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The glucagon-like peptide-1 receptor @
agonist exendin-4 ameliorates warfarin-
associated hemorrhagic transformation

after cerebral ischemia

Fangzhe Chen'!, Weifeng Wang?', Hongyan Ding', Qi Yang', Qiang Dong'™ and Mei Cui'”

Abstract

Background: As the number of patients with cardioembolic ischemic stroke is predicted to be double by 2030,
increased burden of warfarin-associated hemorrhagic transformation (HT) after cerebral ischemia is an expected
consequence. However, thus far, no effective treatment strategy is available for HT prevention in routine clinical
practice. While the glucagon-like peptide-1 receptor (GLP-1R) agonist exendin-4 (Ex-4) is known to protect against
oxidative stress and neuronal cell death caused by ischemic brain damage, its effect on preventing warfarin-
associated HT after cerebral ischemia is yet unknown. Therefore, we hypothesized that Ex-4 would stabilize the
blood-brain barrier (BBB) and suppress neuroinflammation through PI3K-Akt-induced inhibition of glycogen
synthase kinase-33 (GSK-3[3) after warfarin-associated HT post-cerebral ischemia.

Methods: We used male C57BL/6 mice for all experiments. A 5-mg warfarin sodium tablet was dissolved in animals’
drinking water (effective warfarin uptake 0.04 mg (2 mg/kg) per mouse). The mice were fed for 0, 6, 12, and 24 h
with ad libitum access to the treated water. To study the effects of Ex-4, temporary middle cerebral artery occlusion
(MCAO) was performed. Then, either Ex-4 (10 mg/kg) or saline was injected through the tail vein, and in the Ex-4 +
wortmannin group, PI3K inhibitor wortmannin was intravenously injected, after reperfusion. The infarct volume,
neurological deficits, and integrity of the BBB were assessed 72 h post MCAQO. One- or two-way ANOVA was used
to test the difference between means followed by Newman-Keuls post hoc testing for pair-wise comparison.

Results: We observed that Ex-4 ameliorated warfarin-associated HT and preserved the integrity of the BBB after
cerebral ischemia through the PI3K/Akt/GSK-33 pathway. Furthermore, Ex-4 suppressed oxidative DNA damage and
lipid peroxidation, attenuated pro-inflammatory cytokine expression levels, and suppressed microglial activation and
neutrophil infiltration in warfarin-associated HT post-cerebral ischemia. However, these effects were totally abolished
in the mice treated with Ex-4 + the PI3K inhibitor—wortmannin. The PI3K/Akt-GSK-3[3 signaling pathway appeared
to contribute to the protection afforded by Ex-4 in the warfarin-associated HT model.

Conclusions: GLP-1 administration could reduce warfarin-associated HT in mice. This beneficial effect of GLP-1 is
associated with attenuating neuroinflammation and BBB disruption by inactivating GSK-3f through the PI3K/Akt pathway.

Keywords: Cerebral ischemia, Exendin-4, Hemorrhagic transformation, Blood-brain barrier, Neuroinflammation, PI3K/Akt-
GSK-3 signaling pathway, Warfarin
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VCAM-1, Vascular cell adhesion molecule-1

Abbreviations: 8-OHdG, 8-hydroxy-2"-deoxyguanosine; AF, Atrial fibrillation; BBB, Blood-brain barrier; Ex-4, Exendin-4; GLP-
1R, Glucagon-like peptide-1 receptor; GSK-3[3, Glycogen synthase kinase-33; HHE, 4-hydroxyhexenal; HT, Hemorrhagic
transformation; ICAM-1, Interstitial cell adhesion molecule-1; IL-13, Interleukin-1 beta; INR, International normalized ratio;
MCAO, Middle cerebral artery occlusion; PBS, Phosphate-buffered saline; PI3K, Phosphatidylinositol 3- kinase;

RIPA, Radioimmunoprecipitation assay buffer; TNF-a, Tumor necrosis factor-a; TTC, 2,3 5-triphenyltetrazolium chloride;

Background

Globally, ischemic stroke is one of the leading causes of
death and long-term disability [1]. The number of pa-
tients with cardioembolic ischemic stroke resulting from
nonvalvular atrial fibrillation (AF), the major cause of
cardioembolic ischemic stroke, is predicted to double by
2030 [2, 3]. Consequently, a growing burden of warfarin-
associated hemorrhagic transformation (HT) after cere-
bral ischemia can be expected [4—6].

