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Abstract

Background: Peripheral inflammation contributes to the neurological alterations in hepatic encephalopathy (HE).
Neuroinflammation and altered GABAergic neurotransmission mediate cognitive and motor alterations in rats with
HE. It remains unclear (a) if neuroinflammation and neurological impairment in HE are a consequence of peripheral
inflammation and (b) how neuroinflammation impairs GABAergic neurotransmission. The aims were to assess in rats
with HE whether reducing peripheral inflammation with anti-TNF-a (1) prevents cognitive impairment and motor
in-coordination, (2) normalizes neuroinflammation and extracellular GABA in the cerebellum and also (3) advances
the understanding of mechanisms linking neuroinflammation and increased extracellular GABA.

Methods: Rats with HE due to portacaval shunt (PCS) were treated with infliximab. Astrocytes and microglia
activation and TNF-a and IL-13 were analyzed by immunohistochemistry. Membrane expression of the GABA
transporters GAT-3 and GAT-1 was analyzed by cross-linking with BS3. Extracellular GABA was analyzed by
microdialysis. Motor coordination was tested using the beam walking and learning ability using the Y maze task.

Results: PCS rats show peripheral inflammation, activated astrocytes, and microglia and increased levels of TNF-a
and IL-1B. Membrane expression of GAT-3 and extracellular GABA are increased, leading to impaired motor
coordination and learning ability. Infliximab reduces peripheral inflammation, microglia, and astrocyte activation
and neuroinflammation and normalizes GABAergic neurotransmission, motor coordination, and learning ability.

Conclusions: Neuroinflammation is associated with altered GABAergic neurotransmission and increased GAT-3
membrane expression and extracellular GABA (a); peripheral inflammation is a main contributor to the impairment of
motor coordination and of the ability to learn the Y maze task in PCS rats (b); and reducing peripheral inflammation
using safe procedures could be a new therapeutic approach to improve cognitive and motor function in patients
with HE (c).

Keywords: Hepatic encephalopathy, Neuroinflammation, Microglial activation, GABA, GAT-3, Infliximab,
Neurological alterations

* Correspondence: vfelipo@cipf.es

'Laboratorio de Neurobiologia, Centro Investigacion Principe Felipe de
Valencia, Eduardo Primo Yufera, 3, 46012 Valencia, Spain

Full list of author information is available at the end of the article

- © 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
() B|°Med Central International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s12974-016-0710-8&domain=pdf
http://orcid.org/0000-0003-3145-9538
mailto:vfelipo@cipf.es
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Dadsetan et al. Journal of Neuroinflammation (2016) 13:245

Background

Patients with liver cirrhosis may develop hepatic enceph-
alopathy (HE) which begins with a non-evident phase
called covert or minimal hepatic encephalopathy (MHE)
in which the patients show motor in-coordination,
psychomotor slowing, and mild cognitive impairment.
These alterations may be detected by performing spe-
cific psychometric tests and affect quality of life of the
patients [1]. There are no specific treatments for the
neurological alterations in MHE.

Hyperammonemia and inflammation play synergistic
roles in the induction of the cognitive and motor alter-
ations in MHE, and there is a good correlation between
the levels of inflammatory markers (IL-6, IL-18) in
serum and the grade of MHE in cirrhotic patients [2—4].
Peripheral inflammation may lead to neuroinflammation
[5] which, in turn, induces cognitive and motor impairment
in different pathological situations including Alzheimer’s
disease, multiple sclerosis, stroke, and aging [6-8]. PET
studies show increased binding of TSPO ligands in the
brain of cirrhotic patients with clinical HE [9] and in rats
with HE due to bile duct ligation, suggesting the presence
of neuroinflammation [10].

A main contributor to neuroinflammation in most
pathological situations, including mild chronic hyper-
ammonemia and HE, is microglia activation [11-16].
Microglia are the resident innate immune cells of the brain.
Sustained activation of microglia to pro-inflammatory
forms contributes to neurological alterations. However,
microglia also plays neuroprotective roles via synaptic strip-
ping, phagocytosis of debris and dysfunctional neurons,
and neurogenesis promotion and may also produce anti-
inflammatory cytokines [17].

Recent studies support the idea that peripheral inflam-
mation may lead to cognitive and motor alterations in
different pathological situations such as rheumatoid
arthritis, diabetes, or after strong surgeries (reviewed in
[18]). Patients with chronic inflammatory diseases are
being treated with anti-TNF-a to reduce peripheral in-
flammation. It has been observed that this treatment im-
proves cognitive function in patients with rheumatoid
arthritis or sarcoidosis [19, 20]. Due to its large size,
anti-TNF-a does not cross the blood-brain barrier,
suggesting that its beneficial effects are a consequence
of reduced peripheral inflammation.

We hypothesized that reducing peripheral inflamma-
tion could also improve cognitive and motor function in
MHE. The first aim of this work was to assess whether
peripheral treatment with anti-TNF-a prevents cognitive
and motor impairment in rats with MHE. This would
provide a new therapeutic approach to treat MHE. To
reach this aim, we assessed whether chronic intravenous
treatment with infliximab, an anti-TNF-a used in clinical
practice, improves motor coordination and learning ability

Page 2 of 14

in rats with a portacaval shunt (PCS), a main model of
MHE recommended by the International Society for
Hepatic Encephalopathy [21].

