady-state inward currents were quantified at -50 mV
and are presented in bar graphs as positive values, normal-
ized to cell capacitance.

Cell culture

The N9 murine microglial cell line (Neuro-Zone, Milan,
Italy) was cultured in Iscove’s modified Dulbecco’s
medium (IMDM) with 5 % FBS. N9 cells were seeded at
1.5 x 10° cells/mL and allowed to adhere overnight prior
to experimental manipulation. LPS was used at a final
concentration of 1 pug/mL to activate TLR4; all experi-
ments with LPS were performed in 5 % FBS. Glibencla-
mide (30 uM), diazoxide (100 pM), 9-phenanthrol
(5 uM), A23187 (1 puM), BAPTA-AM (10 pM), SKE-
96395 (7.5 uM), TAK-242 (3 uM), FK506 (1 puM), and
11R-VIVIT (10 uM), KN-93 (3 uM), all dissolved in
DMSO, were used at final concentrations indicated, and
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were added concurrently with LPS for immunofluores-
cence and immunoblot experiments. Reagents were
added at the time of recording for Ca** imaging experi-
ments. Cultured cells were maintained 37 °C and 5 %
CO..

All cell culture experiments were carried out in the
presence of 5 % FBS. Glibenclamide is reported to be
99 % protein bound [48], indicating that the free concen-
tration of drug would be much less than that the appar-
ent concentration that was added. We independently
verified the reported degree of protein binding using a
method that we previously described for measuring free
drug concentration [49]. Briefly, various amounts of a
stock solution of glibenclamide (25 mg per mL of
DMSO) were added to NS containing 5 % FBS, and the
solution was dialyzed against NS (Mini Slide-A-Lyzer,
3.5 K MWCO; Thermo Fisher Scientific). The concen-
tration of glibenclamide in the dialysate was measured
spectrophotometrically (absorbance at 239 nm), and the
final concentration was determined using a standard
curve that we constructed. For each concentration, dia-
lysis reactions with vehicle were performed to control
for the background. Linear fit of data at different con-
centrations of glibenclamide showed that drug was
98.8 % protein bound.

Immunoprecipitation and immunoblotting
For immunoprecipitation experiments, total lysate from
N9 cells was prepared in 3-[(3-cholamidopropyl)di-
methylammonio]-1-propanesulfonate (CHAPS) lysis buf-
fer (pH 8.0; FivePhoton Biochemicals, San Diego, CA,
USA) supplemented with freshly added protease and
phosphatase inhibitor cocktail (PPI, Cell Signaling Tech-
nology, Danvers, MA, USA) and spermidine (100 mM,
Sigma-Aldrich). Crude lysate was homogenized by cen-
trifugation through a Qiashredder column (2 minutes;
6,000 RPM; QIAGEN, Valencia, CA, USA), and the pel-
let was gently resuspended to minimize loss of hydro-
phobic membrane proteins. Prior to lysate collection for
co-immunoprecipitation experiments, protein crosslink-
ing was performed in cell culture dishes using 1 mM
DSP (dithiobis(succinimidyl propionate); Thermo Fisher
Scientific) according to the manufacturer’s instructions.
We followed our previously validated approach to evalu-
ate the expression of Surl and Trpm4 by immunoblot
[41]. To immunoprecipitate Surl or crosslink-stabilized
Surl-Trpm4, a custom goat anti-Surl antibody [41] was
incubated with Dynabeads Protein G (Thermo Fisher
Scientific) according to the manufacturer’s instructions.
To immunoprecipate Trpm4, a custom chicken anti-
Trpm4 antibody [41] was covalently coupled to Dyna-
beads M-270 Epoxy according to the manufacturer’s
instructions using an antibody coupling kit (Thermo
Fisher Scientific). Following a wash step, crude lysate was
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Table 1 Primers used for gPCR in this study
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Gene name Species Sequence accession number Primer sequence Amplicon length

Abcc8 Rat NM_013039.2 5'-TCATCCGGGTGAGGAGATAC-3" (+) 130
5’-CACCAGTAGGTCCCCTTTGA-3" (-)

Trom4 Rat NM_001136229.1 5’-GCAAGTTCTGAGGACTCTGTTG-3" (+) 140
5'-TTGCATCCTGTTGCATGTTGGC-3" (-)

Kenj1l Rat NM_031358.3 5'-TGCGTCACAAGCATCCACTCCT-3" (+) 100°
5'-GGACATTCCTCTGTCACCATGC-3" (-)

Kenj8 Rat NM_0170994 5’-CACTTCGGGAGGTCTCTGC-3" (+) 69
5'-GCGTCCTCCTAGAAGACTCGG-3' ()

I-18 Rat NM_031512.2 5’-AAATGCCTCGTGCTGTCTGA-3" (+) 85
5-TGGAGAATACCACTTGTTGGC-3" (-)

P2y12 Rat NM_022800.1 5'-CTTTGGCAACGAAACCAAGT-3" (+) 127
5’-CACCTCCATGGTCCTGGTTA-3" (-)

Tir4 Rat NM_019178.1 5'-TCATGCTTTCTCACGGCCTC-3" (+) 142
5'-AGGAAGTACCTCTATGCAGGGAT-3' (=)

Gfap Rat NM_017009.2 5’-CCAGATCCGAGAAACCAGCC-3" (+) 88
5'-CCGCATCTCCACCGTCTTTA-3' (=)

Neun Rat NM_001134498.2 5'-CGCAGCCTACAGTGACAGTTAT-3' (+) 132
5’-GTGAAGCGGCTGTACCCTC-3" (=)

Gapdh Rat NM_017008.4 5’-CATCACTGCCACTCAGAAGACTG-3" (+) 153°
5'-ATGCCAGTGAGCTTCCCGTTCAG-3' (-)

Abcc8 Mouse NM_011510.3 5'-GCCAGCTCTTTGAGCATTGG-3 (+) 102
5’-AGGCCCTGAGACGGTTCTG-3' (-)

Trpom4 Mouse NM_1751304 5’-TGTTGCTCAACCTGCTCATC-3" (+) 83
5’-GCTGTGCCTTCCAGTAGAGG-3’ (-)

Kenj11 Mouse NM_010602.3 5'-TGCGTCACAAGCATCCACTCCT-3" (+) 100
5'-GGACATTCCTCTGTCACCATGC-3' (=)

-6 Mouse NM_031168.2 5'-CCCCAATTTCCAATGCTCTCC-3" (4) 141
5'-CGCACTAGGTTTGCCGAGTA-3' (=)

Nos2 Mouse NM_010927.4 5'-TGGAGCGAGTTGTGGATTGTC-3" (+) 98
5’-GGGCAGCCTCTTGTCTTTGA-3" (-)

Fth1 Mouse NM_010239.2 5'-CGAGATGATGTGGCTCTGAA-3 (+) 94
5'-TCTGCAGCTTCATCAGTTTCTC-3' (-)

Cd1ib Mouse NM_001082960.1 5'-AAGGATTCAGCAAGCCAGAA-3" (+) 100
5’-TACTCTTCAGAGCCCCATGC-3" (=)

Gfap Mouse NM_001131020.1 5’-TGCTGGAGGGCGAAGAAAACCG-3" (+) 83
5'-TTTGGTGCTTTTGCCCCCTCGG-3' ()

Neun Mouse NM_001039167.1 5’-GTTGCCTACCGGGGTGCACAC-3" (+) 110
5'-TGCTCCAGTGCCGCTCCATAAG-3' (-)

Rps18 Mouse NM_011296.2 5-CGGAAAATAGCCTTCGCCATCAC-3" (+) 134
5'-ATCACTCGCTCCACCTCATCCT-3' (=)

Gapdh Mouse NM_008084.3 5/-CATCACTGCCACCCAGAAGACTG-3' (+) 1534

5'-ATGCCAGTGAGCTTCCCGTTCAG-3' (-)