Early HT can occur as a complication of cardioembolic is-
chemic stroke [7]. Additionally, a higher rate of hematoma
expansion and a worse clinical outcome have been
reported in warfarin-associated HT patients [8—10]. How-
ever, no effective treatment strategy is available for preven-
tion of HT in clinical practice. Experimental studies of
cerebral ischemia have established increase in the perme-
ability of the blood-brain barrier (BBB) after ischemia/re-
perfusion injury as one of the major causes of HT [11, 12].

The glucagon-like peptide-1 receptor (GLP-1R) agonist
exendin-4 (Ex-4) is a long-acting analog of the endogen-
ous insulinotropic peptide GLP-1. Both GLP-1 and Ex-4
have multiple physiologic functions, such as the induction
of glucose-dependent insulin release, inhibition of gluca-
gon secretion, stimulation of B cell replication, and antia-
poptotic action [13]. Owing to their small molecule size,
both GLP-1 and Ex-4 can diffuse across the BBB in the
central nervous system and provide neuroprotection in
cerebral ischemia [14, 15]. While it has been reported that
Ex-4 can protect against oxidative products and neuronal
cell death caused by ischemic brain damage, it is yet un-
known whether Ex-4 is effective in preventing warfarin-
associated HT after cerebral ischemia.

Previous studies have shown that after a hemorrhagic
stroke, cytotoxic events activate the ubiquitously expressed
glycogen synthase kinase-3 (GSK-3[), which increases the
expression of B-catenin [16, 17] and subsequently de-
creases the expressions of claudins [18]. There is substan-
tial evidence that GSK-3B inhibition (tyrosine-216
dephosphorylation) reduces neuronal apoptosis [19-21]
and attenuates neuroinflammation in neurodegenerative
models [22-24]. Pharmacological stimulation of GLP-1R
activates the phosphatidylinositol 3-kinase (PI3K)-Akt
signaling pathway, and a number of studies have linked
GSK-3p with the PI3K/Akt pathway, thereby showing that

phosphorylated Akt inactivates GSK-33 via tyrosine-216
dephosphorylation. Herein, we hypothesized that Ex-4
would stabilize the BBB and suppress neuroinflammation
through PI3K-Akt-induced inhibition of GSK-3f after
warfarin-associated HT post-cerebral ischemia in mice.

Methods

Animals

All experiments were conducted using male C57BL/6
mice (body weight 18-25 g) at a constant temperature
and with a consistent light cycle (from 07:00 to 18:00)
under normal diet. This study was carried out in accord-
ance with the Guide for the National Science Council of
the Republic of China. All animals were treated accord-
ing to protocols approved by the Institutional Animal
Care and Use Committee of Fudan University.

A 5-mg warfarin sodium tablet (Coumadin™, Sigma-
Aldrich, St. Louis, MO, USA) was dissolved in 375 mL
of water. The C57 BL/6 mice were fed for 0, 6, 12, and
24 hours with ad libitum access to the treated water. As-
suming a mouse body weight of 20 g and a water con-
sumption rate of 15 mL/100 g per 24 h, this dosage
corresponds to a warfarin uptake of 0.04 mg (2 mg/kg)
per mouse over a 24-h period. Similar doses of warfarin
have been previously used [25]. After 24 h, the warfarin
was withdrawn and middle cerebral artery occlusion was
performed (Additional file 1: Figure S1). For the inter-
national normalized ratio (INR) measurement, the mice
were under deep anesthesia, a peritoneal midline inci-
sion was performed, and 0.6 mL blood was drawn from
the inferior caval vein as previously described [26]. Blood
was transferred to glass tubes (BD Vacutainer) contain-
ing sodium citrate as the anticoagulant. Measurements
of INR values and prothrombin time were performed in
the Department of Central Laboratory, Jingan District
Centre Hospital, Shanghai, China.

Temporary middle cerebral artery occlusion and drug
treatment

Mice were anesthetized with ketamine/xylazine (65/6 mg/
kg, i.p), and their body temperature was maintained at
37 °C by a heating pad and feedback control system (FHC,
Bowdoin, ME, USA). A laser Doppler probe was fixed on
the skull 5 mm lateral and 2 mm posterior to the bregma.
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A coated filament was placed on the right middle cerebral
artery (MCA) with concurrent recording of laser Doppler
cerebral blood flow to ensure that the cerebral blood flow
decreased to below 25 % of the baseline. After 45 min, the
filament was removed (Additional file 2: Figure S2). Either
Ex-4 (10 mg/kg) or saline was injected through the tail
vein immediately after reperfusion. In the Ex-4 + wort-
mannin group, we intravenously injected 15 pL/kg wort-
mannin (Sigma-Aldrich), a non-specific, covalent inhibitor
of PI3K immediately after reperfusion.