The mechanisms responsible for motor and cognitive
alterations in MHE are beginning to be clarified in
animal models. Different types of cognitive and motor
alterations are due to different mechanisms involving
different brain areas [1]. Neuroinflammation in hippo-
campus impairs some types of learning and memory
[22-24]. Rats with hyperammonemia and MHE show
neuroinflammation in the hippocampus. Treatment of
PCS rats with sildenafil or of hyperammonemic rats
with sulforaphane reduces neuroinflammation in the
hippocampus and improves spatial learning and memory
[14, 15]. In hyperammonemic rats, increasing extracellular
c¢GMP reduces some types of neuroinflammation and of
learning and memory but not others [16]. These recent re-
ports support that neuroinflammation plays an essential
role in impairment of hippocampus-associated learning
and memory processes in hyperammonemia and MHE.

Both in cirrhotic patients and in rats with MHE, the
cerebellum is selectively affected at the earliest stages.
Non-invasive blood flow measurement in the cerebellum
detects cerebral alterations in cirrhotic patients earlier
than psychometric tests. Blood flow was selectively in-
creased in the cerebellum in cirrhotic patients with
MHE and, more slightly but also significantly, in cir-
rhotic patients who were classified as “without MHE”
according to the psychometric hepatic encephalopathy
score (PHES) [25]. Bimanual coordination which is mainly
modulated by the cerebellum [26, 27] is also impaired in
patients with or without MHE, correlating with increased
blood flow in the cerebellum. This indicates that alter-
ations in the cerebellum occur at very earliest stages of
MHE, even before it can be detected by the PHES [25].

Also in rats with hyperammonemia or MHE cerebellum
is affected at early stages. Rats with hyperammonemia and
MHE due to portacaval shunts or bile duct ligation show
neuroinflammation, which is more evident in the cerebel-
lum than in other brain areas [11, 28], and increased
extracellular GABA levels and GABAergic tone in the
cerebellum [29, 30]. Both neuroinflammation and in-
creased extracellular GABA in the cerebellum contribute
to impair motor coordination and ability to learn a' Y maze
task. Treatments with anti-inflammatories such as ibupro-
fen or MAP kinase p38 inhibitors reduce neuroinflamma-
tion and improve motor function and the ability to learn
the Y maze task [12, 28, 29]. Reducing GABA, receptors
activation also restores motor coordination and the ability
to learn the Y maze task [29, 30]. This suggests that in-
creased extracellular GABA in the cerebellum could
mediate the effects of neuroinflammation on motor co-
ordination and Y maze learning. We have recently
shown that in hyperammonemic rats, treatment with
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sulforaphane reduces neuroinflammation and normalizes
GABAergic neurotransmission in the cerebellum [13]. We
hypothesized that increased peripheral inflammation
would play a main role in the induction of neuroinflam-
mation and associated alterations in GABAergic neuro-
transmission in the cerebellum of rats with MHE due
to PCS.

A second main aim of this work was to assess whether
reducing peripheral inflammation reduces neuroinflam-
mation and extracellular GABA in the cerebellum of
PCS rats. As a tool to reduce peripheral inflammation,
we used anti-TNF-a. To assess if neuroinflammation is a
consequence of peripheral inflammation, we treated rats
with anti-TNF-a before performing the PCS surgery, to
prevent the associated inflammation and assess whether
this reduces neuroinflammation. Finally, a last aim was
to advance in the understanding of the mechanisms link-
ing neuroinflammation and increased extracellular
GABA in the cerebellum in MHE.

Methods

Portacaval anastomosis and treatment with infliximab.
Male Wistar rats (220-240 g) were subjected to end-to-
side portacaval shunt (PCS) as described by Lee and
Fisher [31]. Control rats were sham operated, and the
vein was clamped for 10 min. The experiments were ap-
proved by the Comite de Experimentacién y Bienestar
Animal (CEBA) of our center and performed in accord-
ance with guidelines of the Directive of the European
Commission (2010/63/EU) for care and management of
experimental animals. Rats were randomly distributed
into four groups: sham; sham + infliximab; PCS; PCS +
infliximab. Infliximab (Remicade; Merck Sharp & Dohme,
Spain) was dissolved in water and administered by iv.
injection (5 mg/kg) in the tail vein as in [32]. The first ad-
ministration of infliximab was performed 2 days before
PCS surgery. Weekly treatment with infliximab was main-
tained until the sacrifice except during behavioral tests,
when infliximab was administered every 2 weeks. Control
rats were injected i.v. with saline. The experimental design
is summarized in Fig. 1. A total of four experiments were
performed, using eight rats per group in each experiment.
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Fig. 1 Scheme of the experimental design
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Rats from each group and experiment were randomly di-
vided into three subgroups for studies of microdialysis,
membrane expression, or perfusion for immunohisto-
chemistry studies. The number of rats used for each
parameter is indicated in the corresponding figure
legend.

