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Abstract

Background: Postoperative cognitive dysfunction (POCD) is a common complication after surgery, especially
amongst elderly patients. Neuroinflammation and iron homeostasis are key hallmarks of several neurological
disorders. In this study, we investigated the role of deferoxamine (DFO), a clinically used iron chelator, in a mouse
model of surgery-induced cognitive dysfunction and assessed its neuroprotective effects on neuroinflammation,
oxidative stress, and memory function.

Methods: A model of laparotomy under general anesthesia and analgesia was used to study POCD. Twelve to
14 months C57BL/6J male mice were treated with DFO, and changes in iron signaling, microglia activity, oxidative
stress, inflammatory cytokines, and neurotrophic factors were assessed in the hippocampus on postoperative days
3, 7, and 14. Memory function was evaluated using fear conditioning and Morris water maze tests. BV2 microglia
cells were used to test the anti-inflammatory and neuroprotective effects of DFO.

Results: Peripheral surgical trauma triggered changes in hippocampal iron homeostasis including ferric iron
deposition, increase in hepcidin and divalent metal transporter-1, reduction in ferroportin and ferritin, and oxidative
stress. Microglia activation, inflammatory cytokines, brain-derived neurotropic factor impairments, and cognitive
dysfunction were found up to day 14 after surgery. Treatment with DFO significantly reduced neuroinflammation
and improved cognitive decline by modulating p38 MAPK signaling, reactive oxygen species, and pro-inflammatory
cytokines release.

Conclusions: Iron imbalance represents a novel mechanism underlying surgery-induced neuroinflammation and
cognitive decline. DFO treatment regulates neuroinflammation and microglia activity after surgery.

Keywords: Cytokines, Hippocampus, Iron, Microglia, Surgery

Background
Neurological complications after major surgery are com-
mon, especially in a rapidly growing aging population
[1, 2]. The most common long-term postoperative
complication within this large patient group is a reduc-
tion in thinking and memory processes termed postop-
erative cognitive dysfunction (POCD, recently reviewed
in [3]). POCD affects up to 14–24 % of patients follow-
ing non-cardiac surgery and increases the risk for

further complications, including mortality, and pro-
longed hospitalization quickly becoming a significant
burden to the health care system [3, 4]. Currently, there
is no evidence-based treatment for POCD.
Inflammation is gaining considerable interest as a critical

driver of cognitive deficits, including neurodegenerative
conditions like Alzheimer’s disease (AD) [5, 6]. Neuroin-
flammation has been related to models of surgery-induced
cognitive dysfunction, in particular, the release of pro-
inflammatory cytokines as tumor necrosis factor-alpha
(TNF-α) and interleukin-1 beta (IL-1β) and the activation
of nuclear factor-kB (NF-kB) signaling in macrophages and
microglia have been highlighted as critical factors in the
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development of cognitive deficits [7–9]. Changes in pro-
inflammatory cytokines and neurodegenerative markers
in the cerebrospinal fluid of postsurgical patients have
been similarly detected, suggesting a role for neuroin-
flammation in the pathophysiology of POCD [10, 11].
Furthermore, animal models have reported a correl-
ation between pro-inflammatory cytokines and synaptic
plasticity, which is the substrate for memory formation
in the hippocampus [12, 13].
Iron homeostasis is fundamental in maintaining cen-

tral nervous system (CNS) function and is a necessary
factor in the regulation of oxygen transport, neurotrans-
mission, myelination, and neuronal metabolism [14].
However, iron imbalance and aberrant accumulation in
the CNS is also a hallmark of neuroinflammation and is
implicated in several neurodegenerative disorders, in-
cluding AD [15, 16]. Mounting evidence supports the
idea that iron progressively accumulates in the brain with
age, leading to oxidative stress, cell death, and neurotox-
icity [14]. As a consequence of this microenvironment,
microglia become primed, thus sensitized to a subsequent
challenge (i.e., infection or trauma) and may contribute to
chronic non-resolved neuroinflammation [17, 18].
Although aging is one of the key risk factor for POCD,

strategies aimed at reducing postoperative neuroinflam-
mation have been limited [19, 20]. Hence, this study
aimed at providing new evidence for iron dysregulation
as a potential target for postoperative neuroinflamma-
tion in a clinically relevant POCD model. Herein, we ex-
plored the effects of deferoxamine (DFO), a potent iron
chelator agent, in preventing microglia activation and
hippocampal-dependent memory deficit after laparot-
omy in mice. These findings provide evidence for iron
accumulation and activation of p38-mitogen-activated
protein kinase (MAPK) signaling in microglia after sur-
gical trauma as a novel target to treat POCD.

