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Abstract

Background: Obesity and its associated disorders are becoming a major health issue in many countries. The
resulting low-grade inflammation not only affects the periphery but also the central nervous system. We set out to
study, in a time-dependent manner, the effects of a high-fat diet on different regions of the central nervous system
with regard to the inflammatory tone.

Methods: We used a diet-induced obesity model and compared at several time-points (1, 2, 4, 6, 8, and 16 weeks)
a group of mice fed a high-fat diet with its respective control group fed a standard diet. We also performed a
large-scale analysis of lipids in the central nervous system using HPLC-MS, and we then tested the lipids of interest
on a primary co-culture of astrocytes and microglial cells.

Results: We measured an increase in the inflammatory tone in the cerebellum at the different time-points.
However, at week 16, we evidenced that the inflammatory tone displayed significant differences in two
different regions of the central nervous system, specifically an increase in the cerebellum and no
modification in the cortex for high-fat diet mice when compared with chow-fed mice. Our results clearly
suggest region-dependent as well as time-dependent adaptations of the central nervous system to the
high-fat diet. The differences in inflammatory tone between the two regions considered seem to involve
astrocytes but not microglial cells. Furthermore, a large-scale lipid screening coupled to ex vivo testing
enabled us to identify three classes of lipids—phosphatidylinositols, phosphatidylethanolamines, and
lysophosphatidylcholines—as well as palmitoylethanolamide, as potentially responsible for the difference in
inflammatory tone.

Conclusions: This study demonstrates that the inflammatory tone induced by a high-fat diet does not
similarly affect distinct regions of the central nervous system. Moreover, the lipids identified and tested

ex vivo showed interesting anti-inflammatory properties and could be further studied to better characterize
their activity and their role in controlling inflammation in the central nervous system.
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LPC, Lysophosphatidylcholine; LPS, Lipopolysaccharides; MCP-1, Monocyte chemoattractant protein 1 (or
CCL2); PE, Phosphatidylethanolamine; PEA, Palmitoylethanolamide; PI, Phosphatidylinositol;

SAT, Subcutaneous adipose tissue; Serpina3n, Serine peptidase inhibitor, clade A, member 3N (or alpha 1-
antitrypsin); SM, Sphingomyelin; TNFa, Tumor necrosis factor a; VAT, Visceral adipose tissue; ZO-1, Zonula

Background

Obesity and related disorders are becoming worldwide
health issues [1-3]. Obesity is regarded as an inflamma-
tory condition because of the associated low-grade in-
flammation [4—6] affecting the periphery and increasing
the incidence of many pathologies such as cardiovascular
diseases [7], asthma [8], or even cancer [9]. One of the
proposed mechanisms leading to peripheral inflamma-
tion implicates the gut microbiota. More specifically, a
high-fat diet (HFD) will change the balance between dif-
ferent populations of bacteria within the gut [10, 11].
This will lead to a disruption of the intestinal
epithelium integrity that in turn will result in in-
creased passage of endotoxins (such as lipopolysac-
charides (LPS)) into the bloodstream that will then
fuel the peripheral inflammatory tone [4, 12, 13]. The
demonstration that disrupting LPS signaling (i.e.,
TLR4™'~ mice or CD14~’~ mice) protects from diet-
induced obesity and metabolic disorders strongly sup-
ports the important role played by LPS in the patho-
physiology of these disorders [12-15].

This increased peripheral inflammatory tone will also
affect the central nervous system (CNS) and will in-
crease the incidence of CNS pathologies such as cogni-
tive impairments [16], Alzheimer’s disease [17], stroke
[18], or dementia [19]. The impact of a HFD on the
CNS was well characterized with regard to a specific re-
gion, the hypothalamus [20-22]. The hypothalamus has
attracted the attention of many researchers because of
its central role in food intake as well as in monitoring
the availability of nutrients [23-25]. HFD feeding is as-
sociated with a disruption of the homeostasis in the
hypothalamus, and more specifically with the activation
of glial cells and increased inflammatory tone [24, 26,
27]. This leads to both leptin and insulin resistance thus
worsening obesity [22]. However, much less is known
about the repercussions of a HFD on the other regions
of the CNS in terms of inflammation. Obesity and in-
flammation are closely related to lipids and their metab-
olism. Indeed, HFD feeding will lead to an increase in
the intake of saturated fatty acids [28] and to the disrup-
tion of cholesterol homeostasis (an increase in LDL to
HDL cholesterol ratio) [29, 30], both associated with
deleterious effects. The adipose tissue will have to cope
with an increased flow of free fatty acids that will trigger
a low-grade inflammation through immunomodulatory

changes of both specific T cell subtypes and macrophage
polarization [31, 32].