Determination of PGE2, IL-6, IL-10, and IL-4 in
plasma. Plasma samples were collected from tail vein at
weeks 1, 3, and 7 after PCS surgery and stored at —80 °C.
Prostaglandin E2 (PGE2) was measured using the ELISA
Biotrak system (Amersham Bioscience, UK). IL-6, IL-10,
and IL-4 levels were analyzed by western blot. Samples
were subjected to electrophoresis and immunoblotting
using primary antibodies against IL-10 and IL-4 (1:1000)
from Abcam (ab9969 and ab9811, respectively) and IL-6
(1:500) from BioSource (ARC0062). Secondary antibodies
were anti-rabbit (1:4000) IgG conjugated with alkaline
phosphatase. The images were captured using the Hewlett
Packard ScanJet 5300C, and band intensities were quanti-
fied using the Alphalmager 2200 program.

Ammonia determination in blood. Blood (20 uL) was
taken from the tail vein. Blood ammonia was measured
immediately after blood collection with the Ammonia
Test Kit II for the PocketChemBA system (Arkay, Inc.,
Kyoto, Japan).

Learning of a conditional discrimination task in a Y
maze. Learning ability was tested as in [33] in a wooden
Y-shaped maze. Rats must learn where the food is depend-
ing on the color of the walls. Rats performed 10 trials per
day, until the completion of a criterion of 10 correct re-
sponses in the same day or a maximum of 250 trials.

Motor coordination and beam walking test. Motor co-
ordination was tested using the beam walking test in a
wood strip (20-mm diameter) as described by Gonzalez-
Usano et al. [30] Rats have to cross a 1-m long wooden
stick located approximately 1 m above the ground and
two observers count the number of slips committed by
the rats. The number of foot faults (slips) is recorded as
a measure of in-coordination.

In vivo microdialysis. Rats were anesthetized using iso-
flurane and a microdialysis guide was implanted in cere-
bellum (AP -10.2, ML -1.6, and DV -1.2), as in [34].
After 48 h, a microdialysis probe was implanted in the
freely moving rat. Probes were perfused (3 pl/min) with
artificial cerebrospinal fluid (in mM): NaCl, 145; KCl,
3.0; CaCl,, 2.26; buffered at pH 7.4 with 2 mM phos-
phate. After a 2—3-h stabilization period, samples were
collected every 30 min. EDTA was added to the samples
at a final concentration of 4 mM and stored at —80 °C
until analysis of cGMP and GABA levels.

GABA determination. To assess the basal level of
extracellular GABA in the cerebellum, eight microdialy-
sis samples were collected. GABA concentration was
measured by HPLC as described by Canales et al. [35].
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Membrane surface expression of GAT-1 and GAT-3
transporters by cross-linking with BS3 in cerebellar slices.
It was analyzed as described by Boudreau and Wolf [36].
Rats were sacrificed by decapitation and their brains
were transferred into ice-cold Krebs buffer (in mmol/L):
NaCl 119, KCI 2.5, KH,PO, 1, NaHCOj3 26.2, CaCl, 2.5,
and glucose 11, aerated with 95 % O, and 5 % CO, at
pH 7.4. Cerebellum was dissected and transversal slices
(400 pm) were obtained using a vibrotome. Slices were
added to tubes containing ice-cold Krebs buffer with or
without 2 mM BS; (Pierce, Rockford, IL) and incubated
for 30 min at 4 °C. Cross-linking was terminated by add-
ing 100-mM glycine (10 min, 4 °C). The slices were ho-
mogenized by sonication for 20 s. Samples treated with
or without BS; were analyzed by western blot using anti-
GAT-3 or anti-GAT-1 (1:1000; Abcam, ab431 and ab426,
respectively; Cambridge, UK). The surface expression of
transporters was calculated as the difference between
the intensity of the bands without BS3 (total protein)
and with BS3 (non-membrane protein).

Brain immunohistochemistry. At week 8 after PCS
surgery, the rats were anesthetized with sodium pento-
barbital and transcardially perfused with 0.9 % saline
followed by 4 % paraformaldehyde in 0.1-M phosphate
buffer (pH 7.4). Brains were removed and post-fixed in
the same fixative solution for 24 h at 4 °C. Then, the
samples were placed inside histology cassettes and
processed for permanent paraffin embedding on a Leica
ASP 300 tissue processor (Leica Microsystems). The
processor performed the following steps: 60 min in for-
malin, 45 min in 70 % ethanol, 45 min in 90 % ethanol,
four changes in 100 % ethanol (one for 45 min and
three for 60 min, respectively), three changes in xylene
(45, 60, and 75 min, respectively), and three changes in
paraffin (Histowax, melting point 56—58 °C) for 60 min.
Five-micrometer-thick, paraffin-embedded sections
(5 pm) were cut and mounted on coated slide glass.
The tissue sections were then processed with the Envision
Flex + kit (DAKO) blocking endogenous peroxidase activ-
ity for 5 min and then incubating with primary antibody.
The reaction was visualized by Envision Flex + horseradish
peroxidase for 20 min and finally diaminobenzidine for
10 min. Sections were counterstained with Mayer’s
hematoxylin (DAKO S$3309; ready to use) for 5 min.