Methods
Animals
C57BL/6J male mice (12~14 months) were obtained
from the Changzhou SPF Animal Technology Co. Ltd
(Changzhou, China). Mice were housed in a controlled
environment (20 ± 2 °C and 50 ± 10 % humidity, 12:12
light/dark cycle) with ad libitum access to standard chow
and water. The procedures were approved by the Com-
mittee of Ethics on Animal Experiments at Southwest
committee of laboratory animal committee of PLA,
Chongqing, China (protocol number: SYXK20120031),
and followed the guidelines for the care and use of
Laboratory Animals.

Experimental protocol and surgery model
Mice were treated daily for 6 days with 100 mg/kg
DFO (Sigma-Aldrich, Inc., St. Louis, MO, USA)

intraperiotoneally (i.p.) [21]. During the DFO adminis-
tration days, the training trials or behavior tests were
performed as described below. Abdominal exploratory
surgery [22] was then performed 24 h after the be-
havior trainings. The experimental protocols are indi-
cated as in Fig. 1.
On the day of surgery, mice were anesthetized with

4 % chloral hydrate (10 ml/kg, i.p., Shanghai Xingya
Medical Company) plus 0.1 % lidocaine (Shanghai
Zhaohiu Pharm Co. Ltd, China). Briefly, the gastro-
intestinal tract was exteriorized, and abdominal organs
(liver, spleen, kidneys, and bowel) were explored gently
with cotton but for 30 min. The abdomen was then
closed by 8/0 Prolene sutures (CE1023 Jinhuan Co. Ltd,
Shanghai, China). 0.1 % lidocaine was also used for
postoperative analgesia. Body temperature was main-
tained at 37 ± 0.5 °C using a homeothermic blanket for
rodents (Stoelting, USA). Sham mice were exposed to
anesthesia and received a midline abdominal incision
(~3 cm) without manipulation of other organs. Mice
without surgery served as naïve controls.

Behavioral tests

Fear conditioning Contextual fear conditioning (FC)
test was performed in a dedicated chamber (Biowill Co.
Ltd, Shanghai, China) as previously described [23]. Six
hours after the daily DFO administration, mice were
placed in FC chamber to adapt to the context for 2 min.
The conditional stimuli cycle was then applied as 15 s
tone (80 dB)—30 s delay—5 s electrical foot shock
(0.3 mA). The conditional training was repeated for six
consecutive days. Surgeries were then performed 24 h
after the last day of training. On postoperative days 3, 7,
or 14, mice were placed back in the original conditioning
chamber without tone or shock stimuli. The recall of
contextual fear memory was assessed by freezing

a

b

Fig. 1 Experimental protocol. a Protocol of contextual fear conditioning.
b Protocol of Morris water maze (a separate cohort of mice). DFO
deferoxamine, FC fear conditioning, MWM Morris water maze
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behavior (Freeze Frame Actimetrics software). The ex-
perimental protocol was indicated as in Fig. 1a.

Morris water maze The Morris water maze (MWM)
training was continued in a separate cohort of mice for
seven consecutive days before surgery. DFO was admin-
istered 6 h before MWM daily, from the first to sixth
training days. The water maze tank was 120 cm in diam-
eter, 30 cm in depth, and filled with water at 22 °C. A
submerged platform (10 cm in diameter) was located at
a fixed location which was in the target quadrant. The
mouse was released into the water facing the wall of the
pool from one quadrant and allowed 60 s to locate the
hidden platform [24]. If a mouse failed to find the plat-
form within 60 s, it was guided to the platform and
placed on the platform for 15 s. The mouse was then re-
moved to the cage and allowed to dry in a warm envir-
onment. Four trials were performed on each mouse with
starting location from different quadrant. Twenty-four
hours after the MWM training, abdominal exploration
or sham surgery were performed. The acquisition tests
and probe trial were performed on postoperative days 3,
7, and 14. In the end of MWM tests on postoperative
day 14, the mice were terminated for organ harvest. The
latency to reach the platform and swimming speed, as
well as the proportion of time spent in target quadrant
and platform crossing times during the probe trials
were recorded and analyzed by video tracking system
(Xinruan Information Technology Co. Ltd, Shanghai,
China). The experimental protocol was performed as
described in Fig. 1b.