For Kcnj11 and Gapdh, same primers used for rat and mouse
@ Amplicon is from 564 to 664
® Amplicon is from 609 to 761
€ Amplicon is from 668 to 768
4 Amplicon is from 584 to 736
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added to the antibody-bound magnetic beads and incu-
bated with constant rotation overnight at 4 °C. The im-
mune complexes formed were isolated by placing the
reaction tube against a magnet and washed twice with
lysis buffer. To elute the proteins and fully reduce cross-
linked proteins, the beads were resuspended in a 2x LDS
sample buffer with 1x reducing agent (Thermo Fisher Sci-
entific), vortexed at full speed and then kept at 37 °C for
30 min. Following application of a strong magnet to re-
move the beads, the resulting samples were used directly
for sodium dodecyl sulfate polyacrylamide gel electro-
phoresis (SDS-PAGE) and were examined by immunoblot
analysis. Reactions using plain beads (lysate without
addition of IP antibody) and antibody only (beads and IP
antibody without the addition of lysate) were used as
negative controls. In order to study individual protein ex-
pression, we performed immunoprecipitation of Surl
followed by immunoblot of Surl, or immunoprecipitation
of Trpm4 followed by immunoblot of Trpm4. In order to
study the interaction between Surl and Trpm4, we per-
formed immunoprecipitation of Surl followed by immu-
noblot of Trpm4. Surl or Trpm4 proteins were detected
using custom rabbit anti-Surl and rabbit anti-Trpm4 anti-
bodies [41].

For the analysis of the subcellular localization of pro-
teins in N9 microglia, an optimized protocol for the
fractionation of cytoplasmic versus nuclear protein was
performed rapidly, as follows. First, adhered cells were
incubated in ice-cold hypotonic buffer containing dilute
detergent (10 mM Tris, 0.1 % Triton X-100, supple-
mented with PPI) for 3 min. With the aid of a cell
scraper, cells were collected into a 1.5-mL tube and vor-
texed for 3 s. The contents were immediately centri-
fuged for 5 min, and the supernatant containing soluble
cytoplasmic proteins was collected in a new tube. The
remaining pellet containing intact nuclei was then resus-
pended in radio-immunoprecipitation assay (RIPA) lysis
buffer (Thermo Fisher Scientific) supplemented with PPI
and left on ice for 10 min to allow for dissolution of
nuclear membranes. Following this, a reduction in the
viscosity of nuclear protein samples was carried out by
homogenization through a Qiashredder column, as
above. Successful fractionation was confirmed via immu-
noblot of the cytoplasmic protein lactate dehydrogenase
(LDH) and the nuclear protein histone deacetylase 1
(HDAC1). For all other applications, unless otherwise
stated, protein was harvested in RIPA lysis buffer supple-
mented with PPI and homogenized by centrifugation
through a Qiashredder column.

The following primary antibodies were used: mouse
anti-NFATcl (1:200; 7A6, Santa Cruz); rabbit anti-
phosphorylated CaMKII (Thr286, pCaMKII, 1:2,000, Cell
Signaling Technology); rabbit anti-CaMKII (pan, 1:2,000,
Cell Signaling Technology); mouse anti-NOS2 (1:2,000,
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Thermo Fisher Scientific); rat anti-HSC70 (1:10,000,
Abcam, Cambridge, MA, USA); rabbit anti-phosphorylated
calcineurin (Ser197, pCN, 1:200; Badrilla Ltd., Leeds, UK);
rabbit anti-calcineurin (pan, 1:1000; Cell Signaling Tech-
nology); rabbit anti-LDH (1:2,000, Santa Cruz); and mouse
anti-HDAC1 (1:10,000, Cell Signaling Technology). Pro-
tein was detected using species-appropriate horse radish
protein-tagged secondary antibodies (Cell Signaling Tech-
nology). Detection was performed using the ECL system
(Amersham BioSciences Inc., Piscataway, NJ, USA) with
routine imaging (Fuji LAS-3000) and quantification
(Image]). For NFATc1, band densities of each isoform
(1-3) were combined into a single value for quantification,
which was done similarly for the two major isoforms of
CaMKII (a/B). Acquired data were normalized to appro-
priate loading controls.

Ca?* imaging

Changes in intracellular Ca>* were assessed in N9 micro-
glia using a Ca®*-sensitive indicator, Fluo-4-AM (Invitro-
gen), as previously reported [50]. Cells were cultured on
35-mm fluorodishes (World Precision Instruments;
Sarasota, FL, USA). Prior to Ca®" imaging experiments,
the cells were incubated overnight in phenol red-free and
serum-free culture medium. A stock solution containing
Fluo-4-AM and the non-toxic dispersing agent, Pluronic
F-127, was then added directly to the cells to final concen-
trations of 5 uM and 0.02 %, respectively. Loading of Ca**
indicator was performed for 30 min at 37 °C. After load-
ing, cells were gently washed with and then maintained in
phenol red-free and serum-free culture medium. For
imaging, loaded cells were placed in a temperature
controlled chamber (37 °C) on the stage of a confocal
microscope (LSM Duo, Zeiss, Germany) and allowed to
equilibrate for 15 min. For each experiment, complete
equilibration was confirmed by imaging for a short time
series (~3 min) and observing a plateau of fluorescence
signal. Using a 20x objective, Fluo-4-AM-loaded cells
were excited by a HeNe Laser source with a 488 + 10-nm
excitation, and the fluorescence signal was collected at
530 + 10-nm emission. For each experiment, images were
taken every 4 s and the field was recorded for 10 mins.
From each field, ten cells were chosen randomly for ana-
lysis. The changes in the fluorescence intensity within the
selected cells were quantitatively analyzed using Zen soft-
ware (Zeiss). Results were obtained from a minimum of
three independent experiments.

Chromatin immunoprecipitation

Chromatin immunoprecipitation (ChIP) was performed
to study NFATc1 binding to the Nos2 promoter using
ChIP-IT® High Sensitivity kit (Active Motif; Carlsbad,
CA, USA). Chromatin was prepared as follows, from N9
microglia. Cells were fixed, lysed, and then sonicated to
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fragment chromatin, according to the manufacturer’s in-
structions. After validating chromatin shearing efficiency
via gel electrophoresis, immunoprecipitation of NFATc1-
DNA complexes was performed using ChIP-validated
rabbit anti-NFATcl antibody (H-110, Santa Cruz Bio-
technology). For each reaction, 4 ug DNA and 0.4 pg
antibody were used, and the reactions were incubated
overnight at 4 °C under constant rotation. Parallel im-
munoprecipitation reactions using equivalent amounts
of rabbit IgG were performed as background controls.
Following reversal of crosslinks and purification of DNA,
qPCR was performed as described above using primers
aligned with an NFAT binding site (~1000 to —-877) on the
Nos2 promoter [14]. We analyzed the Nos2 promoter using
Matlnspector software (Genomatix Inc; Ann Arbor, MI,
USA) and independently identified this NFAT binding site.

MTT assay

Cell viability was measured using the Vybrant® MTT Cell
Proliferation Assay Kit (Thermo Fisher Scientific).
Briefly, a 12-mM MTT stock solution was prepared by
adding 1 mL of sterile PBS to one 5-mg vial of MTT;
10 pL of the 12-mM MTT stock solution was added to
cells cultured in 96-well plates containing 100 pL media
and incubated at 37 °C for 4 h. After labeling the cells
with MTT, all but 25 pL of medium was removed from
the wells; 50 pL of DMSO was added to each well and
mixed thoroughly, followed by an incubation at 37 °C
for 10 min. Absorbance was read at 540 nm; a decrease
in absorbance in treatment groups versus control indi-
cated reduced cell viability.

