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Abstract

rescue IFN-a-induced neurologic impairment.

in patients with psychotic disorders.

Background: Extinction of conditioned fear is an important brain function for animals to adapt to a new environment.
Accumulating evidence suggests that innate immune cytokines are involved in the pathology of psychotic disorders.
However, the involvement of cytokines in fear dysregulation remains less investigated. In the present study, we
investigated how interferon (IFN)-a disrupts the extinction of conditioned fear and propose an approach to

Methods: We used a rat model of auditory fear conditioning to study the effect of IFN-a on the fear memory
process. IFN-a was infused directly into the amygdala of rats and examined the rats’ behavioral response (freezing) to
fear-conditioned stimuli. Immunohistochemical staining was used to examine the glia activity status of glia in the
amygdala. The levels of the proinflammatory cytokines interleukin (IL)-13 and tumor necrosis factor (TNF)-a in the
amygdala were measured by enzyme-linked immunosorbent assay. We also administrated minocycline, a microglial
activation inhibitor, before the IFN-a infusion to testify the possibility to reverse the IFN-a-induced effects.

Results: Infusing the amygdala with IFN-a impaired the extinction of conditioned fear in rats and activated
microglia and astrocytes in the amygdala. Administering minocycline prevented IFN-a from impairing fear
extinction. The immunohistochemical and biochemical results show that minocycline inhibited IFN-a-induced
microglial activation and reduced IL-1 and TNF-a production.

Conclusions: Our findings suggest that IFN-a disrupts the extinction of auditory fear by activating glia in the
amygdala and provides direction for clinical studies of novel treatments to modulate the innate immune system
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Background

Extinction of fear is defined as a reduction in conditioned
fear when a conditioned stimulus (CS) is repeatedly
presented in the absence of an unconditioned stimulus
(US). The inability to extinguish intense fear memories is
an important clinical problem in patients with psychiatric
disorders involving dysregulation of fear, such as specific
phobias, panic disorder, and post-traumatic stress disorder
[1-6]. Increasing interest has developed for the role of
innate immune cytokines in impaired neuronal function
and cognition that arise with trauma, infection, and/or
disease. Several clinical studies have shown that levels of
the innate immune cytokines, such as interleukin (IL)-1,
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IL-6, and tumor necrosis factor (TNF)-a, are correlated
with impaired fear extinction [7-9]. However, the mech-
anism underlying the correlation between cytokines and
psychiatric disorders remains unclear.

Behavioral tests designed to model this aspect of mental
disorders are based on Pavlovian principles of associating
an innocuous cue, such as a tone or light (CS), with a
painful or aversive stimulus, such as an electrical foot-
shock (US). Conditioned fear responses can then be
indexed through various outputs, such as conditioned
freezing [10]. Rodent models of Pavlovian conditioning
have been widely used to study consolidation, extinction,
and reconsolidation of fear memory [11]. Extinction in
fear conditioning studies involves exposing rodents to a
fear eliciting cue(s) or context without the aversive US
[12, 13]. The fear extinction behavior is thought to be an
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active learning process and not simply “forgetting” a con-
ditioned behavior that reverses the original learning [14].

It has been established that the basolateral amygdala
(BLA) is a key brain structure for extinction learning
[10]. To further reveal the pathological roles of cytokines
in impaired fear memory, we directly tested whether
microinfusion of interferon (IFN)-a into the amygdala
affects auditory fear extinction in rats. IFN-« is an innate
immune cytokine with antiviral and anti-proliferative
activities and is therefore used to treat infectious diseases
and cancers [15, 16]. The involvement of IFN-« in the
brain function has been demonstrated by clinical studies
showing that IFN-a induces high rates of behavioral dis-
turbance, including depression, in 30-50 % of IFN-a-
treated patients [10, 17-24]. Some experimental studies
have explored the potential mechanisms of IFN-a-induced
depression by systemic or intra-cerebroventricular injec-
tions of IFN-a in rodents [25-28]. However, no study has
investigated the effects of IFN-a on fear extinction.

