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Alzheimer’s disease
Chi-Wei Huang1†, Shih-Wei Hsu2†, Shih-Jen Tsai3,4, Nai-Ching Chen1, Mu-En Liu3, Chen-Chang Lee2,
Shu-Hua Huang5, Weng-Neng Chang1, Ya-Ting Chang1, Wan-Chen Tsai1 and Chiung-Chih Chang1*

Abstract

Background: Inflammatory processes play a pivotal role in the degenerative process of Alzheimer’s disease. In
humans, a biallelic (C/T) polymorphism in the promoter region (position-511) (rs16944) of the interleukin-1 beta
gene has been significantly associated with differences in the secretory capacity of interleukin-1 beta. In this study,
we investigated whether this functional polymorphism mediates the brain networks in patients with Alzheimer’s
disease.

Methods: We enrolled a total of 135 patients with Alzheimer’s disease (65 males, 70 females), and investigated their
gray matter structural covariance networks using 3D T1 magnetic resonance imaging and their white matter
macro-structural integrities using fractional anisotropy. The patients were classified into two genotype groups:
C-carriers (n = 108) and TT-carriers (n = 27), and the structural covariance networks were constructed using
seed-based analysis focusing on the default mode network medial temporal or dorsal medial subsystem,
salience network and executive control network. Neurobehavioral scores were used as the major outcome
factors for clinical correlations.

Results: There were no differences between the two genotype groups in the cognitive test scores, seed, or peak
cluster volumes and white matter fractional anisotropy. The covariance strength showing C-carriers > TT-carriers was
the entorhinal-cingulum axis. There were two peak clusters (Brodmann 6 and 10) in the salience network and
four peak clusters (superior prefrontal, precentral, fusiform, and temporal) in the executive control network
that showed C-carriers < TT-carriers in covariance strength. The salience network and executive control
network peak clusters in the TT group and the default mode network peak clusters in the C-carriers strongly
predicted the cognitive test scores.

Conclusions: Interleukin-1 beta C-511 T polymorphism modulates the structural covariance strength on the
anterior brain network and entorhinal-interconnected network which were independent of the white matter
tract integrity. Depending on the specific C-511 T genotype, different network clusters could predict the
cognitive tests.
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Background
The neuropathology of Alzheimer’s disease (AD) in-
volves a profound innate immune response and produc-
tion of inflammatory cytokines [1]. Whether or not
inflammatory processes represent a causal component of
AD or are simply a consequence of neurodegeneration is
still under debate. However, it is generally accepted that
inflammatory cascades [2] together with neurofibrillary
tangles [3] and degenerative neuroimaging biomarkers
[4] are more strongly associated with cognitive declines
in patients with AD. Many inflammatory mediators have
been identified in the brains of patients with AD.
Variations in inflammatory-related genes have been ex-
tensively investigated [5–8], and the expression of
interleukin-1 (IL-1) beta has been shown to have clinical
relevance. IL-1 beta, produced in the glial cells and neu-
rons, has been reported to have a higher density in the
hippocampus in response to stress of injury [9]. In
addition, in an Alzheimer’s mouse model, IL-1 beta-
related inflammatory responses surprisingly reduced
amyloid beta deposition [10] but paradoxically enhanced
tau pathology [11].
A large number of functional polymorphisms in the

promoter regions of pro- and anti-inflammatory genes
have been associated with different levels of mediators
that have an overall effect on the strength of inflamma-
tory responses [12]. The human interleukin-1 beta gene
(IL1B) is located on chromosome 2q14. A biallelic (C/T)
polymorphism in the promoter region (position-511)
(rs16944) of the IL-1 beta gene has been significantly
associated with IL-1 beta secretory capacity after
lipopolysaccharide-stimulation that T homozygous indi-
viduals secreted significantly more IL-1 beta than CC
and CT individuals [13]. In Taiwan, the −511 TT geno-
type has also been associated with an increased risk of
AD [14]. The substantial increase in the expression of
the IL-1 beta gene during long-term potentiation of syn-
aptic transmission suggests its role in synaptic function
[15]; however, blocking of IL-1 beta in the hippocampus
has been reported to produce significant memory im-
pairment compared with vehicle-treated rats [16].
Both deep and periventricular white matter hyperin-