Griess assay

Nitrite was quantified from N9 microglia culture media
using a Griess Reagent Kit (Thermo Fisher Scientific),
according to the manufacturer’s instructions. Briefly,
equal volumes of N-(1-naphthyl)ethylenediamine (com-
ponent A) and sulfanilic acid (component B) were com-
bined to form the Griess Reagent; 20 pL of the Griess
Reagent was added to 150 pL of the nitrite containing sam-
ple, followed by the addition of 130 pL deionized water.
Following a 30-min incubation at room temperature, the
absorbance was measured at 548 nm. Calibrations and
standard curves were generated from sodium nitrite
standards (1-100 uM).

Statistical analysis

Data are presented as mean + standard error. Statistical
comparisons were made using Student’s ¢ test or analysis
of variance (ANOVA), as appropriate, with post hoc
comparisons made using Fisher’s method. Calculations
were performed with OriginPro2016 (OriginLab Corp.,
Northampton, MA, USA). A value p <0.05 was consid-
ered to be statistically significant.
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Results

Sur1-Trpm4 upregulation in TLR4-activated microglia
TLR4 activation in vivo induces Sur1-Trpm4 channel expression
in microglia

LPS infusion into the striatum of adult rats, which leads to
nitrosative/oxidative stress and neuroinflammation [51],
was used as a model to study TLR4 activation in vivo.
Microglia were identified using various markers, including
the purinergic receptor, P2Y12, which is expressed by
microglia but not by infiltrating myeloid cells, and Ibal,
cluster of differentiation molecule 11b (Cd11b), and clus-
ter of differentiation molecule 68 (CD68/ED1), with the
last three expressed by both microglia and myeloid cells
[52]. Following TLR4 activation for 6 h in vivo, Ibal® cells
were localized both within the CNS parenchyma and in
the subarachnoid space, consistent with both resident
microglia and infiltrating monocytes (Fig. la, upper
panels), whereas P2Y12" cells were identified only in the
CNS parenchyma, consistent with selective expression by
microglia (Fig. 1a, lower panels). In subsequent experi-
ments, P2Y12 immunolabeling was employed to identify
microglia distinct from infiltrating myeloid cells.

TLR4 activation in vivo for 24 h led to the development
of an activated microglial phenotype [53]. Activation was
characterized by a morphological shift from a highly rami-
fied appearance in quiescent, P2Y12" microglia, which
were ED17, to an amoeboid appearance in TLR4-activated
P2Y12" microglia, which were ED1" (Fig. 1b, c).

Microglial expression of mRNA for Abcc8, Trpm4, and
Kcnjll, the genes that express Surl, Trpm4, and Kir6.2,
was evaluated in vivo using combined in situ hybridization
and immunofluorescence protein labeling in the same tis-
sue section [54, 55], with P2Y12 immunolabeling used as
the specific microglial marker. TLR4-activated P2Y12"
cells upregulated transcripts for Abcc8 and Trpm4 (fold
increase of 6.33 +0.88 and 3.14 + 0.37, respectively, p <
0.01; Fig. 2a, b); no change in expression of Kcnjl1 tran-
scripts was observed (Fig. 2¢).

Immunolabeling for Surl, Trpm4, and Kir6.2 protein was
evaluated in P2Y12" cells following TLR4 activation (Fig. 3).
TLR4-activated P2Y12" cells exhibited enhanced immuno-
labeling for Surl and Trpm4 (fold increase of 3.05+0.57
and 4.11 + 0.78, respectively, p < 0.01; Fig. 3a, b). Consistent
with a lack of Kenjl1 induction, TLR4-activated P2Y12"
cells exhibited no change in Kir6.2 immunolabeling (Fig. 3¢).
Taken together, these data indicated that microglial activa-
tion by TLR4 in vivo resulted in the upregulation of mRNA
and protein for the two subunits of the Surl-Trpm4 chan-
nel, but not the pore-forming subunit of Krp.

TLR4 activation induces Sur1-Trpm4 channel expression in
primary cultured adult microglia

We used primary cultured adult rat microglia to deter-
mine if the induction of Abcc8/Surl and Trpm4/Trpm4
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Fig. 1 Model of TLR4 activation of rat microglia in vivo. a
Immunofluorescence images of adjacent 10-um coronal brain
sections 6 h after intrastriatal infusion of LPS (rate, 5 ug/day); Ibal”
cells (green, upper) versus P2Y12" cells (green, lower); dotted line
demarcates the pial layer separating the subarachnoid space from
the parenchyma; nuclei labeled with DAPI (blue); scale bar 40 pm.

b Grayscale images of brain sections of control (CTR) versus 24 h
after intrastriatal infusion of LPS (LPS 24 h); cc corpus callosum;
P2Y12 labeling (black); morphological changes in activated microglia
are shown in the inset; scale bar 40 um. ¢ High magnification
immunofluorescence images representative of microglia under
control (CTR) conditions versus 24 h after intrastriatal infusion of LPS
(LPS 24 h); P2Y12 (green) and ED1 (red); nuclei labeled with

DAPI (blue)

that we observed in vivo following TLR4 ligation was as-
sociated with the formation of functional Surl-Trpmé4
channels. Isolated cells were highly enriched for micro-
glia (P2y12r*/Tlr4" and Gfap /Neun~) and reacted simi-
larly to quiescent microglia in vivo, responding to TLR4
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ligation with a shift in morphology from ramified to
amoeboid (Fig. 4a).

Following TLR4 ligation, Abcc8 mRNA was signifi-
cantly upregulated at 6 and 24 h (5.6- and 2.2-fold vs.
control, respectively, p < 0.05), as was mRNA for Trpm4
(1.4- and 1.9-fold vs. control, respectively, p < 0.05)
(Fig. 4b), corroborating our observations in vivo. mRNA
for Il-1B also was significantly upregulated at both times
(11.6- and 10.3-fold vs. control, respectively, p < 0.05).
No change was observed in Kcnjll mRNA at either
time. Consistent with the induction of Abcc8 and
Trpm4, enhanced immunolabelings for Surl and Trpm4
were observed 24 h after TLR4 activation, but no change
in Kir6.2 immunoreactivity was apparent (Fig. 4c).

Surl forms heteromers not only with Kir6.2 (Kcnjll),
but also with Kir6.1 (Kcnj8) [56, 57]. Following TLR4
ligation for 24 h, Kcnj8 expression was decreased signifi-
cantly (5.2-fold vs. control, p<0.01; data not shown),
suggesting that Kytp comprised of Surl-Kir6.1 is un-
likely to play a role in TLR4-activated microglia.

Patch clamp recordings showed that quiescent primary
rat microglia exhibited currents attributable to Surl-
Kir6.2 (Katp) channels. Under basal conditions, currents
recorded in physiological solutions (principal charge car-
riers, K" intracellularly and Na* extracellularly) showed
both inward and delayed outward rectifier K* currents
that reversed at -75 mV, typical of primary microglia
[58] (Fig. 4d, CTR). We used diazoxide to activate Surl-
regulated channels. Diazoxide activated a current that
reversed at -75 mV, showed minimal conductance be-
tween the E,., and -30 mV, and, above this, was out-
ward, typical of Karp [59] (Fig. 4d, difference current in
red). When Cs*-containing solutions (principal charge
carrier, Cs” intra- and extracellularly) were used, diazox-
ide failed to induce membrane currents in quiescent pri-
mary rat microglia (Fig. 4d, lower record). As Cs* blocks
K" but not non-selective cation channels, these findings
are consistent with the expression of Karp but not Surl-
Trpm4 channels in quiescent microglia.

By contrast, TLR4-activated microglia exhibited cur-
rents attributable to Surl-Trpm4. Currents recorded in
Cs"-containing solutions were activated by the Surl
agonist, diazoxide, had a reversal potential of ~0 mV,
and were blocked by both the Surl antagonist, glibencla-
mide, and the Trpm4 antagonist, 9-phenanthrol (Fig. 4e).
In these cells, 5 uM glibenclamide or 10 pM 9-
phenanthrol blocked >90 % of the diazoxide-induced in-
ward current at -50 mV (seven and six cells,
respectively).