In this study, we first determined that directly infusing
exogenous IFN-« into the amygdala impaired the extinction
of conditioned fear in rats. Because glial cells play active
roles in initiating and maintaining the inflammatory process
in the brain, we further examined the activation of
microglia and astrocytes in the amygdala following the
IFN-a infusion. Next, we determined whether administer-
ing minocycline, an inhibitor of microglial activation,
ameliorated IFN-a-induced impairment of fear extinction.

Methods

Subjects

This study conformed with the policies and procedures
detailed in the “Guide for the Care and Use of Laboratory
Animals” of the National Institutes of Health. The animal
experimental protocols of the “Guide” and the treatment
procedures were reviewed and approved by the Animal
Care and Use Committee of China Medical University
(No. 2014195). Male Wistar rats (weight, 250-300 g) from
our own colony were housed in a humidity- (50-55 %)
and temperature-controlled (22-24 °C) facility under a
12-h light/dark cycle (lights on at 7:30 a.m.). The animals
had free access to food (standard laboratory rat chow) and
water. All surgeries were performed under anesthesia, and
all efforts were made to minimize animal suffering.

Behavioral apparatus

The rats were fear conditioned in a 25 x 29 x 28-cm
chamber (context A) constructed of aluminum and
Plexiglas walls (Coulbourn Inst., Allentown, PA, USA).
The floor consisted of stainless steel bars that could be
electrified to deliver a mild shock, and illumination was
provided by a single overhead light. The chamber had a
speaker mounted on the outside wall and was placed
inside a sound-attenuating box. The fear conditioning
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chambers were cleaned with 5 % ethanol each time a rat
was removed from the chamber. Fear conditioning of
the rats was extinguished and tested in context B,
wherein the chamber was modified by introducing a
black Plexiglas floor washed with peppermint soap. The
wall pattern was changed to black and white stripes, and
three house lights were installed. The CS was a 5-kHz
tone with a 20-s duration and 75 dB intensity. The US
was a 1.0-mA foot shock of 0.5-s duration, which co-
terminated with the tone during the conditioning phase.

Drugs

Recombinant human IFN-a was obtained from PeproTech
Inc. (#300-02AB; Rocky Hill, NJ, USA) and was dissolved in
artificial cerebrospinal fluid (ACSEF; glucose, 5 mM; CaCl,,
1 mM; NaCl, 125 mM; MgCl,, 1 mM; NaHCO3, 27 mM;
KCI, 0.5 mM; Na,SO,4 0.5 mM; NaH,PO,, 0.5 mM; and
Na,HPO,, 1.2 mM). Rat serum albumin (1 mg) was added
to 1 ml of 2 x 10’ IU/ml IFN-a. The rats received bilateral
infusions of ACSF (vehicle) or IFN-a at doses of 100, 200,
or 400 IU/pl (1 pl/side).

Minocycline hydrochloride (#M9511; Sigma, St. Louis,
MO, USA) was dissolved fresh in 0.9 % NaCl and
administered intragastrically (i.g.) once daily at a dosage
of 90 mg/kg rat body weight for 3 days prior to the
[FN-a treatment. The dose was selected on the basis of
previous studies showing the beneficial effects of this
dosage in animal models of cerebral brain ischemia,
multiple sclerosis, and Parkinson’s disease [29-33].

Cannula implantation and microinjections

The rats were anesthetized with sodium pentobarbital
(50 mg/kg) intraperitoneally (i.p.) and mounted on a
stereotaxic apparatus (SR-5R; Narishige, Tokyo, Japan)
for surgery. Two cannulae consisting of a 22-gauge
stainless steel tubing were implanted bilaterally into the
BLA. The coordinates were AP, -2.3 mm; ML, +4.5 mm;
and DV, -7.0 mm according to the Paxinos and Watson
brain atlas [34]. Three jewelry screws were implanted in
the skull as anchors, and the entire assembly was affixed
to the skull with dental cement. A 28-gauge dummy
cannula was inserted into each cannula to prevent clog-
ging. After the surgical procedure, the rats were moni-
tored daily and given 1 week to recover prior to the
experiment. The microinjections were performed at
10:00-12:00 a.m. IFN-a was dissolved in sterile ACSF
and injected into the BLA via a 28-gauge infusion can-
nula connected with polyethylene (PE 20) tubing to a
10-pl Hamilton microsyringe (Hamilton Co., Reno, NV,
USA). The infusion cannula protruded 0.5 mm beyond
the guide cannula. An infusion volume of 1 pl was deliv-
ered using a Harvard PHD2000 syringe pump (Harvard
Apparatus, Holliston, MA, USA) over the course of
10 min (at a rate of 0.1 ul/min). The infusion cannula
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remained in place for at least 1 min after the infusion
before being pulled out to prevent backflow of the injec-
tate through the guide cannula.