The perception of lipids has dramatically changed
from being mere energy substrate molecules to bioactive
molecules involved in many physiological processes not-
ably through the emergence of the lipidomic approach
[33]. Lipids are recognized as central mediators involved
in the onset, development, and resolution of inflamma-
tory processes [34, 35]. Obesity alters the endogenous
levels of several bioactive lipid families such as cera-
mides, phosphatidylcholines, and endocannabinoids
[36-38]. In turn, some bioactive lipids exert either pro-
or anti-inflammatory effects during obesity. For instance,
ceramides will exert pro-inflammatory effects in the liver
and will progressively lead to insulin resistance by tam-
pering with the insulin signaling [6, 39, 40]. Conversely,
n-3 polyunsaturated fatty acids show beneficial effects
by counteracting HFD-induced adipose tissue inflamma-
tion [41]. Still, the potential involvement of other lipids
needs to be addressed to better characterize the inflam-
matory tone deriving from obesity.

In this study, we set out to characterize, at multiple
time-points and in different CNS regions, the inflamma-
tory tone induced by a HFD. We found that, depending
on the CNS region, a HFD differentially affects the in-
flammatory tone. We, therefore, investigated whether
changes in CNS lipid content could explain the differ-
ences in the inflammatory tone between CNS regions.

Methods

Animals and diets

Nine-week-old male C57BL/6] mice (Charles River) were
housed in a controlled environment (12-h day light cycle,
lights off at 6 pm, controlled temperature and humidity).
Upon arrival, they were randomly split into 12 groups of
eight mice each (four mice/cage) and acclimated for 1 week.
Then, six of these groups were given free access to a stand-
ard diet (AIN 93-M, Research Diets, New Brunswick, USA)
and the remaining six groups were given free access to a
HFD (D12492, Research Diets, New Brunswick, USA). For
details in the composition of both diets, refer to Additional
file 1: Table S1. For this experiment, we euthanized at each
selected time-point (ie., after 1, 2, 4, 6, 8, and 16 weeks)
one group under standard diet and one group under a
HED. Mice were anesthetized using isoflurane after a 6-h
fasting period and sacrificed by cervical dislocation. The
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cortex, cerebellum, and brainstem were carefully and rap-
idly recovered and snap-frozen in liquid nitrogen. The dif-
ferent adipose tissue depots (subcutaneous adipose tissue
(SAT), visceral adipose tissue (VAT), epididymal adipose
tissue (EAT), and brown adipose tissue (BAT)) were har-
vested and weighed. All the tissues collected were stored at
-80 °C until further analysis.

We performed this study in accordance with the
European recommendation 2007/526/CE (which was
transformed into the Belgian Law of May 29, 2013),
regarding the protection of laboratory animals. The
local ethics committee approved the protocol of the
study (study agreement 2010/UCL/MD/022; lab agreement
LA1230314).

Cholesterol quantification

Plasma total cholesterol was quantified, following manu-
facturer’s instructions, in the vena cava using the Chol-
esterol FS10 kit (DiaSys Diagnostic and Systems,
Holzheim, Germany), which is based on an enzymatic
reaction coupled with a spectrophotometric detection of
the end-product.

RNA preparation and RT-gPCR analysis

Total RNA from tissues was extracted using TriPure re-
agent (Roche, Basel, Switzerland) according to the man-
ufacturer’s instructions. cDNA was synthesized using an
RT kit (Promega, GoScript™ Reverse Transcription
System) from 1 pg of total RNA. qPCR was performed
with a StepOnePlus instrument and software (Applied

Table 1 Primer sequences
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Biosystems, Foster City, CA, USA). PCR reactions were
run using a SYBR Green mix (Promega, GoTaq® qPCR
Master Mix). We measured each sample in duplicate
during the same run. The following conditions were
used for amplification: an initial holding stage of 10 min
at 95 °C, then 45 cycles consisting of denaturation at
95 °C for 3 s, annealing at 60 °C for 26 s, and extension
at 72 °C for 10 s. Products were analyzed by performing
a melting curve at the end of the PCR reaction. Data
are normalized to the 60S ribosomal protein L19
(RPL19) messenger RNA (mRNA) expression [42]. The
sequences of the primers used are listed in Table 1.