Together, these findings indicated that TLR4 activa-
tion of microglia induces a switch from a quiescent
phenotype expressing Karp channels to an activated
phenotype with de novo upregulation of Surl-Trpm4
channels.
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Fig. 2 Upregulation of Abcc8 and Trom4 mRNA in TLR4-activated rat microglia in vivo. a—¢ Immunofluorescence labeling of P2Y12* microglia
(green) and fluorescence in situ hybridization (FISH) of mRNA transcripts of Abcc8, Trom4, or Kenji T (red), following intrastriatal infusion (0.5 pL/h)
of normal saline (NS) or LPS (5 pg/day) for 24 h (LPS); nuclei labeled with DAPI (blue); bar graphs quantification of microglial expression of Abccs,
Trom4, or Kenj11, expressed as fold change normalized to values with NS infusion; five replicates; **p < 0.01

CINS
g CILPS

o

Merge/

Fold Change

Merge/

Fold Change
18]

Trpm4
2.
@
o
c
@
51 T
z
=]
w
Kenj11

TLR4 activation causes de novo Sur1-Trpm4 channel
upregulation in N9 microglia

The N9 microglial cell line shares many phenotypic
characteristics with primary microglia [60]. Here, we
studied N9 microglia to determine whether they too
would respond to TLR4 activation by upregulating Surl-
Trpm4 channels and to examine downstream signaling
involving Surl-Trpm4.

As with primary cells, TLR4 activation of N9 microglia
induced an activated phenotype heralded by a change in
morphology to amoeboid (Fig. 5a). Following TLR4 acti-
vation for 24 h, Abcc8 and Il-6 mRNA were significantly
elevated (fold change, 2.57 £ 0.13 and 12.2 + 1.9, respect-
ively, p < 0.05) (Fig. 5b). No change in mRNA abundance
was observed for either Trpm4 or Kenjll.

Immunoprecipitation/immunoblot of whole cell lysate
from N9 microglia showed minimal Surl expression

under basal conditions and a significant increase in Surl
following TLR4 activation (fold change, 2.68 +0.34, p <
0.05) (Fig. 5¢). By contrast, basal expression of Trpm4
was prominent, and no change in Trpm4 expression was
observed following TLR4 activation (Fig. 5c). Co-
immunoprecipitation revealed a significant increase in
co-associated Surl and Trpm4 following TLR4 activa-
tion (fold change, 3.83 + 1.3, p <0.05, Fig. 5¢). Thus, in
NO cells, high basal levels of Trpm4 appeared to be suffi-
cient for de novo formation of Surl-Trpm4 following
TLR4 activation.

Patch clamp recordings were used to determine
whether co-assembled Surl-Trpm4 heteromers formed
functional channels in TLR4-activated N9 microglia. In
quiescent N9 microglia, when Cs* was used as the prin-
cipal charge carrier, the Surl agonist, diazoxide failed to
induce membrane currents, consistent with the absence
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Fig. 3 Upregulation of Surl and Trpm4 protein in TLR4-activated rat microglia in vivo. a—¢ Double immunofluorescence labeling of microglia
(P2Y12, green) and Surl, Trpom4, or Kir6.2 (red), following intrastriatal infusion (0.5 pL/h) of normal saline (NS) or LPS (5 pg/day) for 24 h (LPS); nuclei
labeled with DAPI (blue); representative high magnification (x100) images are shown; bar graphs quantification of microglial expression of Surl,
Trpm4, or Kir6.2, expressed as fold change normalized to values with NS infusion; five replicates; *p < 0.05; **p < 0.01
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of Surl-regulated non-selective cation channels, and simi-
lar to findings in primary microglia. By contrast, TLR4-
activated microglia exhibited Cs* currents induced by
diazoxide that had a reversal potential of ~0 mV and were
blocked by the Surl antagonist, glibenclamide (Fig. 5d—f),
consistent with Surl-Trpm4 channels [41]. As expected,
the change in microglial phenotype was accompanied by
an increase in cell volume (Fig. 5g) [19].

Thus, TLR4 activation in N9 microglia resulted in a
switch from a quiescent to an activated phenotype that
was accompanied by de novo upregulation of Surl-Trpm4
channels, similar to findings in primary microglia.

Role of Sur1-Trpm4 in TLR4-activated microglia
Sur1-Trpm4 is a negative regulator of Ca** entry
Numerous ligand-receptor interactions in microglia have
been shown to give rise to Ca®" influx [18, 20, 21],

including LPS [50, 58, 61, 62]. Here, exposure of quies-
cent microglia to LPS induced an initial rise in [Ca®'];
followed by plateau phase [58, 62] (Fig. 6a). Quiescent
microglia were characterized by minimal dynamic
changes in [Ca®*]; over time, whereas microglia activated
by TLR4 ligation for 24 h exhibited an oscillatory pat-
tern of [Ca®*]; (Fig. 6b, left panel, single cell traces), a
phenomenon previously shown to depend on Trpm4 [63].
Ca®" oscillation was abolished by TAK-242 inhibition of
TLR4 signaling (Fig. 6b, right panel). LPS-induced in-
creases in [Ca®*]; [64, 65], as well as Ca®" oscillation
[66, 67], previously were shown to be mediated by
SKF-96395-sensitive Ca>* entry channels. Here, in N9
microglia, we found that LPS-induced oscillations also
were abrogated by SKF-96395 (Fig. 6b, right panel).

In cells with Ca®>* entry mediated by non-voltage-
operated ROCE and SOCE channels, Surl-Kir6.2 (Kap)
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Fig. 4 Upregulation of Surl-Trpm4 channels in TLR4-activated primary rat adult microglia. a gPCR analysis of isolated cells (left) showing expression of
microglial P2y12 and Tir4, and no expression of neuronal Neun or astrocytic Gfap; data are from three independent replicates; also shown are representative
immunofluorescence images of Iba1™ isolated microglia under control conditions (normal saline, NS) versus 24 h after TLR4 ligation by LPS (1 ug/mL).
b Fold change in mRNA for Abcc8, Trpom4, and Kcnj1 1 in primary cultured adult microglia activated by ligation of TLR4 with LPS (1 pug/mL) for 24 h;
induction of /7-18 mRNA was used as a positive control; ten replicates; * p < 0.05; ** p < 0.01. ¢ Representative immunofluorescence images of primary
cultured adult microglia showing expression of Surl, Trom4, and Kir6.2 protein under control (CTR) conditions and after ligation of TLR4 with LPS
(1 pug/mL) for 24 h. d Whole-cell currents in quiescent primary cultured microglia recorded with physiological solutions (upper) and with Cs*-containing
solutions (lower) during ramp pulses, shown at high (upper) and low (lower) temporal resolution; Surl-activation by diazoxide yielded the difference
current attributable to Kap (red). @ Whole-cell currents in TLR4-activated primary cultured microglia recorded with Cs*-containing solutions during
ramp pulses, shown at low (left) and high (right) temporal resolution, with Surl-activation by diazoxide (100 uM), and blockade by glibenclamide
(5 uM) (upper) or 9-phenanthrol (10 uM) (lower); the tracings in d and e are representative of six to eight cells per condition, with ramp pulses —100 to
+100 mV in 500 ms, repeated every 15 s; holding potential, =50 mV

channels on the one hand, and Trpm4 or Surl-Trpmé4
channels on the other hand, are expected to have oppos-
ite effects on Ca®* entry, since opening of Surl-Kir6.2
(Karp) channels hyperpolarizes the cell membrane,
whereas opening of Trpm4 or Surl-Trpm4 depolarizes
the cell membrane [26-31]. In quiescent microglia,