After all behavioral tests were completed, the rats were
anesthetized with sodium pentobarbital (100 mg/kg, i.p.)
and transcardially perfused with paraformaldehyde (4 %,
pH 7.4). The brains were removed and sectioned, and
slides were prepared and examined under a light micro-
scope to verify that the cannulae were placed in the
BLA. Only rats with proper placement of the cannulae
were included in statistical analyses.

Fear conditioning and extinction and drug application
Acclimation to the experimental conditions is an important
measure to reduce unpredictable effects on behavior. Before
the behavioral experiments, the rats were acclimated to
handling and to the laboratory for 5 days. The rats were
habituated to the test chamber for 30 min (contexts A and
B for 15 min each in a counterbalanced manner) on day 5.
The rats were placed in the context A chamber the next
day and received a tone habituation session consisting of
five CS presentations (5 kHz tone, 75 dB, 20 s). The rats’
behavior was measured as the baseline response. Next, the
rats received seven tone—shock pairs in context A (condi-
tioning session) for auditory fear conditioning.

We only selected rats for the extinction experiment
that showed equivalent levels of behavioral response
during the conditioning session to exclude the potential
effects of the rat’s internal characteristics, surgery, or
other health differences. The conditioned rats were divided
into four groups. Each group received an infusion of either
vehicle or IFN-a into the BLA (100, 200, or 400 IU/side,
bilaterally) and was returned to their cage. The rats were
placed in context B 8 h later and received an extinction
session consisting of 15 tone—alone trials of 20 s each. The
extinction session was designed to test the rat’s fear mem-
ory to the auditory CS rather than to the environment.
Thus, we changed the wall pattern (blank to striped), floor
material (steel to Plexiglas), illumination (one to three
lights), and smell (ethanol to peppermint soap). The freez-
ing behavior of all rats was scored by the same experi-
menter who was blind to the experimental conditions to
reduce subjective error, and behavior was scored through a
video camera. Freezing responses were judged as the ab-
sence of all movement except those related to respiration
[35, 36]. The total duration of the freezing response during
tone presentation (20 s) was recorded and transformed into
a percentage of freezing (seconds spent freezing/20-s CS).

To evaluate whether minocycline could modulate the
effects of IFN-a on extinction memory, the rats were
assigned randomly to either the vehicle or minocycline
group. Before the fear conditioning and extinction ex-
periments, the rats received daily administration of the
vehicle or minocycline at a dose of 90 mg/kg ig. for
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3 days. After the rats completed auditory fear conditioning
in context A, they received an intra-amygdala infusion of
IFN-a (400 IU/side). The rats underwent extinction train-
ing in context B 8 h later. Another group of rats received
only minocycline without IFN-a to assess the effect of min-
ocycline on fear extinction.

Immunohistochemistry

Immediately following the behavioral experiments, the
rats were deeply anesthetized with sodium pentobarbital
(100 mg/kg, i.p.) and perfused via the ascending aorta
with cold 0.9 % NaCl followed by chilled 4 % parafor-
maldehyde in 0.01 M phosphate-buffered saline (PBS).
The brains were post-fixed in the same fixative for 24 h
at 4 °C and embedded in paraffin for sectioning at 5 pm.
Serial coronal sections were cut through the amygdala
(at a level corresponding to 2—-3 mm posterior to the
bregma) [34].