Immunohistochemistry
On postoperative days 3, 7, and 14, mice were anesthe-
tized with 4 % chloral hydrate and 0.1 % lidocaine and
transcardially perfused with 0.9 % ice-cold saline
followed by 2.5 % paraformaldehyde (PFA, Beyotime In-
stitute of Biotechnology, Shanghai, China). Brains were
harvested and postfixed in 2.5 % PFA. The samples were
then cryoprotected in 30 % sucrose solution and embed-
ded in optimal cutting temperature compound (OCT,
Xingzhi Biological technology co., LTD, Guangzhou,
China). Coronal sections (25 μm) were obtained with a
cryostat (Leica, Germany). Sections were blocked in
10 % normal goat serum (Beyotime Institute of Biotech-
nology) for 30 min at room temperature and incubated
with a rabbit Iba1 antibody (1:500, Wako, Japan) at 37 °
C for 1.5 h and then at 4 °C overnight. After PBS wash,
sections were incubated in goat anti-rabbit antibody
(1:300, Beyotime Institute of Biotechnology, China) for
1 h at 37 °C and then in horseradish peroxidase strep-
tavidin (1:200) and visualized with DAB kit (both from
Beyotime Institute of Biotechnology). Images were ob-
tained with a microscope (Leica, Wetzlar, Germany).

Iba1-positive cells were analyzed using Image-Pro-
Plus® 6.0 Software; the cell body to cell size ratio was
used to assess microglial activation [25].

Oxidative stress assays
Reactive oxygen species in hippocampus were detected
using a ROS Assay Kit (Nanjing Jiancheng Bioengineer-
ing Institute, China) following the manufacturer’s in-
structions. In brief, the hippocampus was homogenized
with 100 mmol/L PBS and centrifuged at 1000g for
10 min at 4 °C. The supernatant was collected, and pro-
tein concentration was determined using Coomassie
brilliant blue method of protein assay kit (Nanjing Jian-
cheng Bioengineering Institute, China). One hundred
ninety microliter supernatant was added into 10 μl 2,7-
dichlorofuorescin diacetate (1 mmol/L, DCFH-DA), and
samples were incubated at 37 °C for 30 min. The fluor-
escence (λexc = 502 nm, λem = 530 nm) was monitored
after the stabilization of the signal, and the results were
expressed as fluorescence intensity/100 mg protein.
The malodialdehyde (MDA) level in hippocampus was

determined using a MDA Assay Kit (Nanjing Jiancheng
Bioengineering Institute, China). After protein quantifi-
cation, 100 μl tissue homogenate, 100 μl standard solu-
tion (10 nmol/ml), 100 μl absolute ethyl alcohol, and
100 μl glacial acetic acid (50 %) were added into four re-
action tubes, and then added the corresponding reagents
following the manufacturer’s instruction. The reaction
mixture was then heated at 95 °C for 40 min, centrifuged
at 3500g for 10 min at room temperature. The absorb-
ance was determined by Multi-function meter at
532 nm. The results were expressed as nanomole per
milligram protein.

BV2 microglial cells
The murine microglial cell line BV2 was kindly provided
from Dr. He (Department of Neurobiology, College of
Basic Medical Sciences, Third Military Medical Univer-
sity). DMEM (high glucose, Gibco, Grand Island, NY)
supplemented with 5 % fetal bovine serum (FBS, Gibco),
100 U/mL penicillin, and 100 μg/mL streptomycin, in a
humidified incubator at 37 °C supplied with 95 % air
and 5 % CO2 [26]. Cells were treated for 16 h with (1)
lipopolysaccharide (LPS, 20 μg/ml, Sigma), (2) DFO
(5 mM), (3) DFO + LPS (with DFO pretreated for 6 h),
and (4) DMSO (14 μM). DFO and LPS were dissolved in
DMSO with final DMSO concentration at 14 μM. The
concentration of LPS was chosen based on previous
study [27]. BV2 cells cultured in 12-well plates (5 × 104