The primary antibodies used were anti-Iba-1 (Wako,
019-19741; 1:300 for 30 min), anti-GFAP (DAKO, IR524;
ready to use for 20 min), anti-TNF-a (Abcam, ab66579;
1:2000 for 45 min), anti-IL-1p (Abcam, ab9722, 1:100 for
30 min), anti-GAT3 (Abcam, ab431; 1:500 for 40 min),
and anti-GAT-1 (Abcam, ab426; 1:200 for 40 min).

Immunohistochemical quantification. It was performed
using Image]J (1.48v). For analysis of microglial activation
and of the areas stained by GFAP or GAT-3 antibodies,
the area of interest was selected. Using Auto Local
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Threshold and analyzed particle functions, the intensity
thresholds and size filter were applied.

To measure the area and perimeter of microglia, the
Bernsen method was used and 2000-20,000 size filter
was applied. For each rat, at least 30—40 cells were quan-
tified. The result was expressed as percentage respect to
control.

For GFAP or GAT-3 staining, no size filter was applied.
For each rat, at least 10 fields (x56 for GFAP and x40 for
GAT-3) were quantified. The result was expressed as per-
centage of control rats.

TNEF-a and IL-1p positive cells were manually counted
using Image]. For each rat, at least 10 fields (x40) were
quantified and results were expressed as percentage of
control rats.

To quantify the intensity of GAT1, Purkinje neurons
were manually outlined using ROI manager function
and the selection was measured. Mean gray value for
each Purkinje cell was measured. For each rat, at least
80-100 cells were quantified.

Statistical analysis. Results are expressed as mean +
SEM. Data were analyzed by one-way analysis of vari-
ance (ANOVA) followed by Tukey’s post hoc test. For
the statistical analysis of ammonia levels in blood and
peripheral inflammation two-way ANOVA with repeated
measures, followed by Bonferroni post hoc test was used.
Two-way ANOVA with repeated measures, followed by
Bonferroni post hoc test, was also used for the analysis of
learning index in the Y maze test. p < 0.05 is considered to
indicate statistically significant differences.

Results

Infliximab reduces peripheral inflammation and
neuroinflammation in the cerebellum of PCS rats

PCS rats show peripheral inflammation, with increased
plasma levels of pro-inflammatory cytokine IL-6 and of
PGE-2 and reduced levels of anti-inflammatory cytokine
IL-10.

One week after surgery, PGE-2 levels were increased
(p<0.05) in PCS rats to 2.8 +0.8 pg/pul compared to
0.8 £0.1 pg/pl in control (sham operated) rats. Treat-
ment with infliximab reduced PGE-2 levels in PCS rats
to 1.0+ 0.1 pg/pl.

A similar effect was observed for pro-inflammatory
IL-6 which increased (p < 0.01) in plasma of PCS rats to
154 £ 17 % of control rats and was normalized by treat-
ment with infliximab to 112 + 8 % of controls.

The anti-inflammatory IL-10 was reduced (p <0.01) in
plasma of PCS rats to 58 £+ 8 % of control rats and was
normalized by treatment with infliximab to 80 + 10 % of
controls. No significant effects were observed on IL-4.

PCS rats show increased (p <0.0001) blood ammonia
levels. At 7 weeks, the levels were 202 + 55 pM while in
control (sham) rats were 43 £ 11 puM. Treatment with
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infliximab did not affect ammonia levels in sham or PCS
rats. Ammonia levels in PCS rats treated with infliximab
were 244 + 30 pM.

PCS rats show activation of microglia in the white
matter of cerebellum as revealed the morphology of
microglia immunostained with anti-Iba-1 (Fig. 2). The
ratio area/perimeter of microglia, a measure of the grade
of activation, was increased (p <0.001) in PCS rats to
7.8 + 0.1 compared to control rats (6.7 + 0.1). In PCS rats
treated with infliximab, microglial activation is strongly
reduced and their ratio area/perimeter of microglia was
7.0 + 0.1, significantly lower (p < 0.0001) than in PCS rats
and not different from controls.

No activation of microglia was found in the molecular
layer. The ratio area/perimeter of microglia was even
slightly reduced (p <0.05) in PCS rats to 5.5+ 0.1 com-
pared to control rats (6.0 + 0.1). In PCS rats treated with
infliximab, the ratio area/perimeter of microglia was 5.6 +
0.1, not different from control or PCS rats (not shown).

PCS rats also show fibrous astrocyte activation in the
white matter of cerebellum, as clearly shown in Fig. 3 by
its morphology when stained with GFAP. The content of
GFAP in the astrocytes (calculated as the area covered
by GFAP) in the white matter of the cerebellum of PCS
rats was increased to 119+6 % of controls (p <0.01).
Treatment with infliximab normalized the activation and
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morphology of astrocytes in PCS rats (Fig. 3) and GFAP
amount (95 + 3 % of controls).

A similar effect was found in the granular layer. The
GFAP content of PCS rats was increased to 121 +9 % of
controls (p <0.001). Treatment with infliximab normal-
ized GFAP amount in PCS rats to 95+ 10 % of controls
(Fig. 4a).

We also analyzed the effects on Bergmann glia, a sub-
type of cerebellar astrocytes that reside next to Purkinje
neurons. When stained with GFAP, Bergmann glial fibers
present a disorganized and hypertrophied morphology in
PCS rats compared to control rats while in PCS rats
treated with infliximab show intact morphology (Fig. 4b).