diazoxide activation of Surl increased [Ca*'];, and glib-
enclamide inhibition of Surl decreased [Ca*']; (Fig. 6c,
red and green symbols). Opposite responses were found
in TLR4-activated microglia, with diazoxide activation of
Surl decreasing [Ca®']; and glibenclamide inhibition of
Surl increasing [Ca**]; (Fig. 6d, red and green symbols).
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Fig. 5 Upregulation of Sur1-Trpm4 channels in TLR4-activated murine N9 microglia. a Phase contrast images of N9 microglia under control (CTR)
conditions (left) and 24 h after LPS treatment (1 ug/mL) (right). b Change in mRNA for Abcc8, Trom4, and Kcnj11 in N9 microglia activated by
ligation of TLR4 with LPS (1 ug/mL) for 24 h; induction of /-6 mRNA was used as a positive control; six replicates; **p < 0.01; the dotted line indicates
basal level of expression. ¢ Immunoblots (left panel) and quantification (right panel) for Sur1 and Tromé4 of immunoisolates from N9 microglial lysates
under control conditions (CTR) and following TLR4 activation for 24 h (LPS), with omission of IP antibody (Ab) shown as a negative control; for co-
immunoprecipitation (Co-IP), immunoisolation was performed using anti-Surl antibody and immunoblot was performed using anti-Trpomé4 antibody;
three replicates; *p < 0.05. d, @ Whole-cell Cs* currents at low (feft) and high (right) temporal resolution during ramp pulses (~100 to +100 mV in

500 ms, repeated every 15 s; holding potential, =50 mV) in control N9 microglia (CTR) and N9 microglia after TLR4 activation by LPS (1 ug/mL) for 24 h;
Surl was activated by diazoxide (100 uM) and inhibited by glibenclamide (5 uM). f Magnitude of the inward current density at =50 MV (ks y1-trpma)
activated by diazoxide in control versus TLR4-activated N9 microglia; same experiment as in d and e. g Magnitude of the membrane capacitance (C,,)
in control versus TLR4-activated N9 microglia; same experiment as in d and e; 14-16 cells/condition

In both quiescent and TLR4-activated microglia, 9-
phenanthrol inhibition of Trpm4 [68] increased [Ca®'];
(Fig. 6¢,d, blue symbols). Together, these findings are
consistent with the interpretation that (i) both quiescent

and activated N9 microglia express Trpm4 [58], which
functions to limit Ca®" influx [29, 69, 70]; (ii) quiescent
microglia express Surl-Kir6.2 (Kap) channels [32—34],
whose activation leads to hyperpolarization, which
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Fig. 6 Surl-Trpm4 is a negative regulator of SKF-96395-sensitive Ca®* entry channels in murine N9 microglia. a Acute effect of LPS (1 ug/mL) on
[Ca®*], in N9 microglia, expressed as fluorescence (F) over baseline (Fy); data were obtained from ten cells per individual experiment; data shown
are average responses of four independent replicates; the black arrow shows the time of LPS application. b Representative single cell traces of F/
Fo in control (CTR) and TLR4-activated (LPS 24 h) N9 microglia (left); also shown is the quantification of Ca’* oscillations (right), expressed as the
time series rolling standard deviation of F/F, in CTR cells and in TLR4-activated cells treated with vehicle (VEH), the Ca?* entry antagonist, SKF-
96395 (SKF; 7.5 uM), or the TLR4 signaling inhibitor, TAK-242 (3 puM); **p < 0.01. ¢, d Temporal changes in [Ca’*];, expressed as F/F, (left panels),
and magnitude of F/fy at the termination of recording (right panels), in control (c) and N9 microglia after TLR4-activation by LPS (1 pg/mL) for
24 h (d), following application of vehicle (Veh), the Sur1 antagonist, glibenclamide (Glib; 30 uM), the Sur1 agonist, diazoxide (Diaz; 100 uM), the
Trpm4 antagonist or 9-phenanthrol (9Phe; 5 pM); also shown is the magnitude of F/F, after application of the Ca®* entry antagonist, SKF-96395
(SKF; 7.5 uM) (right panels); the time of drug application was coincident with the start of recording; data were obtained from ten cells per individual
experiment (left); average data collected at the end of 10 min recording from thee to five independent replicates are shown (right)

increases the inward driving force for Ca%*; and (iii)
TLR4-activated microglia express Surl-Trpm4 channels,
whose activation leads to depolarization, which de-
creases the inward driving force for Ca** 26, 30].

Sur1-Trpm4 regulates NFATc1

The phenotype of N9 microglia is regulated by [Ca**];
and the transcription factor, NFAT, similar to TLR4-
activated primary cultured microglia [71-73]. NFATc1
(NFAT2) is the isoform of NFAT that regulates the pro-
inflammatory phenotype, including NOS2 expression, in
activated microglia [14, 72]. NFAT is normally phos-
phorylated and sequestered in the cytoplasm. Nuclear

translocation occurs following dephosphorylation by the
Ca®*-sensitive phosphatase, calcineurin (CN) [74].

We evaluated NFATcl activation in N9 microglia
(Fig. 7a—c). Control cells were characterized by NFATc1
immunoreactivity that was confined mostly to the cyto-
plasm. Increasing [Ca®']; using the Ca>* ionophore,
A23187, significantly increased nuclear NFATcl. TLR4
activation for 24 h, which increases [Ca®*]; (Fig. 6a,b),
also induced nuclear translocation of NFATcl [63]. In
the presence of LPS, inhibition of Ca** influx by SKF-
96395, which previously was shown to inhibit NFATc3
nuclear translocation [75], here was shown to inhibit
NFATc1 nuclear translocation.
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Fig. 7 Surl-Trpm4 regulates NFATc1, CaMKIl, and CN in murine N9 microglia. a, b Images (a) and quantification (b) of nuclear NFATC1 (white) in
N9 microglia under control (CTR) conditions, following 15-min exposure to the Cca’t jonophore, A23187 (1 uM), used as positive control, and
following 24-h exposure to LPS alone (1 pg/mL), LPS plus glibenclamide (Glib; 30 pM), LPS plus 9-phenanthrol (9Phe; 5 uM), or LPS plus SKF-96395
(SKF; 7.5 uM); nuclei stained with DAPI (blue); typical nuclear diameter is 6-12 um; quantitative data on specific nuclear labeling were normalized
to the control; p < 0.01. ¢ Immunoblot (feft) and quantification of all bands (right) for NFATc1 in nuclear extracts from TLR4-activated N9 microglia
treated with vehicle (Veh) or glibenclamide (Glib; 30 uM),quantitative data were normalized to a loading control for the nuclear protein, histone
deacetylase 1 (HDAQ); four replicates. d Immunoblot (left) and quantification of all bands (right) for phosphorylated CaMKII (pCaMKIl), CaMKil, and
phosphorylated CN (pCN) in whole cell lysate from TLR4-activated N9 microglia treated with vehicle (Veh) or glibenclamide (Glib; 30 uM); quantitative

data were normalized to a loading control for total protein, HSC70; four replicates; *p < 0.05

Since inhibition of Surl-Trpm4 by glibenclamide or 9-
phenanthrol increases [Ca®']; (Fig. 6d), and since
increasing [Ca®*]; activates NFAT, we expected that
Surl-Trpm4 channel inhibition would increase NFAT nu-
clear translocation. Unexpectedly, glibenclamide and
9-phenanthrol inhibited LPS-induced nuclear transloca-
tion of NFATc1 (41 and 51 % reduction vs. LPS alone)
(Fig. 7a, b). Nuclear immunoblots confirmed that gliben-
clamide inhibition of Surl-Trpm4 reduced the nuclear
accumulation of NFATc1 after TLR4 activation (38 % re-
duction vs. LPS alone, Fig. 7c).