Immunohistochemical staining was performed using
the avidin—biotin—peroxidase complex detection kit and
diaminobenzidine substrate. Microglial activation was
measured using an antibody to ionized calcium-binding
adaptor molecule 1 (Ibal; 1:100, goat polyclonal; Abcam,
Shanghai, China). Astrocytic activation was measured
using an antibody to glial fibrillary acidic protein (GFAP).
Sections were incubated with their primary antibodies for
16 h at 4 °C. Negative control sections were incubated with
PBS instead of primary antibodies. The sections were incu-
bated with the appropriate avidin—biotin complex solutions
(Zhongshan Golden Bridge, Beijing, China) at 37 °C for
20 min. All sections were counterstained with Harris’s
hematoxylin.

Cell quantification

To minimize any potential confounding effects from
immunohistochemistry, the sections were prepared,
stained, and imaged at the same time as their relevant
control. Furthermore, the cell number was counted in a
predefined area of the brain. Nine sections among the
serial coronal sections of the amygdala were selected
from each brain, which were centered at the site of the
cannula tip and separated by 10 sections (50 pm). The
areas of the amygdala were captured using an Olympus
BX51 automatic microscope (Tokyo, Japan). The total
numbers of cells stained with GFAP, Ibal, or neuronal
nuclear antigen (NeuN) in a 400 x 400 um area (cannula
tip centered) were marked by an operator who was
blinded to the identity of the sections, and an automated
cell count was generated using an image analysis system.
Only morphologically intact and clearly identifiable cells
were counted in the regions. As no obvious difference in
cell profiles was detected between the two hemispheres,
the right and left hemisphere values were averaged for
each rat. The number of cells in each section was averaged
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to obtain a mean value for each animal (nine sections/rat).
The mean values obtained from five rats in each group
were used for the statistical analysis.

Measurement of proinflammatory cytokines

IL-1f and TNF-a levels in the amygdala were mea-
sured using enzyme-linked immunosorbent assay
(ELISA) kits according to the manufacturer’s instruc-
tions (Neobioscience, Shenzhen, China). The rats
were deeply anesthetized with sodium pentobarbital
(100 mg/kg, i.p.), and the brain was removed rapidly
and frozen at —20 °C for 20 min. To reduce the possible
error caused by brain sampling, we placed the frozen brain
on a rat brain section mold (# 68709; RWD Life Science,
Shenzhen, China) and carefully dissected the brain tissues
corresponding to the amygdala (AP -1.0 to -4.0 mm, ML
4.0-6.0 mm, and DV 7.0-9.0 mm) using a sharp steel
blade. Brain tissues from both hemispheres were mixed and
homogenized on ice in 0.01 M PBS (pH, 7.4) and centri-
fuged at 12,000 rpm for 15 min at 4 °C. The supernatants
were collected and stored at —80 °C until the measurement
of IL-1p and TNF-a by ELISA. All samples were measured
in duplicate and adjusted according to the protein content
determined using an enhanced BCA Protein Assay kit
(Beyotime, Harman, China). The results are expressed as
picogram per milligram protein.

Statistical analyses

Statistical analyses were performed using SPSS 18.0 soft-
ware (SPSS Inc., Chicago, IL, USA). Depending on whether
data were normally distributed or not (determined using
the Kolmogorov—Smirnov test), either parametric or
nonparametric test was used for statistical evaluation.
Two-way repeated-measures analysis of variance (ANOVA)
was performed on the freezing response data among the
different groups and trials. Differences in the immunohisto-
chemical data and ELISA results were detected by one-way
ANOVA. Each ANOVA reporting significant effects was
followed by Tukey’s post hoc test of multiple comparison.
A p value of <0.05 was considered statistically significant.