Assessment of infarct volume, neurological deficits, and
blood-brain barrier

All the mice were killed 72 h after temporary middle
cerebral artery occlusion (MCAQ), and brain tissues
were incubated in 2,3,5-triphenyltetrazolium chloride
(TTC) for 1 h. The infarct area in each slice was ana-
lyzed by a computerized image analysis system, and the
infarct volume was calculated by multiplying the dis-
tance between sections [27]. Neurological score was de-
termined 72 h after MCAO, according to the graded
scoring system described previously by Li et al. [28]. As-
sessment of motor coordination deficits was performed
on days 3 and 7 using the rota rod as previously described
[29]. Investigators who performed MCAO models, evalu-
ation of infarct volumes, neurological scales, and rota rod
were blinded to all the experimental protocols and drug
treatments. To measure BBB permeability, Evans blue
(Sigma-Aldrich) was dissolved in saline (2 %) and injected
into the right jugular vein 72 h after MCAO. The animals
were then killed, and the brain hemispheres were ho-
mogenized in 3 mL of N,N-dimethylformamide (Sigma-
Aldrich); incubated for 18 h at 55 °C; and centrifuged.
The supernatants were subjected to spectrophotom-
etry at 620 nm.

Quantification of hemorrhagic transformation

The hemoglobin content in brain tissue was quantified
by spectrophotometric assay. The hemispheric brain
tissue was homogenized with phosphate-buffered saline
(PBS) and centrifuged at 13,000xg for 30 min. The
hemoglobin-containing supernatant was collected, 80 pL
of Drabkin reagent (Sigma) was added to 20-pL super-
natant aliquots, and the sample was kept standing for
15 min at room temperature. The optical density in each
group was measured at 540 nm, and hemorrhage volume
was expressed in equivalent units by comparison with a
reference curve generated using homologous blood.

Western blotting

Striatal brain tissues from the MCA were lysed with
radioimmunoprecipitation assay buffer (RIPA) contain-
ing protease inhibitors (Sigma-Aldrich, St. Louis, MO,
USA). Proteins were separated by SDS-PAGE and then
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transferred onto a nitrocellulose membrane. The mem-
branes were incubated overnight at 4 °C with the follow-
ing primary antibodies: anti-p-GSK-3p (Tyr216, 1:1000,
Abcam Inc.,, Cambridge, MA); anti-GSK-33 (1:1000,
Abcam); anti-B-actin (1:5000, Sigma-Aldrich); anti-p-f3-
catenin (Ser33/37/Thr41, 1:2000, Cell Signaling Tech-
nology Inc., Danvers, MA); anti-B-catenin (1:1000,
Abcam), anti-claudin-3 (1:2000, Santa Cruz, CA); anti-
claudin-5 (1:2000, Santa Cruz); anti-p-Akt (Ser4d73,
1:2000, Cell Signaling); anti-Akt (1:2000, Cell Signaling);
anti-ICAM-1 (1:1000, Abcam); anti-VCAM-1 (1:1000,
Abcam); anti-IKK-f (1:2000, Santa Cruz); anti-NF-kB
(1:2000, Santa Cruz); anti-HHE (1:1,000, Abcam); anti-
Ibal (1:1,000, Abcam); and anti-myeloperoxidase (MPO)
(1:2000, Santa Cruz). Secondary antibodies conjugated
with horseradish peroxidase were used, and immunore-
activity was visualized by chemiluminescence (Super-
Signal Ultra, Pierce, Rockford, IL, USA). Bands of
interest were analyzed and quantified using Scion Image.

siRNA-mediated GSK-33 gene knockdown

The small interfering RNA (siRNA)-mediated GSK-3f3
gene knockdown was performed as previously described
[30]. Briefly, two pairs of GSK-3f siRNAs (21500 R12-
1717, R12-1719; Cell Signaling) with a total volume of
4 uL (2 pL each) were stereotaxically injected to the
right lateral ventricle following coordinates relative to the
bregma: AP =-04 mm, L=-1.0 mm, and H=- 2.0 mm
(from the brain surface) 48 h prior to MCAO.

Measurement of cytokine concentration

Striatal brain tissues from the MCA were homogenized
and collected by centrifugation at 15,000xg for 30 min at
4 °C and then stored at —70 °C until the assay was per-
formed. The supernatant was assayed for tumor necrosis
factor-a (TNF-a) and interleukin-1 beta (IL-1p) using
enzyme-linked immunosorbent assays (ELISA; R&D Bio-
systems) as described previously [31].