PCS rats also showed increased levels of the pro-in-
flammatory markers TNF-a and IL-1p in the cerebellum.
For TNEF-q, this can be clearly seen in the immunostaining
shown in Fig. 5. Quantification of the immunostaining
shows that in cerebellum of PCS rats, the number of cells
expressing TNF-a increases (p < 0.001) in the cerebellum to
165+9 % of controls. Treatment with infliximab normal-
izes the immunostaining and the number of cells express-
ing TNF-a (120 £ 9 % of controls) in PCS rats (Fig. 5).

The same occurs for II-1B as shown in the immuno-
staining shown in Fig. 6. The number of cells expressing
IL-1B in the cerebellum increases in PCS rats to 136 +
4 % of controls (p <0.001). Infliximab normalizes the
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Fig. 2 Infliximab reduces microglial activation in the white matter of the cerebellum of PCS rats. Immunohistochemistry was performed as
indicated in the “Methods" section using antibody against Iba-1. Representative low (x20; a) and high (x56; b) magnification images are shown.
Perimeter (c), area (d), and ratio area/perimeter (e) of microglial cells were quantified in the white matter of the cerebellum. Values are the mean + SEM
of 4 rats per group. Values significantly different from controls are indicated by asterisks and from PCS rats by a. *p < 0.01; ***p < =0.005; aaa p < 0.005.
Scale bar low magnification (a) = 100 um; scale bar high magnification =50 pm
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Fig. 3 Infliximab reduces astrocyte activation in the white matter of the cerebellum of PCS rats. Immunohistochemistry was performed using
antibody against GFAP. Representative low (x20; a) and high (x56; b) magnification images are shown. The area stained by GFAP antibody was
quantified (c) in the white matter of the cerebellum. Values are the mean + SEM of 4 rats per group. Values significantly different from controls
are indicated by asterisks and from PCS rats by a. **p < 0.01; aaa p < 0.005. Scale bar low magnification (@) = 100 um; scale bar high magnification = 50 pm

Altered membrane expression of GABA transporters and
extracellular GABA in the cerebellum of PCS rats; effects

immunostaining and the number of cells expressing
IL-1B (119 £ 4 % of controls) in PCS rats (Fig. 6¢c). The

content of IL-1f in the cerebellum, quantified by western
blot, was increased in PCS rats to 138 £ 10 % of controls
(p <0.05) and was normalized to 87 + 13 % of controls by
infliximab treatment (Fig. 6d).

of infliximab

The membrane expression of the GABA transporter
GAT-3 is strongly increased in PCS rats to 336 + 77 % of
controls (p < 0.001). Treatment with infliximab completely
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Fig. 4 Infliximab reduces astrocyte activation in the molecular layer and prevents damage of Bergmann glia in the cerebellum of PCS rats.
Immunohistochemistry was performed using antibody against GFAP. Representative images are shown. Scale bar magnification (@) = 50 um; (b) = 100 um
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using antibody against TNF-a. Representative low (x20; @) and high (x40; b) magnification images are shown. The number of TNF-a positive cells was
quantified (c) in the white matter of the cerebellum. Values significantly different from controls are indicated by asterisks and from PCS rats by a.
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Fig. 6 Infliximab reduces the number of IL-1(3 positive cells and the content of IL-b in white matter of the cerebellum of PCS rats. Immunohistochemistry
was performed using antibody against IL-13. Representative low (x20; a) and high (x40; b) magnification images are shown. The number of IL-1(3 positive
cells was quantified (c) in the white matter of the cerebellum. Values are the mean + SEM of 4 rats per group. The content of IL-1(3 in homogenates of the
whole the cerebellum was also analyzed by western blot (d). Representative images are shown. Values significantly different from controls are indicated by
asterisks and from PCS rats by a. *p < =0.05; ***p < =0.005; a p < 0.05. Scale bar low magnification (a) = 100 um; scale bar high magnification =50 pum
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eliminated this increase in PCS rats. Membrane expres-
sion of GAT-3 returned to 90 + 32 % of controls (Fig. 7a).

Concerning the GAT-1 transporter, its membrane ex-
pression is not altered in PCS rats, remaining at 77 + 24 %
of controls (Fig. 7b). However, treatment with infliximab
strongly increased GAT-1 in membranes of PCS rats
(157 £ 26 % of controls, p < 0.05) but not of control rats
(87 £ 18 % of controls) (Fig. 7b).

We also analyzed by immunohistochemistry the ex-
pression of GAT-3 and GAT-1 in the cerebellum. As
shown in Fig. 8, GAT-3 is mainly expressed in astrocytes
and is especially increased in activated astrocytes. The
intensity of GAT-3 immunostaining (Fig. 8c) was in-
creased (p<0.001) in the cerebellum of PCS rats to
131+ 5 % of controls and was normalized by treatment
with infliximab (105 + 4 % of controls).

GAT-1 is expressed in the granular layer and sur-
rounding Purkinje cells (Fig. 9). The intensity of GAT-1
immunostaining (Fig. 9¢c) was slightly reduced (p < 0.01)
around Purkinje cells in PCS rats to 89 +2 % of controls
and was not affected by treatment with infliximab
(90 +£3 % % of controls).