Lipid quantification

Tissues (cerebellum or cortex) were homogenized in
water (2.5 mL), and then the lipids were extracted fol-
lowing acidification, in the presence of internal stan-
dards, by adding 10 mL of chloroform (CHCl;) and
5 mL of methanol (MeOH). Following vigorous mixing
and sonication, the samples were centrifuged and the or-
ganic layer was recovered and dried under a stream of
N,. The resulting lipid extracts were purified by solid-
phase extraction using silica and eluted with a mix of
CHCl; and MeOH. The resulting lipid fractions were an-
alyzed by HPLC-MS using an LTQ-Orbitrap mass
spectrometer (ThermoFisher Scientific) coupled to an
Accela HPLC system (ThermoFisher Scientific). Analyte
separation was achieved using a C-18 Phenomenex pre-
column and a Kinetex LC-18 column (5 pm, 4.6 x
150 mm) (Phenomenex).

Gene Forward primer (5'-3') Reverse primer (5'-3")

CD11b GAACATCCCATGACCTTCCA GCTGGGGGACAGTAGAAACA
CD11c ACGTCAGTACAAGGAGATGTTGGA ATCCTATTGCAGAATGCTTCTTTACC
CD68 CTTCCCACAGGCAGCACAG AATGATGAGAGGCAGCAAGAGG
Claudin 1 TTCGCAAAGCACCGGGCAGATACA GCCACTAATGTCGCCAGACCTGAAA
Claudin 5 GTTAAGGCACGGGTAGCACT GTACTTCTGTGACACCGGCA

COX-2 TGACCCCCAAGGCTCAAATAT TGAACCCAGGTCCTCGCTTA

F4/80 TGACAACCAGACGGCTTGTG CAGGCGAGGAAAAGATAG

GFAP TTCGCACTCAATACGAGGCA CTCCAGATCGCAGGTCAAG

IL-18 TCGCTCAGGGTCACAAGAAA CATCAGAGGCAAGGAGGAAAAC
IL-6 ACAAGTCGGAGGCTTAATTACACAT TTGCCATTGCACAACTCTTTTC

iNOS AGGTACTCAGCGTGCTCCAC GCACCGAAGATATCTTCATG

LBP AGTCCTGGGAATCTGTCCTTG ACTTGTGCCTTGTCTGGATG

MCP-1 GCAGTTAACGCCCCACTCA TCCAGCCTACTCATTGGGATCA
Occludin ATGTCCGGCCGATGCTCTC TTTGGCTGCTCTTGGGTCTGTAT
RPLT9 TGACCTGGATGAGAAGGATGAG CTGTGATACATATGGCGGTCAATC
Serpina3n GGACATTGATGGTGCTGGTGAAT CTCCTCTTGCCCGCGTAGAA

TNFa CCACCACGCTCTTCTGTCT TCCAGCTGCTCCTCCACTT

Z0-1 TTTTTGACAGGGGGAGTGG TGCTGCAGAGGTCAAAGTTCAAG
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For lysophosphosphatidylcholines, phosphatidylcho-
lines, and sphingomyelins, mobile phases A and B were
composed of MeOH-H,O 85:15 (v/v) and MeOH, re-
spectively, with 5 mM of CH3COONH,. The gradient
(0.25 mL/min) was designed as follows: transition from
100 % A to 100 % B over 15 min, followed by 100 % B
linearly over 15 min followed by a subsequent re-
equilibration at 100 % A. Analytes were ionized using an
ESI source operated in positive mode.

For the other lysophosphospholipids and for the phos-
pholipids and sulfatides, mobile phases A and B were
composed of MeOH-H,O-NH,OH 50:50:0.1 (v/v/v) and
MeOH-NH,OH 100:0.1 (v/v), respectively. The gradient
(0.4 mL/min) was designed as follows: transition from
100 % A to 100 % B over 30 min, followed by 100 % B
linearly over 15 min, and followed by a subsequent re-
equilibration at 100 % A. Analytes were ionized using an
ESI source operated in negative mode.