tensities (WMHs) have been reported to be significantly
associated with AD degeneration process in both cross-
sectional and longitudinal studies [17–19]. The presence
of WMHs in AD may reflect multiple physiological and
pathological changes such as breakdown of the blood-
brain barrier [20], impaired cerebral auto-regulation
[21], vasculopathies, and inflammation [22, 23]. In
healthy adults, homozygotes for the IL-1 beta -511 T al-
lele have been associated with increased inflammatory
responses and larger WMHs than the other two geno-
typic combinations [24]. The -511 T homozygotes are
also associated with a higher risk of ischemic stroke,

suggesting a role in large [25] or small vessel pathology
[26]. These observations make the IL-1 beta C-511 T
genetic variant a plausible candidate to evaluate the gen-
etic effect on WMH proliferation. Data on the C-511 T
with regards to WMH load and gray matter (GM) de-
generation in AD are still lacking.
The application of structural covariance networks

(SCNs) has been supported by recent research in that
highly related regions may show covariance in morpho-
metric characteristics. SCN patterns have been shown to
be associated with structural or functional connectivity
while the structural covariance strength often reflects
how close two interconnected hubs interact [27]. Mean-
while, biological factors such as genetic variations, devel-
opmental, degenerative processes or the WMH loads
[24] have been shown to modulate the patterns of SCNs
[27]. Three SCNs have been reported to be relevant to
AD, the so called default mode network (DMN) [28–30],
salience network (SN) [31], and executive control net-
work (ECN) [32, 33]. A recent report suggested that the
DMN may be comprised of multiple, spatially dissoci-
ated but interactive components, of which two subsys-
tems are particularly relevant: the “medial temporal lobe
subsystem”, and the “dorsal medial prefrontal cortex
subsystem” (or the midline core subsystem) [34].
An association between the IL-1 beta -511 T allele and

AD has been reported [14], however the mechanism by
which IL-1 beta functional polymorphisms affect the
brain networks in patients with AD has yet to be ex-
plored. Recent neuroscience studies have supported that
cognitive function is highly reflective of the architecture
of the neuronal network scaffold [35]. As the potential
mechanisms of genetic-based neurobiology are still
under investigation [36–39], the exploration of IL-1 beta
functional polymorphism may address how genetic vari-
ations may affect the organization of the GM and white
matter (WM) integrities. The neuroimaging biomarkers
of SCN and WMH spatial distribution can be used to
test the influence of the genotype groups with regards to
inflammatory processes on disease-related degeneration.
In this study, we hypothesized that the IL-1 beta C-
511 T functional polymorphism may modulate large-
scale structural covariance patterns and WMHs in pa-
tients with AD, and that these alterations may conse-
quently determine neurobehavioral performance.

Methods
The patients were treated at the Cognition and Aging
Center, Department of General Neurology, Kaohsiung
Chang Gung Memorial Hospital. A total of 135 AD sub-
jects (65 males, 70 females) were included after the
consensus of a panel composed of neurologists, neuro-
psychologists, neuroradiologists, and experts in nuclear
medicine [23]. AD was diagnosed according to the
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International Working Group criteria [40], with a clin-
ical diagnosis of typical AD encompassing both pro-
dromal and dementia phases. Amnestic syndrome of the
hippocampal type was characterized by a low free recall
that was not normalized by cueing [41]. All of the pa-
tients had a clinical dementia rating scores ranges from
0.5 to 2, and all of the patients were in a stable condition
under treatment with acetylcholine esterase inhibitors
from the time of diagnosis. The exclusion criteria were a
past history of clinical stroke, a modified Hachinski is-
chemic score >4 [42] and depression.

Study working scheme
Based on the study rationale, the patients were classified
into two genotype groups based on the functional poly-
morphism: C carrier (CC + CT, n = 108), and TT homo-
zygotes (n = 27). The working scheme was as follows.
First, four SCN were established by seed-based correl-
ation analysis. Differences in each seed regional volume
and SCN peak cluster volume were compared between
the two genotype groups. Meanwhile, neuroimaging bio-
markers used to assess the micro-structural of the WM
integrities were derived from the diffusion tensor im-
aging, compared between groups and correlated with
cognitive test scores. Finally, to evaluate the genetic
effects on SCN clusters, the covariance strength
showing significant genotype interactions (i.e., T ho-
mozygotes > C-carriers or T homozygotes < C-carriers)
were modeled. The volumes of the peak clusters
showing genotype effect was correlated with cognitive
test scores to evaluate the clinical significance.