Measurement of 8-OHdG formation in the brain
Concentration of 8-hydroxy-2'-deoxyguanosine (8-OHdG)
in brain DNA was measured by Piao et al’s method [32],
with slight modifications. Briefly, 200 mg of brain tissue
was homogenized in 0.25 M sucrose solution. DNA was
extracted from the homogenate under anaerobic condi-
tions. The 8-OHdG content in the brain was measured by
using an HPLC-ECD as previously described [33]. Each
brain sample was examined in duplicate.

Immunohistochemistry

Seventy-two hours after MCAO, the mice were anesthe-
tized and first perfused with saline followed by fixation
with buffered paraformaldehyde (4 %). The brains were
removed and post-fixed in 4 % paraformaldehyde; the
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paraformaldehyde was then removed and replaced with
30 % sucrose solution overnight. Then 15-pum coronal
sections were obtained on a cryostat. The slices were
blocked with PBS containing 5 % bovine serum albumin
(BSA), 10 % goat serum, and 0.3 % Triton-X 100. Next,
the slices were incubated with the primary antibodies
anti-Ibal (1:250, Abcam) and anti-TNF-a (1:100, Santa
Cruz) overnight at 4 °C. Then Alexa Fluor 488 or 595
labeled secondary antibody (Molecular Probes Inc.,
Eugene, OR, USA) for 2 h at room temperature. The tis-
sue sections were washed twice in PBS and then
immersed in DAPI (Molecular Probes) solution (1:1000
dilution) for 10 min. The sections were finally rinsed in
distilled water and fixed with a coverslip with anti-fade
mounting medium.

Assessment of microglia activation

First, microglia activation were counted and morpho-
logically characterized based on the following criteria.
Cells with an oval cell body containing a small volume
of cytoplasm and long, thin, delicate, and radially
branched processes were classified as ramified microglia
[34]. Activated microglia were defined as having an en-
larged soma (width greater or equal to 30 pm) and a
broad-flattened appearance with the common presence
of several lamellapodia [35]. This morphological classifi-
cation was then confirmed by using a methodology of
semi-automatic image analysis to analyze the cell body
to cell size ratio in Ibal-stained brain sections as de-
scribed before [36] by Image] software.

Statistical analysis

All values are expressed as mean + standard deviation
(SD). Differences between means were analyzed using ei-
ther one-way or two-way ANOVA followed by Newman—
Keuls post hoc testing for pair-wise comparison using
SigmaStat v 3.5. A P value <0.05 was considered statisti-
cally significant.

Results

Exendin-4 ameliorated warfarin-associated HT after
cerebral ischemia

To examine the influence of warfarin on animal PT-
INR values, the mice were killed at the indicated time
points and the PT-INR values were measured. After
warfarin administration, the PT-INR values increased
in a time-dependent manner (Fig. la). After 24 h of
warfarin administration, PT-INR values were elevated
(mean =3.85+ 1.12; n=6) and reached the therapeutic
span used in humans. These results were consistent with
those previously reported [26]. In view of these results, we
decided to use 24 h as the warfarin administration time
for all subsequent experiments.
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MCAO induced a sharp drop of rCBF, leading to ex-
tensive infarction in the cerebral cortical and subcor-
tical areas over a series of brain sections in the mice
(Fig. 1b, d). Compared with the MCAO+/Ex-4 group,
warfarin treatment did not increase the infarct size or
neurological deficits. However, warfarin significantly ex-
acerbated HT after cerebral ischemia. Ex-4 suppressed
this exacerbation (Fig. 2a). Moreover, Ex-4 showed
striking protective effects to reduce to infarct volume
and improve neurological function in MCAO mice with
or without warfarin treatment (Fig. 1c—f).

Exendin-4 preserves the BBB integrity in warfarin-
associated HT after cerebral ischemia

Functional barrier properties were evaluated using Evans
blue assays, 72 h after surgery. Significantly more extrav-
asated dye was measured in the ischemic hemispheres of
mice subjected to warfarin treatment compared with the
control group. Ex-4 preserved BBB integrity in the
model of warfarin-associated HT after MCAO, which
was associated with significantly reduced dye extravasa-
tion in Ex-4-treated animals (Fig. 2b).