For N-acylethanolamines and ceramides, mobile phases
A and B were composed of MeOH-H,O-acetic acid
75:25:0.1 (v/v/v) and MeOH-acetic acid 100:0.1 (v/v), re-
spectively. The gradient (0.4 mL/min) was designed as fol-
lows: transition from 100 % A to 100 % B over 15 min,
followed by 100 % B linearly over 45 min, followed by a
subsequent re-equilibration at 100 % A. Analytes were
ionized using an APCI source operated in positive mode.
The signals of the lipids were normalized using the signal
obtained for the corresponding internal standard. We
used d4-PEA, 17:1-lysophosphatidylinositol, 17:0-lysopho-
sphatidylcholine, 17:0-sulfatide, 17:0-ceramide, 17:0-
sphingomyelin, and 17:0/17:0-PC. Data are presented as
fold increase compared with levels found in control mice.

Immunohistology

During the sacrifice, sections of the cortex and cerebel-
lum were transferred to a solution of 4 % PFA in PBS
and stored at 4 °C for 24 h. Cryopreservation was per-
formed by incubation in a solution of 20 % sucrose in
PBS for a further 24 h at 4 °C. Finally, tissues were em-
bedded in Tissue-Tek (Sakura Finetek, Zoeterwoude,
The Netherlands) and kept at —-80 °C. Sections were cut
(30 um) using a cryostat and then used for the detection
of microglial cells (Iba-1) and astrocytes (GFAP). The
sections were incubated in blocking solution containing
5 % normal donkey serum and 1 % Triton X-100
(Sigma-Aldrich, Seelze, Germany) in PBS for 60 min.
The primary antibodies, rabbit anti-Ibal (Wako Labora-
tory Chemicals, Japan) (1:1000 in PBS/triton 1 %) and
direct rat anti-GFAP (1:250 in PBS/triton 1 %), were
applied for 12 h at 4 °C. Tissues were then rinsed
three times with PBS. The secondary antibody anti-
rabbit Alexa 488 (Thermo Fisher Scientific) (1:100)
was applied for 1 h at room temperature. Tissues
were washed with PBS and nuclei were stained using

Page 4 of 11

Hoescht. Slides were mounted using Dako Fluores-
cence Mounting Medium. Stained slides were digi-
tized using a Mirax Midi scanner (Carl Zeiss Micro-
Imaging). Image acquisition was executed with Mirax
Scan software (Zeiss). The obtained images were ana-
lyzed (by a researcher blinded to the treatment) using
Image] software (http://imagej.nih.gov/ij/) and/or Cell-
Profiler software (http://www.cellprofiler.org/).

Primary glial cell culture and treatment

C57BL/6] mice pups (post-natal day 2-3) were eutha-
nized, the brain recovered, and their cerebral cortices
dissected. Tissues were then mechanically dissociated by
several sequences of pipetting and sedimenting, then
centrifuged and resuspended in DMEM-F12 media (con-
taining 10 % FBS and 100 units/mL of penicillin and
100 pg/mL of streptomycin). Cells were seeded in poly-
lysine pre-coated flasks (two pups per flask) and incu-
bated for 2 weeks with two media changes at day 5 and
10. After 14 days of culture, cells were trypsinized and
secondary cultures were seeded overnight in poly-lysine
pre-coated 24-well plates (150,000 cells/well). Cells were
then incubated with fresh culture medium containing
the compounds of interest (10 pM), and LPS (10 ng/mL,
from E. coli 055:B5) was added 1 h later. After 8 h, the
media was removed and Tripure® was added to the cells
for mRNA analysis (see above). For all experiments, a con-
trol condition was performed where cells were only incu-
bated with vehicle (DMSQO, 0.2 %) in the absence of LPS.

Inflammatory plasma cytokine quantification

Plasma cytokines IL-1f, IL-10, and tumor necrosis factor
a (TNFa) were quantified using a Bio-Plex Multiplex kit
(Bio-Rad, Nazareth, Belgium) and measured by using
Luminex technology (Bio-Plex 200; Bio-Rad) following
the manufacturer’s instructions.