cells/well) were used for western blot, and cells cultured
in 96-well plates (4 × 104 cells/well) were used for ana-
lysis of iron release or enzyme-linked immunosorbent
assay (ELISA).
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Western blot
Hippocampus and BV2 cells were homogenized in lysis
buffer (P0013, Beyotime Institute of Biotechnology,
Shanghai, China) and centrifuged at 10,000g for 30 min
at 4 °C. Protein concentration was determined using
BCA protein assay kit (P0012, Beyotime Institute of Bio-
technology). The samples were separated by 10 or 12 %
SDS-polyacrylamide gel and transferred to polyvinyli-
dene fluoride membranes. After 2 h blocking with 5 %
skim milk at 37 °C, the membranes were incubated with
primary antibodies (Table 1) overnight at 4 °C and then
with secondary antibody (goat anti-rabbit or goat anti-rat
antibody, 1:1000, Beyotime Institute of Biotechnology,
Shanghai, China) for 2 h at 37 °C. The immunoreaction
was visualized with enhanced chemiluminescence (ECL)
detection reagents (Thermo Scientific, Rockford, IL, USA)
and analyzed by Image Lab™ software (Bio-Rad Laborator-
ies, Inc. Hercules, CA).

Calcein-AM assay
The labile iron pool (LIP) was determined by a fluores-
cence technique with the Fe sensor calcein as previously
described [28] with minor modifications. After washing
with PBS, cells were treated with Chelex-100 (Bio-Rad
Laboratories) and incubated with 100 μl Calcein-AM so-
lution (final concentration at 30 μM) for 20 min at 37 °
C. The excess Calcein-AM was washed off with PBS.
The fluorescence (λexc = 450 nm, λem = 515 nm) was
monitored after the stabilization of the signal, and re-
sults were expressed as fold change.

Iron release assay
Iron concentration was measured by Iron Assay Kit
(BioAssay Systems, USA). The procedure was performed
as described [26] with minor modifications. The cells
were crushed with soniprep (Ultrasonic cell crusher,
SONICS, USA) after washing with PBS. Samples were
incubated for 40 min at room temperature, and optical
density was read at 590 nm. The results were expressed
as fold change.

Enzyme-linked immunosorbent assay
The concentrations of IL-1β, IL-6, and TNF-α in hippo-
campus and medium were examined by ELISA assay kits
following manufacturer’s instructions (R&D Systems,
USA). The hippocampus were homogenized in RIPA
lysis buffer (Beyotime Institute of Biotechnology, China)
and centrifuged at 12,000g for 15 min to obtain super-
natant. Protein quantification was assessed using BCA
kit following the instruction (Beyotime Institute of Bio-
technology). BV2 cells were seeded in 96-well plates at
4 × 104 cells/well for 24 h before the experiments. After
treatment, the medium was collected after centrifugation
at 1000g for 20 min and 100 μl of supernatant was used
for detection. The absorbance was read using a spectro-
photometer at a wavelength of 450 nm. The concentra-
tions were calculated according to the standard curve
and presented as picogram per milliliter.

Statistical analysis
The data were expressed as mean ± standard deviation
(SD) using GraphPad InStat software program. Two-
group comparisons were evaluated by Student’s t test,
and multiple comparisons were evaluated by one-way
ANOVA followed by Bonferroni post hoc test. Separate
two-way repeated-measures ANOVA was used to evalu-
ate the effect of dose and time on each dependent vari-
able in the fear conditioning and the MWM. P < 0.05
was considered statistically significant.