Claudin-3 and claudin-5 are transmembrane proteins
essential for maintaining the diffusion barrier provided
by tight junctions [37, 38]. Previous studies reported the
regulatory role of activation of GSK-3p and (-catenin in
claudin-3 and claudin-5 gene expression, respectively
[39]. Western blot analyses of the ischemic brain were
conducted at 72 h after MCAO. Changes in protein ex-
pression of phosphorylated and, therefore, activated
GSK-3B (p-GSK-3p, Tyr216) were quantified as a ratio
to total GSK-3f (Fig. 3a, b). GSK-3 phosphorylation was
significantly increased in the warfarin-treated mice com-
pared with the control group. However, Ex-4 signifi-
cantly reduced the p-GSK-33/GSK-3p ratio. Consistent
with these results, increased phosphorylated [-catenin
levels were also found in warfarin-treated mice com-
pared with the control group (Fig. 3¢, d). Ex-4 signifi-
cantly reduced the p-P-catenin/B-catenin ratio. Tight
junction protein expressions were also detected. As
shown in Fig. 3e-h, claudin-3 and claudin-5 levels were
reduced in the model of warfarin-associated HT after
MCAO compared with MCAO mice. However, Ex-4
treatment significantly reversed the reduction.

Exendin-4 ameliorated warfarin-associated HT after
cerebral ischemia through PI3K/Akt/GSK-3B pathway

It has been reported that activated Akt (p-Akt) can in-
activate GSK-3p and reduce the amount of GSK-3f3
available for phosphorylation (through the tyrosine-216
form) [40, 41]. The inactivation of GSK-3p, specifically
through tyrosine-216 dephosphorylation, increased p-
catenin, which is an important factor in maintaining
BBB integrity [42, 43].
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Fig. 1 Exendin-4 treatment reduced the stroke volume and improved neurological function after cerebral ischemia. a Prothrombin time-
international normalized ratio values (PT-INR) in non-MCAQ mice after 0, 6, 12, and 24 h of warfarin administration through drinking water.

b Regional cerebral blood flow (rCBF) in both ischemic and reperfusion stages was recorded using laser Doppler cerebral blood flow. ¢ Exendin-4
(Ex-4, 10 mg/kg) was injected through the tail vein immediately after reperfusion. The infarct volume was measured 72 h after middle cerebral
artery occlusion (MCAO) using TTC straining. d Representative images of TTC straining showing the ischemic area and hemorrhage transformation.

e, f Exendin-4 (Ex-4, 10 mg/kg) was injected through tail vein immediately after reperfusion. The neurological deficits were measured 72 h after MCAO,
and assessment of motor function was analyzed on days 3 and 7 using rota rod after MCAQ. Data are presented as mean + SD and analyzed by
two-way ANOVA. *P < 0.05 compared with the Ex-4(-) group, *P < 0.05 compared with the MCAO+/Ex-4(+) group
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Fig. 2 Exendin-4 treatment reduced warfarin-associated HT after cerebral ischemia. a Brain hemoglobin levels were evaluated at 72 h after middle
cerebral artery occlusion (MCAO). Data are presented as mean + SD and analyzed by two-way ANOVA. *P < 0.05 compared with the MCAO+/Ex-
4(-) group, P <005 compared with the MCAO+/Ex-4(+) group. b Blood-brain barrier (BBB) integrity in MCAO mice were assessed after Evans
blue staining. Data are presented as mean + SD and analyzed by two-way ANOVA. *P < 0.05 compared with the Ex-4(-) group, *P < 0.05 compared
with the MCAO+/Ex-4(+) group
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To examine if warfarin and Ex-4 could phosphorylate  with the warfarin-treated MCAQO mice, Ex-4 treatment

Akt after cerebral ischemia, the phosphorylation of Akt
was examined 72 h after MCAO. After normalizing the
values of the active p-Akt with the amount of total Akt
(Akt) in each sample, we observed an increase in the
Ex-4-treated mice compared to warfarin treatment
alone. We indirectly studied the activation of Akt by
measuring the phosphorylation of its downstream tar-
get GSK-3B in the same brain areas. As compared

significantly suppressed the phosphorylation of GSK-3.
These phosphorylation changes of Akt and GSK-3f3 were
totally abolished when the mice were treated with Ex-
4 in combination with the PI3K inhibitor—wortmannin
(Fig. 4).

These results showed that Ex-4 induced PI3K/Akt
pathway activation and subsequent GSK-3p inactivation
in the model of warfarin-associated HT after cerebral
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ischemia. Next, the role of PI3K/Akt/GSK-3p signaling
pathway in the integrity of BBB was further investigated
using the following antagonists: PI3K inhibitor wortmannin
and GSK-3 siRNA in the model of warfarin-associated HT
after cerebral ischemia. GSK-3p knockdown by siRNA sig-
nificantly reduced the warfarin-associated HT. Ex-4 also re-
versed the warfarin-induced HT in ischemic mice. The
mice receiving Ex-4 in combination with wortmannin,
however, failed to show this protective effect (Fig. 5a).