Statistical analysis

All data are presented as mean + s.e.m. Statistical ana-
lysis was performed using GraphPad Prism version 5.0
for Windows (San Diego, CA). We used two-tailed Stu-
dent’s ¢ test for unpaired values to compare two groups,
and when relevant, we used the Mann-Whitney test for
the peripheral inflammation assessment. We used one-
way ANOVA with Bonferroni’s post test or Kruskal-
Wallis test with Dunn’s post test between HFD group
and its respective CTL group (*P<0.05; **P<0.01; and
**P < 0.001) and between CNS regions (#P < 0.05; ##P <
0.01; and ###P < 0.001) for the comparison of inflamma-
tory markers, immunohistological analysis, and the lipid
levels for the two CNS areas studied. Finally, we used
the one-way ANOVA test with Dunnett’s post test for
the ex vivo experiments. For all statistical tests, statistical
significance was taken when P < 0.05.
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Results and discussion

Characterization of the obese phenotype

We monitored the weight of mice for the different groups
throughout the study. Body weight already increased after
4 days of HFD feeding and persistently increased over
time. Conversely, the mice of the control groups did not
significantly gain weight (Additional file 2: Figure SI 1).
We also weighed the different white adipose tissue depots
at each selected time-point. There is a sustained increase
of the subcutaneous (SAT), epididymal (EAT), and
visceral (VAT) adipose tissues over time (Additional file 2:
Figure SI 2). We also measured the cholesterolemia of
mice at the earliest (1 week) and latest (16 weeks) time-
points. We found a clear increase for mice fed a HFD
compared with their respective controls (Additional file 2:
Figure SI 3a-b). Taken together, these data validate the
obesogenic properties of the diet used.

Peripheral inflammation induced by HFD feeding

Because obesity is accompanied by a low-grade peripheral
inflammation, we next sought to study the impact of the
HED on the peripheral inflammatory tone. Thus, we mea-
sured the mRNA expression of different inflammatory
markers in the SAT at weeks 1 and 16 (Fig. 1a, b).. In this
tissue, as might be expected for an obesogenic diet, after
16 weeks of HED, we measured a significant increase in
the expression of F4/80 (a macrophage marker), CD11c
(a M1 polarization marker), LPS-binding protein (LBP),
and interleukin-6 (IL-6) (Fig. 1b). These observations con-
firm the establishment and progression of an inflamma-
tory tone induced by the HFD in the SAT. Because the
liver is another organ that can be affected by inflammation
in obese conditions, we also measured the expression of
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CD68, CD11c, and IL-6 in the liver of mice after 1 and 16
weeks of HFD (Fig. 1c, d). We found a significant increase
in the expression of CD11c and IL-6 at 16 weeks (Fig. 1c,
d). Finally, we measured the concentration of two pro-
inflammatory cytokines (IL-1B and TNFa) and one anti-
inflammatory cytokine (IL-10) in the plasma of mice at
week 16 and found a significant increase of TNFa for mice
fed a HFD compared with chow-fed mice (Additional file
2: Figure SI 3c). Taken together, these data validate the
pro-inflammatory effects, in the periphery, of the obeso-
genic diet used.

Central inflammation induced by HFD feeding
Obesity is a well-established contributing factor increas-
ing the incidence of peripheral pathologies. It is also well
demonstrated that obesity induces inflammation in the
hypothalamus [21, 22, 27]. However, much less is known
about the effects of obesity on other CNS areas. We
thought that two regions, the cerebellum and the cortex,
were of particular interest because obesity induces mor-
phological changes in these two areas. Indeed, obese pa-
tients display differences in gray matter density in these
two specific regions when compared with lean subjects
[43, 44]. Early onset obesity is also associated with sev-
eral cerebellar abnormalities such as neuronal injuries,
smaller volume, and compromised development [45, 46].
As for the cortex, it is an area responsible for the cogni-
tive control of food intake [44, 47, 48]. Those specific
changes could be either a cause or a consequence of
obesity and further maintain dysregulations in food-
oriented behaviors.