Results

Intra-amygdala infusion of IFN-a impairs extinction of
conditioned fear in a dose-dependent manner

The effect of IFN-a on the extinction of conditioned fear
was assessed by data from 32 rats. The rats were assigned
into four groups of eight animals each matched for their
freezing response during auditory fear conditioning. After
fear conditioning in context A, they received one of the
following treatments: ACSF (vehicle group), 100 IU IFN-«
(low-dose group), 200 IU IFN-« (medium-dose group), or
400 IU IFN-a (high-dose group). The rats were tested for
fear extinction 8 h later in context B. Figure 1 shows the
mean and standard error of the freezing responses in the

Page 4 of 12

rat groups during the habituation, conditioning, and
extinction sessions. Rats in all groups displayed a low
freezing level during the habituation session, indicating
normal locomotor activity. The rats showed a high freez-
ing level after experiencing two CS (5 kHz tone) and US
(foot shock) trials during the conditioning session, sug-
gesting that they quickly learned the association between
the CS and the US. No difference in the freezing percent-
age was observed among the groups during the habitu-
ation and conditioning sessions. However, the freezing
percentage in the vehicle group diminished gradually with
repeated presentation of the CS alone (two-way ANOVA
for trial, Fj4400=74.2, p<0.001) and administration of
IFN-a significantly reduced extinction (two-way ANOVA
for group, F;4p0=66.4, p<0.001). The interaction be-
tween the experimental groups and trials was significant
(two-way ANOVA for interaction, Fyy 450 =6.2, p <0.001),
indicating that the behavioral effects of the different treat-
ments may have varied inconsistently by trial. Therefore,
we performed Tukey’s multiple comparison tests to clarify
the differences between each pair of groups in each trial.
A significant effect was observed after correcting for mul-
tiple testing during trials 3—15 when the rats received
400 IU IFN-«, and during trials 8—15 when rats received
200 IU IFN-a (p < 0.05 for pairwise comparisons between
vehicle vs. 400 IU and vehicle vs. 200 IU; indicated by
asterisk and pound sign in Fig. 1). No difference was
observed between the vehicle and 100 IU IFN-a groups
throughout the extinction session. These results indi-
cate a dose-dependent inhibitory effect of IFN-a on ex-
tinction. Because 400 IU IFN-a produced the maximal
impairment on extinction, we used this dose in subse-
quent experiments.

Activation of microglia and astrocytes following IFN-a
infusion
The activation status of microglia and astrocytes was
examined in the amygdala of rats following the behav-
ioral experiments. Resting microglia in the vehicle group
exhibited low Ibal-immunoreactivity and had small cell
bodies with extensive ramifications in the amygdala
(Fig. 2a). Ibal-immunoreactivity increased in the 100
and 200 IU IFN-a groups, indicating the activation of
microglia (Fig. 2b, c). The strongest Ibal-immunoreactivity
was found in the 400 IU IEN-a group, in which microglia
had large cell bodies with short processes, and some of
them showed a phagocytic shape (Fig. 2d). Quantitative
analysis by one-way ANOVA revealed that the number of
Ibal-immunopositive microglia in the amygdala increased
significantly in the 200 and 400 IU IFN-a groups compared
with that in the vehicle group (Fig. 2e).

Figure 3 shows the status of astrocytes. Resting astrocytes
in the vehicle group showed low GFAP-immunoreactivity
and stellate-shaped cell bodies with long and thin processes
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in the amygdala (Fig. 3a). Astrocytes in the 100 and
200 IU IFN-a groups were activated, as indicated by in-
creased GFAP-immunoreactivity and cell body (Fig. 3b, c).
Activated astrocytes in the 400 IU IFN-« group were highly
immunoreactive to GFAP and had a hypertrophic morph-
ology, characterized by large cell bodies and thick processes
(Fig. 3d). The quantitative analysis by one-way ANOVA
revealed a significant increase in the number of GFAP-
immunopositive astrocytes in the 100, 200, and 400 IU
IFN-a groups (Fig. 3e).

We also used NeuN-immunostained sections to evaluate
whether the IFN-a infusion induced neuronal loss in the
amygdala. As shown in Fig. 4a—e, no difference in NeuN
immunoreactivity was detected among the groups. Thus,
the infusion of IFN-a did not cause obvious neuronal loss
in the amygdala.