Results
Surgery affects iron homeostasis in the hippocampus
Using an abdominal laparoscopy surgery model, we eval-
uated the impact of surgical trauma on iron homeostasis
in the hippocampus. Surgery induced iron accumulation
in the hippocampus compared to control and sham
groups up to 14 days (P < 0.01), which was attenuated by
DFO pretreatment (P < 0.05 and 0.01, respectively,
Fig. 2a). To verify these changes, we measured protein
expression of key components in iron homeostasis in
the hippocampus including ferroportin (Fpn-1), hepci-
din, and divalent metal trasporter-1 (DMT1). Compared
to control and sham operation, surgery caused a signifi-
cant reduction in Fpn-1, increasing both hepcidin and
DMT1 in the hippocampus up to postoperative day 14
(P < 0.01). Notably, pretreatment with DFO significantly
improved the surgery-induced changes in iron regulation
(P < 0.05 and 0.01, respectively, Fig. 2b–e).

DFO treatment prevents neuroinflammation and
oxidative stress in the hippocampus
Abdominal surgery led to significant increase of CD68
expression in hippocampus up to postoperative day 14
(P < 0.01, Fig. 3a, b). In addition, from postoperative days
7 to 14, surgery significantly increased Iba1-indicated

Table 1 Primary antibodies for western blot

Primary antibody Concentration Provider

Rabbit anti-ferroportin 1:1000 Abcam, Inc. Cambridge, UK

Rabbit anti-DMTI 1:500 Alpha Diagnostic Intl Inc

Rabbit anti-hepcidin 1:1000 Abcam, Inc. Cambridge, UK

Rat anti-CD68 1:500 Abcam, Inc. Cambridge, UK

Rabbit anti-BDNF 1:1000 Abcam, Inc. Cambridge, UK

Rabbit anti-ferritin 1:2000 Abcam, Inc. Cambridge, UK

Rabbit anti-p38 1:1000 Abcam, Inc. Cambridge, UK

Rabbit anti-gp91phox 1:1000 Abcam, Inc. Cambridge, UK
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microglial activity (P < 0.01, Fig. 3c, d) as well as the hip-
pocampal TNF-α and IL-1β levels (P < 0.05 and 0.01, re-
spectively, Fig. 3e, f ). These changes were attenuated by
DFO pretreatment (P < 0.05 and 0.01, respectively, Fig. 3).
In addition, there is also significant correlation between
hippocampal iron content and microglial activity (r =
0.6811, P = 0.0147) or CD68 level (r = 0.9561, P < 0.001,
Additional file 1: Figure S1). The suggested neuroin-
flammation is strongly associated with iron content in
the brain.
Aside neuroinflammation, the oxidative stress markers,

MDA, and reactive oxygen species (ROS) in hippocam-
pus were also significantly elevated from postoperative
day 3 up to day 14 compared to naïve or sham-operated
mice (Fig. 4a, b, P < 0.01), which were also significantly
attenuated by DFO pretreatment (P < 0.05 and 0.01, re-
spectively, Fig. 4a, b).

DFO prevented surgery-induced BDNF dysfunction and
memory impairments
Levels of brain-derived neurotropic factor (BDNF), a key
trophic factor in the CNS, were significantly reduced
after surgery from day 3 up to day 14 compared to con-
trol and sham-operated group (P < 0.01). This effect was

significantly alleviated by DFO treatment (P < 0.05 and
0.01, respectively, Fig. 5). Next, we used FC and MWM
tests to evaluate the cognitive function in this POCD
model [23, 24]. During training, we found no difference
between groups regarding the average latency per day;
however, the calculated area under the curve was signifi-
cantly reduced in the DFO-treated group compared to
other groups (P < 0.05 and 0.01, respectively, Additional
file 2: Figure S2) suggesting DFO may facilitate learning.
During the testing trials, both control and sham groups
maintained similar latencies as in the last training ses-
sion whereas the surgery group spent more time locating
the hidden platform up to postoperative day 14 com-
pared to control and sham-operated mice (P < 0.05 and
0.01, respectively, Fig. 6a). DFO treatment significantly
improved the latency compared to non-treated mice
during testing trials at all time points (P < 0.05), suggest-
ing that DFO attenuated surgery-induced memory im-
pairment. Moreover, in the probe trial, mice from
surgery group spent significantly less time in the plat-
form target quadrant and less times crossing over the
platform area (P < 0.05 and 0.01, respectively). DFO pre-
treatment significantly improved the performance during
probe trial after surgery (Fig. 6b, c). No differences of