In obesity settings, one major inflammatory pathway
affected is the one involving the nuclear factor kappa B
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Fig. 1 Peripheral inflammatory tone induced by a HFD at weeks 1 and 16. mRNA relative expression of inflammatory and macrophage markers at
a 1 week and b 16 weeks in the subcutaneous adipose tissue (SAT) and mRNA relative expression of inflammatory and macrophage markers at ¢
1 week and d 16 weeks in the liver. Results are expressed relative to the control diet group (CTL) set at 100 %. Data are mean + s.e.m; Student's
t test or Mann-Whitney test between HFD group and its CTL group (*P < 0.05 and **P < 0.01)
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(NF-kB). Indeed, this transcription factor is considered
as pivotal in the inflammatory tone deriving from obes-
ity, and its involvement in the etiology of metabolic dis-
orders has also been established [49, 50]. Therefore, we
set out to study the expression of downstream genes of
the NF-kB pathway comprising two cytokines, IL-1f and
TNFa as well as the chemokine MCP-1 (known as
monocyte chemoattractant protein-1) and the inducible
enzyme cyclooxygenase-2 (COX-2). To characterize the
changes in inflammatory tone in the cerebellum and cor-
tex during the development of obesity, we measured the
mRNA expression of these four inflammatory markers
at the six selected time-points of our HFD study (Fig. 2).
We found a marked increase of these inflammatory
markers in the cerebellum as early as 1 week after HFD
feeding. This early inflammation was not present in the
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cortex. Furthermore, after 16 weeks of HFD feeding, the
expression of IL-1B, TNFa, and COX-2 was strikingly
different between the two CNS regions considered. In-
deed, we found a marked inflammation in the cerebel-
lum of HFD-fed mice when compared with the cortex of
the same mice where the inflammatory tone was similar
to that of the CTLs.

Because the consequences of the HFD feeding on in-
flammation were clearly different in the cortex and cere-
bellum, we sought to determine whether this decreased
inflammatory tone was specific to the cortex. Thus, we
measured the inflammatory tone in the brainstem, at
weeks 1 and 16, and we found an increased expression
of IL-1f, TNFa, and MCP-1 at both time-points (Add-
itional file 2: Figure SI 4), a profile similar to the one ob-
served in the cerebellum. Thus, these results clearly
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suggest region-dependent adaptations of the CNS to the
HED.

To explain these observations, we first assessed the ex-
pression of zonula occludens (ZO)-1, claudin 1 and 5,
and occludin, four tight junction-forming proteins of the
blood-brain barrier [51, 52]. Indeed, the integrity of the
blood-brain barrier has been shown to be altered during
obesity [53]. We found no variation in the expression of
ZO-1 and claudin 5 in the cortex or cerebellum at week
16. However, claudin 1 and occludin expression were
significantly increased in the cerebellum, whereas no
variation was measured in the cortex at week 16
(Additional file 2: Figure SI 5). Of note, the mRNA
expression of these proteins was shown to display
consistent variations with proteins detected through
immunohistochemistry [54].

We next sought to characterize further the differences
between the cerebellum and the cortex after 16 weeks of
HED feeding by studying the activation state of the
microglial cells and astrocytes, two major players in in-
flammatory processes of the CNS [55, 56]. These cells
are known to be involved in the inflammatory processes
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induced by HFD feeding in the hypothalamus [26, 57].
To this end, we performed an immunohistological ana-
lysis of these two cell types in the cerebellum and the
cortex of the mice after 16 weeks of HFD feeding. Iba-1
(ionized calcium-binding adapter molecule 1) immuno-
staining showed no differences in microglial cell activa-
tion between the control and the HED groups, neither in
the cerebellum nor in the cortex (Fig. 3a, b). These data
are supported by the fact that the mRNA expression of
CD11b and CD11c were not affected by the HFD (Fig. 3c,
d). On the other hand, immunostaining for astrocytes
performed using anti-GFAP (glial fibrillary acidic pro-
tein) antibodies showed a larger area occupied by astro-
cytes in the cerebellum upon HED feeding, indicating an
activated state, an outcome not present in the cortex
(Fig. 3e, f). This was further supported by the enhanced
GFAP mRNA expression induced by the HED in the
cerebellum compared with CTL mice as well as com-
pared with the cortex of the same animal (Fig. 3g). Fi-
nally, to confirm the astrocytes’ state of activation in the
cerebellum and the cortex, we studied the expression of
an astrogliosis marker Serpina3n (the serine peptidase
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cortex immunostained for microglial cells with Iba-1. b Quantification of the area occupied by microglial cells in the cortex and the cerebellum of CTL
(white column) and HFD (black column) mice at week 16. Microglial cells were identified using immunohistology in both CNS structures with Iba-1. mRNA
expression of ¢ CD11b and d CD11¢, both myeloid lineage markers in the cortex and cerebellum of HFD mice at 16 weeks. e Representative photomicro-
graphs of the cortex and cerebellum immunostained for astrocytes with GFAP. f Quantification of the area occupied by astrocytes in the cerebellum and
the cortex of CTL (white column) and HFD (black column) mice at week 16. Astrocytes were identified using immunohistology in both CNS structures with
GFAP. mRNA expression of g GFAP and h Serpina3n (an astrogliosis marker) in the cortex and the cerebellum of CTL and HFD mice at week 16. Data are
mean + sem. The standard diet groups were set at 100% for area quantification and at 1 for mRNA expression. The white columns represent mice fed a
standard diet and the black columns represent the mice fed a HFD. One-way ANOVA with Bonferroni's post test or Kruskal-Wallis test with Dunn’s post test
between HFD group and its respective CTL group (*P < 0.05) and between CNS regions (#P < 0.05 and ##P < 0.01). Scale bar 50 um
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inhibitor clade A member 3N, also known as alpha-1
antitrypsin) [58, 59]. We found a significant increase of
this marker in the cerebellum of HFD mice compared
with CTL mice and compared with the cortex of the
same mice at week 16 (Fig. 3h). Interestingly, we found
no variation of these two astrocyte markers in the cortex
between CTL and HFD-fed mice. Our observations
seem to point towards the involvement of astrocytes and
astrogliosis in the differential inflammatory tone mea-
sured in these two CNS regions.