Minocycline attenuates IFN-a-induced impairment of
extinction

Because the in vitro experiment indicated that the I[FN-a
infusion activated glia, we further examined whether
minocycline, an inhibitor of microglial activation, reduced
the behavioral impairments induced by IFN-a-treatment.
One group of rats (n = 10) received an i.g. administration of
minocycline (90 mg/kg, dissolved in saline) for 3 days
before the auditory fear conditioning and infusion of
400 IU IFN-a (minocycline + IFN-a group). The second
group (n = 10) received the same dose of saline and IFN-a
as the control group (saline + IFN-a group). The third
group (1 = 10) received only minocycline without the IFN-

a infusion (minocycline group). All rats participated in the
fear extinction experiment 24 h after treatment with mino-
cycline or saline. Figure 5 shows the percentage of time that
the rats spent freezing during the habituation, conditioning,
and extinction sessions. Rats pretreated with minocycline
and saline showed similar freezing response levels during
the habituation and conditioning sessions, suggesting that
minocycline had no effect on locomotor activity or acquisi-
tion of fear conditioning. Rats in the minocycline group
showed a gradual decrease of freezing time during the ex-
tinction session, indicating that fear extinction was not dis-
rupted by a single application of minocycline. Rats in the
saline + IFN-a group showed delayed extinction of the CS-
associated freezing response, similar to the results observed
in rats receiving only the 400 IU IFN-a infusion (Fig. 1). As
expected, combined application of minocycline and IFN-«
rescued the IFN-a induced deficit in fear conditioning ex-
tinction. Two-way ANOVA revealed a significant main ef-
fect of the treatment group (Fp405=36.3, p<0.001) and
trial (Fi4405 =52.0, p<0.001). A significant interaction was
observed between treatment and trial (Fagq05=6.9, p<
0.001), indicating dependency of the treatment effect on
the trial. Tukey’s multiple comparison tests further revealed
that the freezing percentage in the minocycline + IFN-a
group was significantly lower than that in the saline + IFN-
a group during extinction session trials 6 and 15 (p < 0.05,
asterisk in Fig. 5), suggesting that minocycline attenuated
the IFN-a-induced impairment of fear extinction. The
freezing percentage in the minocycline + IFN-a group
remained higher than that in the minocycline group in



Bi et al. Journal of Neuroinflammation (2016) 13:172

Fig. 2 Immunohistochemical analysis of Ibal-immunopositive microglia
in the amygdala following vehicle or interferon (IFN)-a administration.
a-d Representative microphotographs showing changes in the number
of Ibal-immunopositive cells in the amygdala after vehicle, 100, 200, or
400 IU IFN-a was administered. e Quantitative analysis of the number of
Ibal-immunopositive microglia in predefined areas of the
amygdala. **p <0.01, analysis of variance followed by Tukey's

test; n=5 animals/group

some trials (p <0.05). Thus, minocycline alone did not
completely restore fear-extinction capability.

Minocycline inhibits IFN-a-induced microglial activation
without interfering with reactive astrocytes

We further examined the effects of minocycline on IFN-
a-induced glial activation in the amygdala. Microglia
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Fig. 3 Immunohistochemical analysis of green fluorescent protein
(GFAP)-immunopositive astrocytes in the amygdala following vehicle or
interferon (IFN)-a administration. a—d Representative microphotographs
showing changes in the number of GFAP-immunopositive cells in the
amygdala after vehicle, 100, 200, or 400 IU IFN-a was administered. e
Quantitative analysis of the number of GFAP-immunopositive astrocytes
in predefined areas of the amygdala. **p < 0.01; *p < 0.05, analysis of
variance followed by Tukey's test; n =5 animals/group

J

were clearly activated in the saline + IFN-a group
(Fig. 6a), compared with the results of the vehicle group
shown in Fig. 3a. The combination of minocycline and
IFN-a reduced the extent of microglial activation (Fig. 6b),
and a single application of minocycline did not activate
microglia (Fig. 6c). Consistent with these observations,
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Fig. 4 Immunohistochemical analysis of neuronal nuclear antigen
(NeuN)-immunopositive neurons in the amygdala following vehicle or
interferon (IFN)-a administration. a-d Representative microphotographs
showing changes in the number of NeuN-immunopositive cells in the
amygdala following vehicle, 100, 200, or 400 IU IFN-a administration. e
Quantitative analysis of the number of NeuN-immunopositive neurons in
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one-way ANOVA and Tukey’s post hoc test revealed that
the number of Ibal-immunopositive cells in the saline +
IFN-a group was significantly higher than those in the
other groups (Figs. 6d). No significant difference in the
number of Ibal-immunopositive cells was detected
between the vehicle and minocycline groups, indicating
that minocycline inhibited IFN-a induced activation of
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microglia but did not affect microglia under physiological
conditions.