The extracellular concentration of GABA was analyzed
in the cerebellum of freely moving rats by microdialysis.
Extracellular GABA was increased in PCS rats to 182 +
22 % of controls (p <0.05). Treatment with infliximab
completely eliminated this increase in PCS rats. Extracel-
lular GABA returned to 98 + 19 % of controls (Fig. 10).

Infliximab restores motor coordination and the ability to
learn the Y maze task in PCS rats

PCS rats show motor in-coordination in the beam walking
tests (Fig. 11a), with increased number of slips (1.2 + 0.2,
p <0.001) compared to control rats (0.6 + 0.2 slips). Treat-
ment with infliximab completely normalized the motor
coordination in PCS rats (0.5 + 0.1 slips).
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PCS rats also show reduced ability to learn the Y maze
task (Fig. 11b, c). As shown in Fig. 7b, the learning index
improved with days of training in all groups. The
ANOVA analysis shows that the learning index was
lower in PCS than in control rats (p < 0.001; F="7.587).
PCS rats treated with infliximab completely recover
learning ability which was similar to controls (Fig. 11b).

The data for day 7 are shown in Fig. 11c. Control rats
perform correctly 9.3 + 0.3 trials while PCS rats perform
significantly less (p =0.01) correct trails (7.4 +0.7). PCS
rats treated with infliximab recover learning ability and
perform correctly 9.2 + 0.5 trials, similar to control rats.

Discussion

The results reported provide two main advances in the
understanding of the mechanisms leading to neurological
alterations in rats with HE due to PCS: (1) impairment of
motor coordination and of the ability to learn the Y maze
task is induced by peripheral inflammation and may be
prevented by reducing it and (2) neuroinflammation leads
to altered neurotransmission in the cerebellum of PCS rats
by increasing membrane expression of the GABA trans-
porter GAT-3 and extracellular GABA.

On the bases of the results obtained, we propose in
Fig. 12 a putative model for the possible mechanisms in-
volved in the impairment of motor coordination and
learning and memory in rats with HE and for their im-
provement by infliximab.

The results show that peripheral inflammation plays a
main role in the cognitive and motor alterations in rats
with MHE. Peripheral inflammation leads to neuroin-
flammation, which would alter GABAergic neurotrans-
mission resulting in impaired motor coordination and
ability to learn the Y maze task. We found strong astrocyte
and microglial activation in the white matter, as occurs in
other pathological situations such as spinocerebellar ataxia
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Fig. 7 Altered membrane expression of GABA transporters in the cerebellum of PCS rats. Membrane expression of GAT3 (a) and GAT1 (b) was
analyzed using the BS3 crosslinker procedure as described in the “Methods” section. Samples, incubated in the absence or presence of BS3, were
subjected to western blotting using antibodies against each transporter. Representative images are shown. Samples in the absence of BS3
represent the total amount of each protein. Samples in the presence of BS3 represent the non-membrane fraction. The intensities of the bands
were quantified and membrane expression was calculated as the difference of intensity between samples without and with BS3. Values are
expressed as percentage of control rats and are the mean + SEM of 8 rats per group for GAT1; 6 sham rats treated with vehicle and 7 sham rats
treated with infliximab; and 6 PCS rats treated with vehicle and 5 PCS rats treated with infliximab for GAT3. Values significantly different from
control rats are indicated by asterisks and from PCS rats by a. * p <0.05; a p < 0.05
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Fig. 10 Infliximab normalizes extracellular GABA in the cerebellum
of PCS rats. Control (sham) and PCS rats treated with vehicle or
infliximab (inflix) were subjected to in vivo microdialysis in the
cerebellum. Extracellular GABA was measured by HPLC in the eight
initial samples of each rat. Values are the mean + SEM of 12 sham
rats treated with vehicle and 15 sham rats treated with infliximab;
and 13 PCS rats treated with vehicle and 12 PCS rats treated with
infliximab. Values significantly different from control are indicated by
asterisks and from PCS rats by a. * p < 0.05; ** p <0.01; a p < 0.05

type 1, in which neuronal dysfunction, in the absence of
neurodegeneration, induces glial activation [37]. We also
found damage of Bergmann glia, which is next to Purkinje
cells, and may contribute to alter their function and
GABAergic neurotransmission.

Treatment with infliximab reduces peripheral inflam-
mation but not ammonia levels. The lack of effect on
ammonia levels indicates that the beneficial effects of
infliximab in PCS rats are not due to hepatoprotection.
Reducing peripheral inflammation with infliximab is as-
sociated with reduced microglia and astrocyte activation
and levels of pro-inflammatory TNF-a and IL-1.
Infliximab-induced reduction of neuroinflammation is
associated with normalization of GABAergic neurotrans-
mission and of motor coordination and the ability to
learn the Y maze task. This suggests that peripheral in-
flammation is a main contributor to the impairment of
motor coordination and of the ability to learn the Y
maze task in PCS rats.