HFD feeding alters lipid levels in the cerebellum and the
cortex at week 16

As mentioned in the introduction, lipids are involved in the
control of inflammation. Thus, we decided to perform a
broad analysis of the lipids present in the cortex and cere-
bellum focusing on week 16 because mice displayed a dis-
tinct inflammatory tone at this specific time-point. We
decided to focus our investigations on ceramides, dihydro-
ceramides, sphingomyelins, sulfatides, and N-acylethanola-
mines as well as phospholipids and lysophospholipids
because they are known to be involved in inflammation
[60—64]. Globally, the ceramide and dihydroceramide spe-
cies measured here displayed no variation in the cortex or
in the cerebellum. Regarding the sphingomyelin species,
their levels were increased in the cortex and showed
no variation in the cerebellum. Among the phospholipids
and lysophospholipids studied, we found that the levels
of phosphatidylinositols, phosphatidylethanolamines, and
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lysophosphatidylcholines were increased in the cortex upon
HED feeding, while the HFD had much less effect on their
levels in the cortex. Of note, we also found that the levels
of the anti-inflammatory palmitoylethanolamide were in-
creased in the cortex, but not in the cerebellum, upon HFD
feeding (Fig. 4 and Additional file 1: Table S2-4).

Effects of the identified lipids on primary co-cultured as-
trocytes and microglia

Our HPLC-MS analysis allowed us to identify several
lipid classes differently affected by the HED in the cortex
and cerebellum. To determine which of these lipids
could potentially be involved in the reduced inflamma-
tory tone found in the cortex, we selected the lipids in-
creased under a HFD in the cortex but decreased (or
not affected) in the cerebellum. The lipids that fulfill
these criteria are sphingomyelins, phosphatidylinositols,
phosphatidylethanolamines,  lysophosphatidylcholines,
and palmitoylethanolamide. To determine whether these
lipids could be in part responsible for the reduced in-
flammatory tone in the cortex, we tested their effect on
microglia—astrocyte-mixed cultures activated by LPS.
Incubation of the primary microglia—astrocyte-mixed
cultures with LPS induced a strong increase in the ex-
pression of inflammatory markers (Fig. 5). While sphin-
gomyelins had no effect on the inflammatory markers,
we found that the phosphatidylethanolamines were able
to decrease IL-1B expression while they increased IL-6
and MCP-1 expression. Lysophosphatidylcholines were
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only able to decrease MCP-1 expression while phospha-
tidylinositols were able to reduce the LPS-induced in-
crease in mRNA expression of IL-1pB, IL-6, and MCP-1
(Fig. 5a—c). Interestingly, palmitoylethanolamide was
also able to reduce the LPS-induced expression of these
three inflammatory markers in these cells. Although pal-
mitoylethanolamide is a known anti-inflammatory and
neuroprotective bioactive lipid, this is one of the first re-
ports of the effect of phosphatidylinositols, phosphatidyl-
ethanolamines, and lysophosphatidylcholines in such
settings. The use of a microglia—astrocyte-mixed culture
allowed us to circumvent the bias due to metabolism
and blood-brain barrier crossing of the tested lipids.
However, additional studies are needed to further sup-
port the in vivo role of these lipids in the HFD-induced
effects in the cortex.