Exendin-4 preserves BBB integrity in warfarin-associated
intracerebral hemorrhage after cerebral ischemia through
PI3K/Akt/GSK-3B pathway

To detect the role of the PI3K/Akt/GSK-3pB signaling
pathway in preventing BBB disruption in the Ex-4-
treated mice, wortmannin and GSK-3f siRNA were used.
In the model of warfarin-associated HT after cerebral
ischemia, GSK-3p knockdown by siRNA significantly pre-
vented the warfarin-induced BBB disruption. When
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administered alone, Ex-4 preserved BBB integrity after
warfarin-associated HT. Mice receiving Ex-4 in combin-
ation with wortmannin failed to demonstrate reduced dye
extravasation into the ischemic brain hemisphere (Fig. 5b).

The effect of GSK-3f siRNA on the expression levels of
the p-B-catenin/(3-catenin ratio was also measured. GSK-33
knockdown by siRNA significantly reduced the expression
of p-p-catenin. As shown in Fig. 5¢, Ex-4 reduced GSK-3f3
activation, thereby stabilizing f-catenin. However, when the
mice were treated with Ex-4 and wortmannin, this
stabilization effect of Ex-4 was completely lost.

The expression levels of tight junction proteins were also
detected; warfarin-associated HT reduced claudin-3 and
claudin-5 levels. However, Ex-4 treatment significantly in-
creased their expression, and wortmannin reversed
the initial increase of claudin-3 and claudin-5 by Ex-4
(Fig. 6a, b).

The PI3K/Akt pathway has been implicated in
stabilization of the BBB through decreased expression of
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endothelial adherent proteins vascular cell adhesion
molecule-1 (VCAM-1) and interstitial cell adhesion
molecule-1 (ICAM-1) [44, 45]. Warfarin-associated HT
significantly increased the expression of ICAM-1 and
VCAM-1. Both adhesion molecules’ expressions were
decreased by Ex-4 treatment, and wortmannin reversed
the reduction of the adhesion molecules’ levels induced
by Ex-4 (Fig. 6c, d).

Exendin-4 suppresses oxidative DNA damage and lipid
peroxidation in warfarin-associated HT after cerebral
ischemia

Next, we investigated whether Ex-4 can control oxidative
stress in warfarin-associated HT using lipid peroxidation
indicator (HHE) and DNA oxidative injure indicator (8-
OHdG). 8-OHdG is a major form of oxidative DNA
damage product, and 4-hydroxyhexenal (HHE) is one of
the major lipid peroxidation products that are formed by
n-3 polyunsaturated fatty acids in cells exposed to oxida-
tive stress [46]. The expression levels of 8-OHdG and
HHE were significantly increased in warfarin-associated
HT brains compared to MCAQO brains. The levels of
these oxidative stress markers were significantly de-
creased in the Ex-4-treated group. When the mice were
treated in combination with wortmannin, Ex-4 failed to
suppress the expression levels of 8-OHdG and HHE
(Fig. 7).

Exendin-4 attenuated pro-inflammatory cytokines in
warfarin-associated HT after cerebral ischemia

We additionally examined the role of Ex-4 in modulat-
ing neuroinflammation by measuring expression levels
of several cytokines such as IKK-f, NF-kB, TNF-a, and
IL-1PB. The expression levels of IKK-f and NF-kB were
significantly increased after warfarin-associated HT com-
pared to MCAO alone, while Ex-4 treatment reduced
the effect and wortmannin blocked the reduction in-
duced by Ex-4 (Fig. 8a, b).

The expression levels of TNF-a and IL-1f were evalu-
ated by ELISA. Both these cytokines were upregulated in
warfarin-associated HT mice, and Ex-4 blocked the in-
crease concordantly with a similar pattern for IKK-$ and
NE-kB. The modulating effect of Ex-4 on the cytokines’
expression levels were reversed by co-treatment with
wortmannin (Fig. 8¢, d).