a

c d e

b

Fig. 2 DFO attenuated surgery-induced iron increase in the hippocampus. a Hippocampal iron content on postoperative days 3, 7, and 14.
b–e Western blot images and quantification of Fpn1, hepcidin, and DMT1 at day 14. n = 8/group for iron content, n = 6/group for iron marker,
*P < 0.05, **P < 0.01; data are expressed as mean ± SD. DFO deferoxamine, NS normal saline, Fpn1 ferroportin, DMT1 divalent mental transporter1
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swimming speed were observed between groups at all
the time points (data not shown).
In FC, freezing time was significantly reduced after

surgery at all time points (P < 0.05 vs control and sham
groups, respectively). Treatment with DFO restored
memory function with no difference compared to naïve
or sham-operated mice up to postoperative day 14
(Fig. 6d).

Anti-inflammatory effects of DFO in LPS-exposed
microglia cells
We used BV2 cell line to further investigate the effects
of DFO on microglia. DFO pretreatment significantly
decreased LPS-induced CD68 expression (P < 0.01,
Fig. 7a, b) and improved BDNF level following LPS
stimulation (P < 0.01, Fig. 7a, c). In addition, LPS-
induced gp91phox and p38-MAPK were significantly

a b

c d

e f

Fig. 3 DFO reduced neuroinflammation in hippocampus. a Representative bands of western blot for CD68 in hippocampus. b Quantification of
CD68 protein level in hippocampus. c Representative pictures of Iba1 staining in hippocampus. d The cell body/cell size ratio of Iba1-labeled
microglia. e, f Hippocampal IL-1β and TNF-α. Surgery significantly increased the upregulation of microglia activation, as well as CD68, IL-1β, and
TNF-α level in hippocampus. These effects were attenuated by DFO pretreatment. n = 4/group, *P < 0.05, **P < 0.01. Data are expressed as mean ± SD.
Scale bar 50 μm. DFO deferoxamine, NS normal saline
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reduced by DFO pretreatment (P < 0.01, Fig. 7d, f ). LPS
also increased levels of IL-6, TNF-α, and IL-1β in cell
culture media compared to naïve or DMSO alone group
(P < 0.01). This effect was significantly reduced by DFO
pretreatment (P < 0.01, Fig. 7g–i).
Looking at iron signaling in BV2 cells, LPS stimulation

significantly increased labile iron, total iron, and ferrous
iron in microglial cells compared to naïve and DMSO
control groups (P < 0.01). These effects were abolished
by DFO pretreatment (P < 0.01, Fig. 8a–d). In this model,
DFO also regulated LPS-induced changes in hepcidin,
DMT1, Fpn1, and ferritin (P < 0.01, Fig. 8e–i).

Discussion
The present study investigated the relationship be-
tween iron deposition and cognitive impairment after

abdominal surgery in a mouse model of POCD. Our
data suggest a novel role for iron accumulation in re-
sponse to surgical trauma in causing neuroinflamma-
tion and cognitive dysfunction. Treatment with DFO,
an iron chelator, prevented POCD by ameliorating re-
active microgliosis and regulating iron homeostasis
after surgery.
Neuroinflammation has been described as a hallmark

of POCD [29], yet the mechanisms of surgery-induced
neuroinflammation remain poorly understood. Dysregu-
lated iron homeostasis is a common feature of many
conditions, including disorders of the CNS [30]. In
addition, iron and neuroinflammation have been related
in pathologies like AD and common neurodegenerative
diseases [17]. Iron is essential for several biological activ-
ities but requires controlled regulation due to its toxicity
when present in abundance [31]. In this study, we found
iron concentration significantly elevated in the hippo-
campus after surgery and long-lasting changes in iron

a

b

Fig. 4 Effects of DFO on oxidative stress markers in the hippocampus.
Surgery significantly elevated hippocampal levels of MDA (a) and ROS
(b) on postoperative days 3 and 7. This effect was reduced by DFO
pretreatment. n = 4/group, *P < 0.05, **P < 0.01. Data are expressed as
mean ± SD. ROS reactive oxygen species, MDA malondialdehyde, DFO
deferoxamine, NS normal saline