These results also suggest that treatments with anti-
TNF-a could be a new therapeutic approach to improve
cognitive and motor function in patients with MHE or
clinical HE. Anti-TNF-a is already being used in clinical
practice to reduce peripheral inflammation in the treat-
ment of chronic inflammatory diseases. It has been ob-
served that this treatment improves cognitive function in
patients with rheumatoid arthritis or sarcoidosis [19, 20]
and also in patients with Alzheimer’s disease [38, 39].
However, it should be taken into account that a possible
problem of anti-TNF-a treatment in some patients is that
it may induce liver injury [40, 41].

In any case, the results reported here provide experi-
mental evidence that peripheral inflammation is a main
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Fig. 11 Infliximab restores motor coordination and the ability to
learn the Y maze task in PCS rats. Control (sham) and PCS rats treated
with vehicle or infliximab (inflix) were subjected to the beam walking (a)
test and the conditional discrimination learning test in the Y maze (b, c).
b shows the number of correct trails on each day and ¢ on day 7. Values
are the mean + SEM of 22 sham rats treated with vehicle, sham rats
treated with infliximab, 25 PCS rats treated with vehicle and 23 PCS rats
treated with infliximab in the beam walking and 7 sham rats treated
with vehicle, 7 sham rats treated with infliximab, 6 PCS rats treated with
vehicle and 6 PCS rats treated with infliximab in the Y maze task. Two-
way ANOVA with repeated measures, followed by Bonferroni post hoc
test, was used for statistical analysis in b, variables being group treatment
and training day. Values significantly different from control are indicated
by asterisks and from PCS rats by a. * p < 0.05; *** p < 0.0001; a p < 0.05

contributor to neuroinflammation in rats with HE due
to PCS and support that reducing inflammation by
safe procedures would reduce neuroinflammation and
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Fig. 12 Proposed model for the mechanisms involved in the impairme

for their improvement by infliximab. a Peripheral inflammation in PCS rats induces activation of microglia and astrocytes in the cerebellum
leading to increased expression of the pro-inflammatory markers TNF-a and IL-103. This neuroinflammation leads to enhanced membrane expression of
GAT-3, a GABA transporter that in activated astrocytes reverses the transport direction, resulting in a release of GABA to the extracellular fluid leading to
increased extracellular GABA in the cerebellum. The increase in GABA leads to motor in-coordination and to reduced ability to learn the Y maze task.

b Treatment with infliximab reduces the peripheral inflammation which prevents the activation of microglia and astrocytes and the associated
enhancement of TNF-a and IL-1(3 expression in the cerebellum. This leads to normalized membrane expression of GAT3 in the astrocytes
while it increases the expression of GAT1 in Purkinje neurons facilitating GABA uptake from the extracellular space resulting in normalized
extracellular GABA concentration. As a consequence, the motor coordination is improved and the learning ability in the Y maze is restored

nt of motor coordination and learning and memory in rats with HE and

improve cognitive and motor function in cirrhotic patients
with minimal HE. The results reported show that neuroin-
flammation and the associated neurological alterations are
reversible at early stages of MHE. It is unclear if the effects
would be also reversible after long periods of neuroinflam-
mation. More sustained neuroinflammation may trigger a
series of changes in the brain which may lead to structural
alterations, including in the worse cases neuronal degener-
ation, which can make some of the alterations irreversible.
However, taking into account that most neurological alter-
ations in patients with liver cirrhosis and HE are reversible
after liver transplantation [42], it would be expected that

treatment with anti-TNF-a could also restore most of
these neurological alterations.

There is increasing evidence that many chronic diseases
and other situations associated with chronic inflammation
(e.g., strong surgeries) result in mild cognitive and motor
impairment. As proposed in Fig. 12, the process by which
peripheral inflammation leads to these neurological alter-
ations would involve induction of neuroinflammation in
different brain areas, including the cerebellum. Neuroin-
flammation would induce alterations in neurotransmission
which would be responsible for the cognitive and motor
alterations.



Dadsetan et al. Journal of Neuroinflammation (2016) 13:245

There are several mechanisms by which peripheral in-
flammation may be transduced to the brain to induce
neuroinflammation. Cytokines are large peptides that do
not readily cross the blood—brain barrier, [43]; however,
one known signaling pathway is through active transport
of certain cytokines allowing their entry into the brain
parenchyma [44]. Furthermore, blood cytokines may ac-
tivate their receptors in endothelial cells and trigger the
release of inflammatory factors into the brain. For ex-
ample, in rats injected with LPS, blood IL-6 activates its
receptors in endothelial cells leading to activation of
STAT3 which increases cyclooxygenase 2 and PGE2 in
the cerebral cortex [45]. Immune-to-brain signaling
through activation of vagal afferent nerves has also been
reported as has direct entry of cytokines at circumventri-
cular regions (e.g., the organum vasculosum lateralis ter-
minalis) due to the lack of an intact blood—brain barrier
in these brain areas [46]. In stronger inflammation cases,
infiltration of immune cells from the periphery is pivotal
for exacerbation of the pathology [47-49].

In PCS rats, we have not seen the infiltration of im-
mune cells. We have observed that, at early phases after
PCS surgery, IL-1p accumulates especially around blood
vessels, suggesting that activation of interleukin recep-
tors in endothelial cells may be contributing to neuroin-
flammation induction.