Exendin-4 suppresses neuroinflammation in warfarin-
associated HT after cerebral ischemia

Consistent with the changes in cytokine levels, immuno-
fluorescence analysis also showed that warfarin-
associated HT robustly enhanced immunofluorescence
intensity of Ibal staining (a marker of microglia/macro-
phages) in the MCA area compared to the MCAO group
(Fig. 9a). The quantification results showed Ibal-positive
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Fig. 7 Ex-4 suppressed oxidative DNA damage and lipid
peroxidation in warfarin-associated HT after cerebral ischemia.
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cells were significantly attenuated in the mice treated
with the Ex-4 (Fig. 9b). Further, morphology analysis
showed that the number of activated microglia was at-
tenuated in the Ex-4-treated group (Fig. 9e—g). Consist-
ent with these results, double immunofluorescent
staining showed Ibal+/TNF-a + cells were elevated in
the warfarin-associated HT group and Ex-4 significantly
reduced the double positive cells (Additional file 3:
Figure S3). Wortmannin blocked this function of Ex-4.
Western blotting showed similar results with immuno-
staining (Fig. 9c). Taken together, these results suggest
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that the protection conferred by Ex-4 was likely medi-
ated by the inhibition on warfarin-associated neuroin-
flammation after cerebral ischemia.

In addition to brain resident microglia, hematogenous
leukocytes have been shown to play a pivotal role in
post-stroke neuroinflammation. Among white blood
cells, neutrophils have attracted much interest recently
and have been intensively studied. The level of myelo-
peroxidase (MPO) was significantly increased in the
warfarin-associated HT group compared to MCAO. Ex-
4 treatment reversed the MPO level. The inhibition of
Akt by wortmannin restored the MPO level back to that
of the warfarin-associated HT group (Fig. 9d).

Discussion

Atrial fibrillation is a severe independent risk factor of
stroke, its attributable risk increasing with age up to
more than 20 % [47]. INR-driven oral anticoagulation
with vitamin K antagonists to an INR of 2—3 reduces the
risk of an ischemic stroke by over 60 % and has been the

standard of stroke prevention in patients with AF [48].
However, anticoagulation therapy is closely related to
HT after ischemia. In addition, cardioembolic stroke also
carries with it an increased risk of HT [49]. The chief
mechanism of HT is considered to be blood leakage due
to disruption of the BBB. Our results showed that pre-
treatment with warfarin could significantly increase the
INR level in a time-dependent manner and dramatically
enhance Evans blue leakage provoked by MCAO. Al-
though the infarct volume and neurological deficits were
not significantly different between the groups with or
without warfarin treatment, warfarin significantly pro-
moted the HT after cerebral ischemia, which is consist-
ent with the permeability measurement results.

GLP-1 and long-acting Ex-4 induce numerous bio-
logical actions through the G protein-coupled GLP-1 re-
ceptor (GLP-1R). GLP-1R is reportedly expressed in a
wide range of tissues, including the brain. Moreover,
GLP-1R stimulation has shown neuroprotective actions
in previous findings, thereby establishing that GLP-1R
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stimulation protects hippocampal neurons from amyloid-
B peptide and glutamate-induced toxicity [50, 51]. As the
GLP-1R agonist Ex-4 is permeable to the BBB with a rela-
tively long half time, it has possible clinical applications.
Several studies have shown that Ex-4 can protect against
oxidative products and neuronal cell death caused by

ischemic brain damage [15]. However, to the best of our
knowledge, whether GLP-1R stimulation is associated
with warfarin-associated HT has not yet been studied.
Herein, we reported that Ex-4 prevented the exacerbation
of HT caused by warfarin without affecting the infarct
volume. The mechanism whereby Ex-4 prevented the
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exacerbation of HT might involve maintenance of the
expression of tight junction proteins and suppress the
neuroinflammation associated with warfarin treatment.
The pathways that strengthen the antiapoptotic and neuro-
protective effects of Ex-4 after cerebral ischemia mostly
converge on activation of the transcription factor cAMP
response element-binding protein (CREB) by phosphoryl-
ation. In the present study, the PI3K/Akt-GSK-3p signaling
pathway appeared to contribute to the protection afforded
by Ex-4 in the warfarin-associated HT model.

PI3K/Akt plays a crucial role in the cell death/survival
pathway through several different downstream targets
including GSK-3p [52]. A temporal increase in phospho-
Akt after cerebral ischemia has been reported, and GSK-
3B dephosphorylation at tyrosine-216 is accelerated as a
downstream target of Akt [53]. The inactivation of GSK-
3B via tyrosine-216 dephosphorylation mediates neur-
onal survival after cerebral ischemia [43]. In addition,
the inactivation of GSK-3f results in stabilization of (-
catenin, a protein that plays a role in cell adhesion. As a
result, free B-catenin is allowed to accumulate and be
translocated to the nucleus, binding to the transcription
factors to alter target gene expressions [54], such as those
of tight junction proteins claudin-3 and claudin-5 [18, 39].
Furthermore, GSK-3f inactivation may also decrease NF-
kB expression, thereby reducing neuroinflammation.