Sur1-Trpm4 inhibition activates CaMKIl in microglia

One possible explanation for the unexpected finding that
glibenclamide inhibition of Surl-Trpm4 reduced nuclear
accumulation of NFATcl is that the increase in [Ca®*];
induced by channel blockade caused activation of CaM-
KII. In vascular smooth muscle cells and cardiac myo-
cytes, increasing [Ca®*]; activates not only CN but also
CaMKII, with higher levels of Ca®*/calmodulin being re-
quired to activate CaMKII, compared to CN [16, 76].
Importantly, activated CaMKII negatively regulates NFAT
signaling by phosphorylating CN at Ser197, which inhibits
its phosphatase activity [76], thus allowing NFAT to be
more phosphorylated and so maintained within the cyto-
plasm [16, 76, 77]. Here, we found that in TLR4-activated
N9 microglia, glibenclamide inhibition of Surl-Trpm4,

which we showed previously augments [Ca%'],, led to a
significant increase in phosphorylated CaMKII (pCaMKII)
(30 % increase vs. LPS alone, Fig. 7d) and a significant
increase in phosphorylated CN (pCN) (23 % increase vs.
LPS alone, Fig. 7d), consistent with the reduced nuclear
translocation of NFATc1 observed with glibenclamide.

Sur1-Trpm4 regulates binding of NFATc1 to the Nos2
promoter

NFATCc1 is a key transcriptional regulator of Nos2 gene
expression. Strong induction of Nos2 mRNA was ob-
served in TLR4-activated microglia (Fig. 8a). As reported
[61], treatment with the Ca®" chelator, BAPTA-AM, sig-
nificantly attenuated Nos2 induction (66 % reduction
versus LPS alone). Inhibition of NFAT, either indirectly
by FK506 inhibition of CN, or directly by 11R-VIVIT
[72, 78], significantly reduced the induction of Nos2
mRNA (68 and 46 % reduction, respectively).

Inhibition of Surl by glibenclamide dose dependently
reduced Nos2 mRNA induction in TLR4-activated
microglia, with an ECs, of 26 pM (Fig. 8a). An MTT cell
viability assay showed that glibenclamide was not cyto-
toxic across the range of concentrations tested (data not
shown). Since these experiments were carried out in the
presence of 5 % FBS, and since glibenclamide is 99 %
protein bound [48], these data suggest an apparent ECsq
value of ~260 nM free glibenclamide. The Trpm4
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Fig. 8 Surl-Trpm4 regulates the binding of NFATc1 to the Nos2 promoter in murine N9 microglia. a Percent change in mRNA for Nos2 in N9
microglia (left) under control (CTR) conditions, or following 24-h exposure to LPS alone (1 pg/mL), LPS plus glibenclamide (Glib; 30 uM), LPS plus
9-phenanthrol (9Phe; 5 uM), LPS plus BAPTA-AM (10 uM), LPS plus FK506 (1 pM), or LPS plus T1R-VIVIT (10 uM); data normalized to values with
LPS alone; five replicates; *p < 0.05; also shown (middle) is the concentration-response relationship for LPS induction of Nos2 mRNA versus
glibenclamide concentration; ECsq, 26 uM; experiments performed in 5 % fetal bovine serum; three replicates; also shown (right) is the absence of
effect of glibenclamide on Nos2 mRNA induction in the presence of the CaMKIl inhibitor, KN-93; three replicates. b Percent change in mRNA for
Fth1 in N9 microglia under control (CTR) conditions or following 24-h exposure to LPS alone (1 pg/mL), LPS plus glibenclamide (Glib; 30 uM), LPS
plus 9-phenanthrol (9Phe; 5 uM), LPS plus BAPTA-AM (10 uM), LPS plus FK506 (1 uM), or LPS plus 11R-VIVIT (10 uM); data normalized to values
with LPS alone, which represented a four to fivefold increase; five replicates; *p < 0.05; **p < 0.01. ¢ Schematic of the mouse Nos2 promoter; gray
box indicates the region from —1000 to —877 used for PCR, with sequences of primers used to amplify immunoisolated DNA shown below; this
region of the promotor contains an NFAT binding site (black box; sequence shown above). d Quantification of immunoisolated DNA following
ChIP with an anti-NFATc1 antibody or species-matched non-specific IgG (NS*IgG) from N9 microglia under control (CTR) conditions or following

24-h exposure to LPS alone (1 pg/mL) or LPS plus glibenclamide (Glib; 30 uM); three replicates; **p < 0.01

inhibitor, 9-phenanthrol, also significantly reduced Nos2
mRNA induction in TLR4-activated microglia (57 % re-
duction) (Fig. 8a). Notably, the inhibition of Nos2 mRNA
induction by glibenclamide was prevented by blockade
of CaMKII with KN-93 (Fig. 8a). Thus, the TLR4-
mediated induction of Nos2 mRNA was sensitive to
[Ca®*];, NFAT, and Surl-Trpm4, and the effect of Surl in-
hibition was dependent on CaMKIL

As a control, we evaluated the induction of ferritin H
mRNA (Fthl), an inducible iron binding protein whose
expression is Ca®"-dependent but NFAT-independent
[79]. Similar to Nos2, Fthl mRNA was strongly induced
in TLR4-activated microglia and was sensitive to
BAPTA-AM chelation of Ca®* (Fig. 8b). In further
support of Surl-Trpm4 regulation of Ca>*-dependent
transcriptional mechanisms, both glibenclamide and 9-
phenanthrol inhibition of Surl-Trpm4 significantly re-
duced the induction of Fthl mRNA in TLR4-activated
microglia, although inhibition of NFAT by either FK506
or 11R-VIVIT had no effect (Fig. 8b).

ChIP experiments were carried out to determine
whether the reduction of Nos2 induction resulting from
Surl-Trpm4 inhibition was due to reduced binding of
NFATcl to the Nos2 promoter. We independently

verified the sequence of an NFAT binding site on the
Nos2 promoter [14] (Fig. 8c). ChIP was performed from
intact N9 cells using antibodies directed against NFATc1,
with species-matched non-specific IgG (NS*IgG) used as
a control. qPCR analysis of the immunoprecipitates
was performed using primers generated to the —1000
to —877 region spanning the NFAT binding site. ChIP
showed that LPS increased NFATc1 binding to the Nos2
promoter (Fig. 8d), consistent with TLR4 activation
inducing NFAT-dependent Nos2 mRNA expression.
Moreover, glibenclamide inhibition of Surl-Trpm4
significantly attenuated NFATcl binding to the Nos2
promoter (Fig. 8d), consistent with Surl-Trpm4
negatively regulating NFATcl. Together, these data
indicated that inhibition of Surl-Trpm4 decreases
Nos2 induction in TLR4-activated N9 microglia due
to a reduction in NFATcl binding to the Nos2
promoter.

Sur1-Trpm4 regulates induction of NOS2 protein and nitrite
production

Significantly less expression of NOS2 protein was ob-
served in activated microglia treated with either gliben-
clamide or 9-phenanthrol (50 and 44 % reduction,
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Fig. 9 Surl-Trpm4 regulates induction of NOS2 protein in murine N9 microglia. a, b Immunoblot (a) and densitometric analysis (b) for NOS2
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respectively) (Fig. 9a, b), in agreement with Surl-Trpm4
inhibition reducing Nos2 mRNA induction.

We also studied the effect of Surl-Trpm4 inhibition
on nitrite production, a functional measure of NOS2 ac-
tivity, using the Griess assay. Both glibenclamide and 9-
phenanthrol significantly attenuated nitrite production
in TLR4-activated microglia (Fig, 9c), consistent with
Surl-Trpm4 inhibition reducing TLR4-mediated upregu-
lation of Nos2/NOS2. The effect of glibenclamide on ni-
trite production was dose dependent, with an ECs value
similar to that observed for Nos2 mRNA induction
(Fig. 9d).