In contrast, the number of GFAP-immunoreactive astro-
cytes was not significantly different between the saline +
IFN-a and the minocycline + IFN-a groups (Fig. 7), but the
numbers in both groups were significantly higher than
those in the vehicle and minocycline groups. These results
suggest that minocycline did not inhibit IFN-a-induced
astrocytic activation.

Minocycline inhibits IFN-a-induced IL-18 and TNF-a
production

We used ELISA to evaluate the effects of minocycline on
proinflammatory cytokine (IL-13 and TNF-«) production
in the vehicle, saline + IFN-a, minocycline + IFN-a, and
minocycline groups. The results (Fig. 8) show that IL-1p
and TNF-a concentrations in the amygdala increased sig-
nificantly in the saline + IFN-«a group, compared to those
in the vehicle group, whereas treatment with minocycline +
IFN-« significantly decreased the IFN-a-induced increase
in IL-1p and TNF-a concentrations (one-way ANOVA and
Tukey’s post hoc test, p < 0.001). IL-1p and TNF-a concen-
trations were similar in the vehicle and minocycline groups,
demonstrating that minocycline did not affect the normal
cytokine levels in the brain.

Discussion

In the present study, to the best of our knowledge, we
demonstrated for the first time that intra-amygdala infu-
sion of IFN-a impaired the extinction of conditioned
fear in a dose-dependent manner. This result is consist-
ent with previous findings that intra-amygdala infusion
of IL-6 and TNF-« interrupts auditory fear conditioning
behavior in rats [36, 37]. We further found that the det-
rimental effect of IFN-a was prevented by pretreatment
with the microglial activation inhibitor minocycline. In
addition, the immunohistochemical and biochemical
results demonstrate that minocycline inhibited IFN-«-
induced microglial activation and increased the produc-
tion of IL-1p and TNF-a. These findings highlight the role
of glial activation in mental disorders associated with
innate immunity and underpin the disease-modifying
activity of minocycline.

Glial activation induced by IFN-a

IFN-a is an innate immune cytokine with anti-viral, anti-
proliferative, and apoptotic effects, as well as boosting the
immune system. IFN-a is often used to treat hepatitis-C
and some cancers (hematological malignancies, leukemia
and lymphomas, and melanoma) [38—40]. However, long-
term IFN-« treatment frequently triggers a variety of neuro-
psychiatric symptoms, such as depression [28, 40-44].
Zheng et al. reported that systemic IFN-a administration
activates microglia in the hippocampus, which may mediate
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Trials

the development of IFN-a-induced depression [28]. This
finding is in accordance with our result showing that IFN-a
activated microglia in the amygdala. Microglia are the resi-
dent immune cells in the brain and are integral to inflam-
matory processes during central nervous system (CNS)
disease states [45]. Activation of microglia is associated with
increased release of IL-1p and TNF-a, both of which pro-
mote hyperexcitability and hypersynchrony via transcrip-
tional or post-transcriptional mechanisms [33, 46]. Our
results also show that the levels of IL-1p and TNF-a
increased in response to the IFN-a infusion in the amyg-
dala. A study of depression showed that IFN-a treatment
induces secretion of proinflammatory cytokines from
microglia, which suppress neurogenesis in the hippo-
campus [28]. Thus, the authors suggested that de-
creased hippocampal neurogenesis plays an important
role in the development of depression. The main differ-
ence between our present study and previous studies on
depression is the method of IFN-a administration. We
directly infused a single dose of IFN-a into the amygdala,
whereas previous studies adopted 4—5 weeks of systemic
IFN-a administration. In the present study, we found no
clear change in the number or morphology of neurons in
the amygdala, suggesting that the observed impairment in
fear extinction was not caused by a structural change in
the neural circuit. Our behavioral and histological mea-
surements may have been conducted too early (8 h post
IFN-a administration) to observe a clear neuropatho-
logical change. Nevertheless, our results suggest that

the fear memory function can be disrupted at the early
phase of the inflammatory response in the brain.