In this study, Akt phosphorylation at Ser473 and GSK-
3B dephosphorylation at tyr216 were increased in
warfarin-associated HT after cerebral ischemia. Adminis-
tration of Ex-4 substantially decreased HT and maintained
the stability of BBB. The reduced dye extravasation and
brain hemoglobin level were similar to that achieved by
inhibition of GSK-3p. Evidence supporting enhanced BBB
stabilization by Ex-4 including decreased adherens
(VCAM-1 and ICAM-1) and increased tight junction
(claudin-3 and claudin-5) proteins could be totally abol-
ished by wortmannin, a specific PI3K inhibitor. These
results suggest that warfarin-associated HT reduced the
expression of tight junction proteins. This effect was
prevented by treatment with Ex-4 through the PI3K/
Akt-GSK-33 pathway. Furthermore, Ex-4 reduced the
warfarin-induced hemorrhage volume via a protective
effect on vascular endothelial cells.

Inflammation has been recognized as a key contributor
to the pathophysiology of cerebral ischemia [55]. Inflam-
mation includes a series of cellular events such as infil-
tration of neutrophil cells and activation of microglia/
macrophages and astrocytes [56]. We found that
warfarin-associated HT significantly upregulated Ibal-
positive cells. Microglia/macrophage activation, together
with elevated expression of pro-inflammatory cytokines
such as IKK-B, NF-kB, TNF-a, and IL-1f, demonstrated
that the warfarin-associated HT induced a neuroinflam-
mation after cerebral ischemia. It has also been reported
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that activated microglia/macrophages are major sources
of metalloproteinase generation, which is closely associ-
ated with ischemia-induced cerebral hemorrhage and
edema. NF-kB is a central mediator of these inflamma-
tory processes. Recent evidence has shown that the PI3K/
Akt signaling pathway may be an endogenous negative
feedback regulator of NF-kB-mediated pro-inflammatory
responses [57, 58]. Several pro-inflammatory NF-kB target
genes including TNF-a and IL-1B could mediate the dele-
terious effects on neurons under ischemic conditions. In
the present study, we showed that warfarin-induced HT
markedly induced the activation of microglia/macro-
phages and consequently increased the production of pro-
inflammatory cytokines and Ex-4 significantly inhibited
the neuroinflammation induced by warfarin through the
PI3K/Akt-GSK-3p pathway. Moreover, suppression of oxi-
dative damage is also a key factor in neuroprotection.
Using 8-OHdG and HHE as markers of oxidative stress,
our study showed that Ex-4 reduced the warfarin-induced
accumulation of oxidative DNA damage and lipid peroxi-
dation after cerebral ischemia.

Conclusions

Our study results showed that administration of GLP-1
could reduce warfarin-associated HT in mice. This bene-
ficial effect of GLP-1 was associated with attenuating
neuroinflammation and BBB disruption by inactivating
GSK-3p through the PI3K/Akt pathway. These findings
have important clinical implications and would be par-
ticularly beneficial in those receiving anticoagulant ther-
apy. Future clinical trials should focus on confirming the
efficacy and safety of this therapy.

Additional files

Additional file 1: Figure S1. The PT-INR values after warfarin withdrawal.
After warfarin withdrawal, INR values remained stable for the next 6 h and
dropped to normal values after 24 h. Data are shown as mean + SD.

Additional file 2: Figure S2. The rCBF levels in the ischemia and
reperfusion stages in MCAO mice. A coated filament was placed on the
right middle cerebral artery (MCA) with concurrent recording of laser
Doppler cerebral blood flow. In the ischemia stage, the rCBF decreased
to <25 % of baseline. After 45 min, the filament was removed and the
rCBF increased to 110 % of baseline.

Additional file 3: Figure S3. Representative immunofluorescence
images showed co-localization of IbaT (green) and TNF-a (red) in microglia.
Immunostaining of Iba1(green), TNF-a(red), and DAPI (blue) was performed
in the cortical and subcortical areas supplied by the middle cerebral artery.
(A) Representative immunofluorescence images showed the percentage
of Ibal+/TNF-a + cells to total Ibal+ cells was increased after warfarin
treatment. EX-4 treatment reduced the Iba1+/TNF-a + cells percentage,
whereas wortmannin blocked this effect of EX-4. Scale bar 50 um.

(B) Quantitative analysis of Ibal and TNF-a double positive cells/Ibal-
positive cells.
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