Fig. 5 DFO improved BDNF expression after surgery. Image showed
the representative western blot bands for BDNF. Surgery caused a
reduction in BDNF protein, which was restored by DFO, as quantified
using relative density. n = 4/group, *P < 0.05, **P < 0.01. Data are
expressed as mean ± SD. DFO deferoxamine, BDNF brain-derived
neurotropic factor, NS normal saline
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transporting signaling. These findings are consistent
with An et al. that suggested iron accumulation and oxi-
dative stress contribute to POCD after splenectomy in
rats [32]. Since inflammation is one of the key mecha-
nisms implicated in POCD, we used a model of abdom-
inal surgical model without removal of the spleen to
obviate any confounding effects mediated by this im-
munological organ.
Inflammation and iron homeostasis are tightly regu-

lated. DMT1 has been proposed as a key interface be-
tween iron signaling and immunity and is upregulated
by pro-inflammatory cytokines like IL-1β [33]. Hepcidin
was also found increased in the CNS after surgery,
which is consistent with the role of inflammation in trig-
gering iron overload [34]. During chronic inflammation,
higher levels of hepcidin and IL-6 have been related to
anemia of inflammation, a condition that prevents re-
lease of iron from intracellular store [35]. To confirm

the role of iron signaling and inflammation in POCD,
we used DFO and reported therapeutic effects on both
iron transporter signaling and inflammation after sur-
gery, including cytokines like IL-1β and IL-6. Inflamma-
tion and iron overload are correlated in chronic
inflammatory conditions [36], and systemic cytokines
are increased after surgery both in preclinical and hu-
man POCD [37–39]. The relationship between systemic
changes in iron homeostasis and the CNS is complex
and requires further elucidation. Surgery was shown to
reduce systemic levels of iron, yet inducing profound ex-
pression in the hippocampus [32]. It is possible that
these changes observed in the CNS are mediated by pro-
inflammatory cytokines affecting iron-related genes at
the choroid plexus, the interface between blood and
cerebrospinal fluid, by tissue-specific endothelial cells
[40]. However, opening of the blood-brain barrier and
endothelial dysfunction after surgery [8, 41, 42] makes it

a b

c d

Fig. 6 Surgery-induced hippocampal-dependent memory impairment is mitigated by DFO. Mice after surgery showed significant longer latency
in MWM acquisition trials compared to naïve and sham-operated controls (a). Moreover, in probe trials, mice with surgery spent less time in target
quadrant (b) and had fewer crossings over platform location (c) compared to controls. Contextual fear conditioning memories was impaired in
mice after surgery compared to naïve and sham-operated controls (d). DFO pretreatment significantly improved the performance of mice in
MWM and FC tests after surgery. n = 8/group, *P < 0.05, **P < 0.01 vs control group, #P < 0.05 vs NS + surgery group, $P < 0.05, $$P < 0.01 vs sham
group. Data are expressed as mean ± SD. DFO deferoxamine, NS normal saline
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possible for the systemic milieu to affect the brain after
peripheral trauma, possibly activating directly microglial
cells. Notably, DFO administration to control animals
had no significant effect on either iron homeostasis or
hematological parameters [43].
In the CNS, microglia are critical for surveiling and

maintaining homeostasis [44]. Our data support a crit-
ical role of microglia activation in POCD both in vivo
and in vitro. Surgery activated microglia as noted by
CD68 and Iba-1 immunoreactivity up to 14 days after
injury, but reactive microgliosis was effectively decreased
following DFO treatment. In addition, DFO reduced oxi-
dative stress and cytokine production in microglia cul-
tures. DFO treatment on LPS-stimulated microglia
prevented the increase of TNF-α, IL-1β, and IL6, and
these cytokines have been shown to increase iron uptake
in human monocytes from patients with rheumatoid
arthritis [45]. Mechanistically, DFO downregulated levels
of gp91phox, the nicotinamide adenine dinucleotide
phosphate-oxidase (NADPH) oxidase subunits which are

participated in oxidative stress signaling. Dysfunctional
iron transporters and excessive free iron induce ROS
production affecting redox-sensitive cell signaling and
transcription factors [46, 47]. Oxidative stress, including
dysregulated NADPH and NADPH oxidase isoform 2
(NOX2) activity, have been recently implicated in POCD
[22, 48]. In addition, DFO also inhibited activation of
p38 MAPK, which is consistent with the overall reduc-
tion in pro-inflammatory cytokines.
Activation of microglia in the hippocampus has been