Our results also show that astrocytes were activated by
infusing IFN-a into the amygdala. Astrocytes are the
major glial cell population in the CNS and are active
participants in propagating and regulating neuroinflam-
mation [47-50]. Two potential mechanisms of astrocyte-
mediated brain impairment have been proposed. First,
studies using astrocyte cultures have revealed that astro-
cytes secrete cytokines in response to stimulation by in-
flammatory cytokines [51-53]. Thus, astrocytes activated
by IFN-a in the amygdala may be a source of overex-
pressed IL-1p and TNF-«, which could disturb normal
neuronal activities [44, 54]. Second, astrocytes regulate
the synaptic transmission of neurons via uptake or re-
lease of neurotransmitters [55]. For example, reactive as-
trocytes produce the inhibitory gliotransmitter gamma
aminobutyric acid, which reduces synaptic plasticity and
the performance of learning and memory in a mouse
model [56]. The second mechanism may be more appro-
priate for our present results (see below).

Protective effects of minocycline

Another important finding in our study was that min-
ocycline prevented IFN-a-induced impairment of fear
extinction. Minocycline is a tetracycline derivative that
has powerful anti-inflammatory, anti-apoptotic, and
antioxidant properties independent of its antibacterial
activity. Because of its high lipid solubility, peripherally
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administrated minocycline easily crosses the blood—brain
barrier [28, 57]. The neuroprotective effect of minocycline
may be partially mediated by its ability to inhibit IFN-a-
induced microglial activation and concomitant production
of proinflammatory cytokines, as demonstrated in Figs. 6
and 8. Compelling evidence from in vivo and in vitro
models of neurological disease demonstrates that minocy-
cline exerts neuroprotective effects [28, 33, 58, 59].

In the present study, we found that astrocytes remained
reactive after pretreatment with minocycline, as demon-
strated by GFAP immunostaining in Fig. 7. Thus, minocy-
cline did not inhibit astrocyte activation, which may
explain why minocycline did not completely rescue IEN-
a-induced behavioral impairment. The finding that mino-
cycline prevented microglial activation without affecting
reactive astrocytes is interesting, as astrocyte activation is
a prominent feature in the neuroinflammed brain [60].
One possible explanation is that IFN-a-induced activation
of microglia and astrocytes is mediated through different
pathways, which is in line with previous studies showing

distinct regulation of microglial and astrocyte activation
after spreading depression and lipopolysaccharide-induced
hyperalgesia [50, 61, 62].

Although astrocytes remained activated after minocy-
cline was administered, IL-1p and TNF-a concentrations
in the examined brain area had returned to normal
levels (Fig. 8). Therefore, minocycline may prevent the
increase in inflammatory cytokines in astrocytes without
affecting their general activation state. Several in vivo
studies have demonstrated that astrocytes remain morpho-
logically activated in brain tissue after cytokine synthesis is
inhibited [29, 63]. Because astrocytes are intimately in-
volved in various functions, such as ion buffering, regula-
tion of neurotransmission, and modulation of blood—brain
barrier permeability in the normal brain [64, 65], activation
of astrocytes may not only be associated with mediating the
inflammatory responses in these cells. Furthermore,
although astrocytes can produce proinflammatory
cytokines like microglia, activated astrocytes may
serve as immune effector cells that limit the immune
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response by producing anti-inflammatory cytokines
[66]. For instance, astrocytes in in vivo seizure models
are a key source of anti-inflammatory molecules, such
as the IL-1 receptor antagonist [67], an endogenous
competitive IL-1 receptor blocker, which impairs elec-
trical kindling development in rats [68]. However, the
potential roles of the various glial functions in neu-
roinflammatory response remain poorly understood
and will likely be further investigated [33].

Conclusions

The results of our study implicate a microglial-mediated
mechanism in the development of IFN-induced impair-
ments of fear extinction. Further studies are warranted to
determine the precise mechanism by which minocycline
improves fear extinction.
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