Abcc8-/- and Trpm4—/- protects against TLR4-mediated
Nos2 induction in vivo

The results of the foregoing experiments predict that
gene silencing of Abcc8 and of Trpm4 should protect
against TLR4 activation in vivo. To test this hypothesis,
sterile aCSF or LPS was injected into the striatum of
adult WT, Abcc8-/- and Trpm4—/- mice to study the
effect of TLR4 activation. Basal expression of CaMKI]I,
CN, NFATc1, and NOS2 were similar in naive (no injec-
tion) WT, Abcc8-/- and Trpm4-/- mice (data not
shown). In WT mice, TLR4 activation increased
NFATcl, consistent with NFATcl-mediated auto-
upregulation of Nfatcl [80] and upregulation of NOS2

expression. By contrast, in Abcc8-/- and Trpm4—/-
mice, NFATc1 and NOS2 upregulation were significantly
impaired (Fig. 10a, b), recapitulating the effect of gliben-
clamide in N9 microglia (Fig. 7a—c and Fig. 9).

Total levels of CaMKII and CN were unaffected by
TLR4 ligation (Fig. 10a). LPS injection in WT mice re-
sulted in minimal changes in pCaMKII and pCN, but in
Abcc8—/- and Trpm4—/- mice, LPS injection resulted in
significant increases in pCaMKII and pCN (Fig. 10a, b).
These findings accord with the reduced levels of
NFATc1l and NOS2 expression in these genotypes and
recapitulate the effect of glibenclamide in N9 microglia
(Fig. 7d).

Finally, to determine whether the in vivo findings in
the different murine genotypes were attributable to
microglia, we evaluated the induction of Nos2 and Fthl
mRNA in primary cultured microglia isolated from adult
WT, Abcc8—/-, and Trpm4—/- mice. Isolated cells were
highly enriched in microglia (Cd11b), with no detectable
for astrocytes (glial fibrillary acidic protein (Gfap)) or neu-
rons (Neun) (Fig. 10c). TLR4-mediated induction of both
Nos2 and Fthl mRNA was significantly reduced in micro-
glia derived from Abcc8—/— mice, by 70 and 39 %, respect-
ively, and from Trpm4-/- mice, by 49 and 42 %,
respectively (Fig. 10d), recapitulating the effect of gliben-
clamide and 9-phenanthrol in N9 microglia (Fig. 8).



Kurland et al. Journal of Neuroinflammation (2016) 13:130

Page 18 of 23

\

3 A r\'
a wr e b vy
Abec8 - + LPS
LPS - + + + Trpc:w -+ LPS
NFATc1 W - - e 45 - " P *
NOS2 SN B30 g
1+ -
CaMKIl - s 2 l
— — 0.0 - 0 - |
pCaMKII e —— i
35 45+ T
—_— ~
CN  —— | — Z,. L 304 T
N P 2
P e 214 25
HSC70 04 0.0 _ﬂ_
c d ETLPS
£ 0.03 bec8 - +LPS
2 Trom4 -/- +LPS
& 0.02 100%
z
o 0.01 50%
£ 0.00 Undetectable
’ IR 0%
S ¢ Nos2 Fth1
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data normalized to mRNA for Gapdh; three replicates. d Quantification of mRNA induction for Nos2 and Fth1 in primary cultured adult microglia from
WT, Abcc8—/— and Trpm4—/— mice 24 h after exposure to LPS (1 pg/mL); data normalized to the response of LPS alone in WT microglia;
three replicates; *p < 0.05; **p < 0.01

Discussion

The major findings of the present study are that (i)
TLR4-activated microglia exhibit de novo upregulation
of Surl-Trpm4 channels; (ii) microglial Surl-Trpmé4
channels act as negative regulators of SKF-96395-
sensitive Ca®* entry channels; and (iii) whereas normally,
TLR4 activation causes preferential activation of CN/
NFATCc1, resulting in induction of Nos2/NOS2, silencing
or pharmacological blockade of Abcc8/Surl or Trpm4/
Trpm4 causes preferential activation of CaMKII, result-
ing in reduced NFAT activation and reduced induction
of Nos2/NOS2. Our finding that Nos2/NOS2 induction
is reduced via pCaMKII-mediated inhibition of CN/
NFATcl in Abcc8-/- and Trpm4—/— mice constitutes a
novel mechanism of ion channel-mediated control of
Ca**-dependent gene regulation [81, 82] (summarized in
Fig. 11).

We validated N9 microglia as a tool to study the role
of Surl-Trpm4 in TLR4-activated microglia. This was
important because cell signaling is difficult to study in
primary microglial cultures, due to their relatively lim-
ited number, whereas microglial cell lines, which provide
sufficient quantities of cells for cell signaling studies,
cannot be assumed a priori to function identically to pri-
mary microglia [60, 83]. There were several notable
similarities between N9 cells and primary adult microglia

following TLR4 activation: (i) the transition from a qui-
escent to an activated morphology; (ii) no induction of
Kenj11/Kir6.2; (iii) induction of Abcc8/Surl; (iv) de novo
upregulation of functional Surl-Trpm4 channels; (v)
LPS-induced acute elevation of [Ca®']; and oscillatory
Ca®* signaling [50, 58]; and (vi) NFAT-dependent regula-
tion of the pro-inflammatory phenotype [71-73]. A not-
able difference between N9 microglia and primary adult
microglia was the lack of induction of Trpm4/Trpm4 in
NO cells by TLR4 activation. However, high basal expres-
sion of Trpm4 in N9 cells, which was not present in pri-
mary cells, may have masked or precluded Trpm4/
Trpm4 induction. Despite this difference, TLR4 activa-
tion in both N9 microglia and in primary adult microglia
resulted in de novo upregulation of Surl-Trpm4 chan-
nels. In addition, the effects of Surl-Trpm4 inhibition or
silencing on downstream TLR4 signaling were similar in
N9 microglia, in primary cultured murine microglia, and
in mouse brain. In all cases, NFAT activation and Nos2/
NOS2 induction were markedly decreased by channel
inhibition, even though the effects on pCN and pCaM-
KII appeared less robust in the N9 cells compared to the
primary cells and tissues (Fig. 7 versus 10).

Ortega and colleagues [32] were the first to report an
effect of glibenclamide on microglial activation in a ro-
dent model of ischemic stroke. Utilizing the BV2



Kurland et al. Journal of Neuroinflammation (2016) 13:130

N +

ur-

— Trpm4\

Depolarization '

NOS2

CN

gb NFAT

LHLPS

\ | Surl-
lcamKie—)

C

k{ NFAT )

Fig. 11 Model of Sur1-Trom4 regulation of Ca>* entry, NFAT and
Nos2/NOS2 in TLR4-activated microglia. a, b Depiction of NFAT-
mediated expression of Nos2/NOS2 in TLR4-activated microglia
under normal conditions (a) and following inhibition of Sur1-Trpm4
by glibenclamide (b). Sur1-Trpm4 normally acts, via membrane
depolarization, to regulate Ca®* entry via SKF-96395-sensitive channels
(e.g., ROCE), leading to activation of calcineurin (CN) and nuclear factor
of activated T cells (NFAT), resulting in expression of Nos2/NOS2. When
Surl-Trpomé4 is blocked by glibenclamide, excess Ca®* enters the cell,
preferentially activating CaMKII, which inhibits CN/NFAT and reduces
the expression of Nos2/NOS2

_/

Glibenclamide

Ca%

microglial cell line, they reported induction of Abcc8/
Surl and Kcnj11/Kir6.2 following exposure to LPS +
IFNy for 48 h, as well as enhanced immunolabeling of
microglia in vivo for subunits of Surl-Kir6.2 (Kxtp) in
cerebral ischemia. In their reports [32-34], they
attributed the beneficial effects of glibenclamide in cere-
bral ischemia to inhibition of Surl-Kir6.2 (Ksrp). Here,
studying microglia in vivo and primary cultured adult
microglia in vitro, we observed currents in quiescent

Page 19 of 23

microglia that were clearly attributable to Kxrp channels,
and we confirmed the observations of Ortega et al. on
Abcc8/Surl upregulation following TLR4 activation.
However, we did not observe Kcnjl1/Kir6.2 upregulation
in any of our experiments with TLR4 activation, similar
to Virgili et al. [84], who found no change in Kir6.2 in
BV2 microglia or in primary cultured murine microglia
exposed to LPS + IFNy. Instead, we found that TLR4 ac-
tivation induced de novo expression of Surl-Trpm4
channels in both primary cultured adult microglia and
in N9 cells.