Further studies to identify the mechanisms by which
peripheral inflammation induces neuroinflammation in
HE would allow identifying additional targets to improve
cognitive and motor function. The present data, together
with the above reports on the utility of anti-TNF-a to
improve cognition in different pathologies, suggest that
it is worth trying it also in MHE and in clinical HE.

Another relevant contribution of this work is that we
also identify for the first time molecular mechanisms by
which neuroinflammation alters GABAergic neurotrans-
mission in the cerebellum of PCS rats in vivo and how
treatment with infliximab restores it. It is shown that, in
rats with HE, the amount and membrane expression of
the GAT3 transporter of GABA is increased in activated
astrocytes. Under normal conditions, GAT-3 transports
GABA from the extracellular space into astrocytes.
However, under pathological conditions, this transport is
reversed and GAT-3 releases GABA from astrocytes to
the extracellular fluid. Wu et al. [49] showed that in a
mouse model of Alzheimer’s disease, activated astrocytes
in the hippocampus release GABA through GAT-3
transporters. Blocking GAT-3 reduced GABA concentra-
tion and GABA currents, while blocking GAT-1 trans-
porters enhanced GABA currents, supporting that,
under these pathological conditions, GAT-3 is releasing
while GAT-1 is taking up GABA [34]. A similar GAT-3-
mediated release of GABA would occur in activated as-
trocytes in the cerebellum of hyperammonemic rats and
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likely also in other pathological situations associated
with neuroinflammation in the cerebellum.

It has already been shown that increased GABAergic
tone in the cerebellum impairs motor coordination [50].
Also, mice lacking the GABA transporter subtype 1
(GAT1) show increased extracellular GABA and reduced
motor coordination [51]. Moreover, rats developmentally
exposed to polychlorinated biphenyls show motor in-
coordination which correlates with extracellular GABA
levels in the cerebellum [52].

The neuroinflammation-induced increase of extracel-
lular GABA in the cerebellum would therefore be re-
sponsible for motor in-coordination in rats with HE due
to PCS. Restoration of motor coordination in PCS rats
by infliximab would be due to the normalization of
extracellular GABA levels.

Increased extracellular GABA in the cerebellum would
be also responsible for impairment of the glutamate-
NO-cGMP pathway which, in turn, would result in re-
duced ability to learn the Y maze task. This has been
already shown in PCS and in hyperammonemic rats. Re-
ducing activation of GABA, receptors with bicuculline,
pregnenolone sulfate or GR3027 reduces GABAergic
tone and restores the function of the pathway and the
ability to learn the Y maze task [29, 30, 53]. The
normalization of extracellular GABA in the cerebellum
of PCS rats by infliximab would be therefore responsible
for the normalization of the function of the glutamate-
NO-cGMP pathway and of learning in the Y maze.

In this work, infliximab treatment started 2 days before
PCS surgery. This was done to assess if neuroinflammation
is a consequence of peripheral inflammation. If infliximab
treatment starts once inflammation is already present, it is
likely that the process inducing neuroinflammation could
have already started making it more difficult to discern the
contribution of peripheral inflammation. However, this
experimental design is not the best one to assess the
therapeutic utility of infliximab to reverse the cognitive
and motor alterations in patients or models of MHE.
This would require that treatment begins after the cogni-
tive and motor alterations are already present. We have re-
cently shown that treating PCS or hyperammonemic rats
with sulforaphane, sildenafil, or extracellular cGMP, start-
ing the treatments after establishment of the neurological
impairment, reduces neuroinflammation in hippocampus
and improves some types of spatial learning and memory
[14-16], supporting the possible therapeutic utility of
these approaches. On the other hand, treatment with
anti-TNF-a compounds improves cognitive function in
patients with rheumatoid arthritis or sarcoidosis [19, 20],
indicating that it may be also beneficial if administered
after establishment of cognitive impairment. This suggests
that anti-TNF-a treatment could also be beneficial in pa-
tients with MHE or clinical HE. The above reports show
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that neuroinflammation in hyperammonemia and MHE
may be reduced by different treatments acting on different
initial targets. All of them improve cognitive and motor
function in animal models. Further studies to assess which
treatment has less secondary effects or more beneficial ef-
fects or the possible use of a combination therapy may led
to new promising treatments for MHE and HE.

Conclusions

In summary, the results reported show that, in PCS rats,
peripheral inflammation leads to neuroinflammation in
the cerebellum, which increases GAT-3 expression in
membrane and extracellular GABA, altering GABAergic
neurotransmission and resulting in impaired motor coord-
ination and ability to learn the Y maze task. Infliximab re-
duces peripheral inflammation, microglia and astrocyte
activation, and neuroinflammation and normalizes GAT-3
membrane expression, extracellular GABA and GABAer-
gic neurotransmission, motor coordination, and the ability
to learn the Y maze task. This supports that

(a) neuroinflammation is associated with altered
GABAergic neurotransmission and increased GAT-3
membrane expression and extracellular GABA;

(b) peripheral inflammation is a main contributor to
the impairment of motor coordination and of the
ability to learn the Y maze task in PCS rats;

(c) reducing peripheral inflammation using safe
procedures (anti-TNF-a or other) could be a new
therapeutic approach to improve cognitive and motor
function in patients with MHE or clinical HE.
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