linked to cognitive dysfunction and is causally related to
impairment in long-term potentiation [49]. Our data
found hippocampal-dependent contextual memory im-
pairment after abdominal exploratory surgery and worse
performance in the MWM. This is in-line with previous
evidence of hippocampal-dependent cognitive decline in
POCD [50]. DFO improved memory impairment by
ameliorating inflammation and microglia activation.
DFO was previously tested in AD patients to slow pro-
gression of dementia [51]. Also, DFO improved cognitive

a b c

d e f

g h i

Fig. 7 Anti-inflammatory effects of DFO on microglia cells in vitro. a Image of western blot protein bands for CD68 and BDNF in microglia cells. b, c
Quantification of CD68 and BDNF protein levels. d Image of western blot protein bands for gp91phox and p38 in microglia cells. e, f Quantification of
gp91phox and p38 protein levels. g-i Pro-inflammatory cytokines in microglia cells culture medium. DFO exerted anti-inflammatory effects on BV2 cells.
n = 6/group except for p38MAPK (n = 4/group), *P < 0.05, **P < 0.01. Data are expressed as mean ± SD. DFO deferoxamine, LPS lipopolysaccharide, BDNF
brain-derived neurotropic factor
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decline, hippocampal inflammation, and cell death after
endotoxemia [52]. In our study, we found an effect of
DFO on BDNF, which has been implicated in synaptic
plasticity and memory processing [53–56]. As we found
changes in the calculated area under the curve during

MWM training, the effects of DFO on neuronal activ-
ity, synaptic plasticity, and BDNF may be critical in
alleviating memory deficits. In addition, other mecha-
nisms may contribute to this protective effect, including
modulation of neurogenesis, pain, and neurotoxic

a

b c d

e f

h i

g

Fig. 8 DFO regulates iron content and transport proteins in LPS-activated microglial cells. a, b Fluorescence staining of metal-sensitive probe
calcein showed labile iron in microglia cells. DFO increased labile iron content in both resting and activated microglia cells. DFO also inhibited
LPS-induced increase in total iron (c) and ferrous ion (d) content in microglia cells. Representative images of western blot protein bands of target
proteins (e). DFO significantly attenuated LPS-induced changes in protein levels for Fpn1 (f), hepcidin (g), and DMT1 (i). Ferritin levels (h) were
decreased in microglia cells after LPS or DFO treatments. n = 4/group for LIP, n = 6/group for total iron and iron marker, n = 8/group for ferrous
ion, *P < 0.05, **P < 0.01. Data are expressed as mean ± SD. Scale bar 50 μm. DFO deferoxamine, LPS lipopolysaccharide, Fpn1 ferroportin, DMT1
divalent mental transporter1, LIP labile iron pool
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peptides like β-amyloid [57–59]. Although iron is het-
erogeneous and widely distributed in every organ in-
cluding the brain, it remains important to understand
why the hippocampus in particular is more susceptible
to inflammatory damage.

Conclusions
In summary, our results indicate that surgery-induced
cognitive dysfunction is associated with iron deposition
and neuroinflammation. Treatment with an iron chela-
tor, DFO, prevented memory dysfunction in this model
by restoring iron homeostasis, neuroinflammation, and
oxidative stress. Regulation of microglia activity, includ-
ing p38 MAPK signaling, and pro-inflammatory cyto-
kines are critical targets to prevent POCD.

Additional files

Additional file 1: Figure S1. Hippocampal iron content is correlated
with neuroinflammation. There is significant correlation between
hippocampal iron content and Iba1-indicated microglial activation
(r = 0.6811, P = 0.0147, A), as well as between iron content and CD68
level (r = 0.9561, P < 0.001, B) on postoperative day 3. (PDF 109 kb)

Additional file 2: Figure S2. Effects of DFO on learning during MWM
training. (A) The latency of MWM training trails before surgery. (B) DFO-
treated group had significantly reduced the area under the curve during
MWM training trials. *P < 0.05, **P < 0.01. Data are expressed as mean ±
SD. DFO = deferoxamine; NS = normal saline; AUC = area under the curve.
(PDF 36 kb)
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