Conclusions

In this study, we showed that the peripheral low-grade
inflammation induced by a HFD does not affect the dif-
ferent regions of the CNS in the same way and that this
inflammatory tone is also time-dependent. In this par-
ticular setting, we were able to identify the potential in-
volvement of glial cells and, more precisely, astrocytes.
Interestingly, these CNS inflammatory cells are also in-
volved in the control of the blood-brain barrier

permeability. In the cerebellum, we found activated as-
trocytes and increased expression of claudin 1 and
occludin. This increased expression of tight junction
proteins could be a potential mechanism aiming at re-
storing the blood-brain barrier integrity in order to re-
duce the inflammatory insult evidenced in this CNS
area. These changes were absent in the cortex where the
inflammatory tone was similar to the one of chow-fed
mice. These findings further support that the low-grade
inflammatory tone resulting from a HFD differentially
affects the two specific regions of the CNS studied.

We further characterized the specific micro-
environment in these two CNS areas by measuring
levels of bioactive lipids. Upon testing on primary co-
culture of microglia and astrocytes, we identified
phosphatidylinositols, lysophosphatidylcholines, and
PEA as potential anti-inflammatory compounds as
they were increased in the cortex of HFD mice at
week 16 and were also able to decrease the expres-
sion of pro-inflammatory markers ex vivo. This study
demonstrates that not all CNS regions are equal when
facing obesity-driven inflammatory insults. Finally, this
work paves the way for further research revolving
around the effects of the identified lipids as anti-
inflammatory compounds in obesity and other inflam-
matory settings influencing the CNS.
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Additional files

Additional file 1: Table S1. Composition of the diets used in the diet-
induced obesity model. Table S2. High-fat diet-induced changes in
phospholipid and lysophospholipid cortical levels. Table S3. High-fat
diet-induced changes in phospholipid and lysophospholipid cerebellar
levels. Table S4. High-fat diet-induced changes in lipid levels. (PDF

354 kb)

Additional file 2: Figure SI 1. Weight of the mice on standard (empty
dots) and high-fat (full dots) diets in the different groups after (a) 1 week, (b)
2 weeks, () 4 weeks, (d) 6 weeks, (e) 8 weeks, and (f) 16 weeks. Data are
mean + se.m, two-way ANOVA with post hoc Bonferroni test between HFD
group and its CTL group *P < 0.05; **P < 0.01; and ***P < 0.001. Figure SI 2.
Weight of the (a) subcutaneous adipose tissue, (b) epididymal adipose
tissue, and (c) visceral adipose tissue at the selected time-points. Data are
mean + se.m; Student’s t test or Mann-Whitney test between each HFD
group (Black columns) and its respective CTL group (white columns) *P < 0.05;
*P < 001; and ***P < 0001. Figure SI 3. Total plasma cholesterol measured
at (@) week 1 and (b) week 16. (c) Inflammatory markers measured in the
plasma at week 16. Data are mean + s.em. Student’s t test between the
HFD group and its CTL group *P < 0.05; ***P < 0.001. Figure SI 4. mRNA
relative expression of inflammatory markers in the brainstem at (a) 1 week
and (b) 16 weeks. The expression level in the control group is set at 100.
Data are mean + sem, Student’s t test between the HFD group and its CTL
group *P < 0.05; **P < 0.01; and ***P < 0.001. Figure SI 5. mRNA relative
expression of junction proteins of the blood-brain barrier at week 16 in the
cortex and the cerebellum. The expression levels in the control groups were
set at 100. Data are mean + s.em. The white columns represent mice fed a
standard diet and the black columns represent the mice fed a HFD.
One-way ANOVA with Bonferroni's post test and between HFD group
and its respective CTL group *P < 0.05 and ***P <0.001 and between
CNS regions #P < 0.05 and ###P < 0.001. (PDF 67 kb)
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