In TLR4-activated microglia, the dominant Surl-
regulated channel appears to be Surl-Trpm4, not Surl-
Kir6.2. First, we showed that Surl-activation by diazoxide
has opposite effects in TLR4-activated microglia com-
pared to quiescent microglia. In quiescent microglia, Surl
activation increases Ca>* influx, consistent with Surl-
Kir6.2 activation hyperpolarizing the cells and increasing
the inward driving force for Ca®*. In TLR4-activated
microglia, Surl activation decreases Ca** influx, consistent
with Surl-Trpm4 activation depolarizing the cells and de-
creasing the inward driving force for Ca**. Second, block-
ade of Surl in TLR4-activated cells increases Ca®* and
increases pCaMKII, consistent with involvement of Surl-
Trpm4 and ROCE/SOCE channels. Blockade of Surl-
Kir6.2 could explain the latter finding, but only if VOCE
channels were mediating Ca** influx. However, Trpm4
blockade, which hyperpolarizes the cell and should deacti-
vate VOCE channels, led to an increase, not a decrease in
[Ca®*];, consistent with the absence of involvement of
VOCE channels. The most parsimonious explanation for
our combined observations is that Surl-Trpm4 channels
are the dominant contributors to the effects of Surl-
modulation in TLR4-activated microglia. Surl-Kir6.2
channels also may present, but the net effects of Surl-
modulation in TLR4-activated microglia appear to be de-
termined by Surl-Trpm4.

Alterations in Ca®* homeostasis contribute to microglia-
mediated progression of CNS disorders [19, 20, 61, 85, 86].
Regulation of [Ca%']; is critical for the initiation and main-
tenance of distinct transcriptional programs underlying po-
tentially harmful microglial phenotypes [18—20]. Our data
indicate that Surl-Trpm4 channels are an important
mechanism for regulating Ca®* entry and downstream
Ca**-signaling in TLR4-activated microglia. Surl-Trpmé
channels are activated by intracellular Ca®*, with a rise in
[Ca**]; linking directly to membrane depolarization, pro-
viding negative feedback that opposes additional Ca®*
entry. Co-assembly with Surl increases the apparent sen-
sitivity of Trpmd4 to intracellular Ca®*, thereby strengthen-
ing Trpm4’s role as a negative regulator of Ca®* entry [41].
The Surl-Trpm4 channel thus may be an important treat-
ment target in degenerative diseases of the CNS mediated
by TLR4-activated microglia.
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Calcineurin is a critical mechanism by which activated
microglia shape their response to TLR4-ligation and con-
trol their phenotype [19, 87]. The activation of CN/NFAT
depends on the amplitude and duration of Ca®* signals in
combination with other Ca®*-dependent signals that may
provide negative feedback [88, 89]. NFAT is said to function
as a “working memory” of Ca>* signaling that is more effi-
ciently activated by low-amplitude, repetitive oscillations in
[Ca®*]; than by continuous Ca** influx [88, 90]. In accord
with this, we observed that TLR4 activation for 24 h in N9
microglia led to oscillations of [Ca**]; accompanied by
manifestations of the activated phenotype, including mor-
phological changes, Surl-Trpm4 upregulation, and Nos2/
NOS2 induction.

The paradoxical observations that inhibition of Surl-
Trpm4 caused an elevation in [Ca®*]; but that it signifi-
cantly reduced activation of NFATc1 led us to consider
alternative Ca®*-dependent mechanisms regulating CN.
Importantly, sustained elevations of [Ca®*]; result in au-
tonomous, persistent activation of CaMKII [77]. When
CaMKII activity is augmented in vascular smooth
muscle cells or in cardiac myocytes, the effects of
increased Ca®>* on NFAT nuclear translocation are
significantly attenuated, due to direct inhibition of CN
[16, 76]. CaMKII-dependent processes were described
recently in microglia [91], although CaMKII regulation
of CN was not investigated. Inhibition/gene suppression
of Surl-Trpm4 following TLR4 activation resulted in
significant increases in phosphorylated CaMKII (Fig. 7d)
and in phosphorylated CN (Fig. 7d), consistent with this
mechanism accounting for the attenuated NFATcl
translocation and reduced Nos2/NOS2 induction that we
observed.

Glibenclamide is not the only treatment to reduce
NOS2 expression by activated microglia. Pretreatment of
primary cultured neonatal microglia or BV2 cells with
diazoxide prior to exposure to LPS + IFNy reduces NOS2
expression and nitrite production [84, 92]. Since diazoxide
opens Surl-regulated channels, whereas glibenclamide in-
hibits the same channels, our findings, as reported here,
may seem to contradict published findings. However, our
data showing that pharmacological inhibition of Surl re-
duces NOS2 were confirmed by similar results obtained
with genetic inhibition of Surl via silencing of Abcc8, both
in vivo and in vitro. Notably, the molecular mechanism
proposed for the anti-inflammatory effect of diazoxide
involves a general reduction in the overall microglial re-
sponse to activation signals [93], whereas the molecular
mechanism that we propose for the anti-inflammatory
effect of glibenclamide involves blockage of CN/NFAT-
signaling after microglial activation (Fig. 11). Thus, Surl-
active drugs with different mechanisms of action may
affect different aspects of the overall microglial inflamma-
tory response, yet bring about a similar endpoint.
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An important property of the Surl-Trpm4 channel is that
both subunits, Surl and Trpm4, are required for the mani-
festation of its pathological effects. This pathognomonic
property was first described in an animal model of trau-
matic spinal cord injury, where pharmacological blockade of
Surl (glibenclamide, repaglinide) or of Trpm4: (flufenamic
acid, riluzole), gene suppression (antisense oligodeoxynu-
cleotide against Abcc8 or Trpm4), and gene silencing (Abcc8
—/— or Trpm4—/-), all were shown to result in exactly the
same phenotype—educed microvascular dysfunction and
capillary fragmentation [94]. Similarly, in a murine model of
experimental autoimmune encephalomyelitis, silencing of
Abcc8 or of Trpm4 results in the same phenotype, with re-
duced neuroinflammation and preservation of white matter
[36, 95]. Our present findings extend these previous obser-
vations, showing that in TLR4-mediated neuroinflamma-
tion, silencing Abcc8 or Trpm4 results in the same
phenotype—preferential activation of CaMKII over CN/
NFATc1 and reduced induction of Nos2/NOS2.

Our findings indicate that Trpm4 is the major molecu-
lar partner of Surl following TLR4 activation in micro-
glia and that the beneficial effects of glibenclamide in
the setting of TLR4-induced neuroinflammation may be
due, in part, to augmented CaMKII signaling in micro-
glia. Blockade of Surl-Trpm4 by glibenclamide previ-
ously was shown to be protective in models of ischemic
and traumatic CNS injury, where the activity of Surl-
Trpm4 in neurons, astrocytes, and endothelial cells can
result in excess Na' influx leading to catastrophic cell
swelling [26]. In microglia, however, the activity of Surl-
Trpm4 is deleterious for a different reason—namely, it
aids in the dynamic regulation of [Ca®*]; that is required
for a sustained neuroinflammatory response.

Conclusions

Surl-Trpm4 channels constitute a novel mechanism by
which TLR4-activated microglia regulate pro-inflammatory,
Ca®*-sensitive gene expression, including Nos2/NOS2.
Glibenclamide blockade of Surl-Trpm4 is promising for
the future treatment of CNS diseases involving neuroin-
flammation and nitrosative/oxidative stress.
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