Clinical and neurobehavioral assessments
After enrolment, demographic data of each patient were
recorded. A trained neuro-psychologist administered the
neurobehavior tests. The Mini-Mental State Examination
(MMSE) [43] and the Cognitive Abilities Screening
Instrument (CASI) [44] total scores were used as a glo-
bal assessment of cognitive function. Attention, verbal
fluency, abstract thinking, and mental manipulation sub-
domain scores of the CASI were used to assess executive
function test (EFT) [22], while the non-executive do-
mains included orientation, short- and long-term mem-
ory, language ability, and drawing.

Genotyping
Genomic DNA was extracted from blood samples using
a commercial kit (Qiagen, Gentra Puregene Blood Kit),
followed by genotyping for C-511 T polymorphisms of
the IL-1 beta gene using the polymerase chain reaction
(PCR)-restriction fragment length polymorphism method
[45]. Genotyping was conducted with the operator blinded
to the clinical data. The apolipoprotein E genotype was
also determined using a PCR-restriction fragment length

polymorphism assay and restriction enzyme HhaI [46].
Apolipoprotein E4 carriers were defined as those with one
or two E4 alleles [23].

Cerebrovascular risk confounders
Factors such as oxidative stress, deregulated metabolic
factors and an elevated blood sugar level are related to
greater WMHs loads in AD [23]. Therefore, the follow-
ing risk confounders were included for comparisons:
age, high sensitive C-reactive protein, homocysteine,
total cholesterol, triglyceride, high-density lipoprotein,
low-density lipoprotein, creatinine, vitamin B12, folate,
and hemoglobin-A1C [47].

Image acquisition
MR images were acquired using a 3.0 T MRI scanner
(Excite, GE Medical Systems, Milwaukee, WI, USA).
Structural images were acquired for SCN constructions
using the following protocols: a T1-weighted, inversion-
recovery-prepared, three-dimensional, gradient-recalled
acquisition in a steady-state sequence with a repetition
time/echo time/inversion time of 8600 ms/minimal/
450 ms, a 256 × 256 mm field of view, and a 1-mm slice
sagittal thickness with a resolution of 0.5 × 0.5 × 1 mm3.
The diffusion-tensor imaging was acquired using the

following parameters: repetition time/echo time/flip
angle = 9600 ms/62.7 ms/90°, a 192 × 192 mm field of
view, a 128 × 128 matrix and a 4-mm axial slice thick-
ness. For whole brain coverage, 40 contiguous axial
slices were obtained. The diffusion-weighting gradients
were applied in 61 non-collinear directions, optimised
by the static electron-repulsion model. The b value used
was 1000 s/mm2. One reference image was acquired
using the same imaging parameters but without diffu-
sion weighting.

Data analysis for neuroimaging biomarkers
SCN analysis
Image preprocessing and statistical analysis were per-
formed using SPM8 (SPM8, Wellcome Trust Centre of
Cognitive Neurology, University College London, UK,
http://www.fil.ion.ucl.ac.uk/spm/). The T1 images were
reoriented, realigned, and normalized using the standard
Montreal Neurological Institute (MNI) space. The im-
ages were then segmented into GM and WM. Related
tissue segments were used to create a custom template
using the diffeomorphic anatomical registration using
exponentiated lie algebra (DARTEL) approach that rep-
resented one of the highest ranking registration methods
in patients with AD [48]. The modulated and warped
images were then smoothed using a Gaussian kernel of
8 mm full width at half maximum.
To investigate the SCNs, four regions of interest

(ROIs), representing seeds, were selected from the 135
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preprocessed images. These following seed ROIs that
anchor the DMN medial temporal subsystem (right en-
torhinal cortex [coordinates: 25,-9,-28]) [49], DMN mid-
line core subsystem (left posterior cingulate cortex
[PCC; coordinates: −2,-36, 35]) [50, 51], SN (right fron-
toinsular cortex [coordinates: 38, 26,-10]), and ECN
(right dorsolateral prefrontal cortex [coordinates: 44, 36,
20]) [31] were selected (Fig. 1a). The laterality was based
on the original report of the seeds. As the pathology or
functional connectivity in typical patients with AD is
distributed symmetrically, we did not perform a contra-
lateral seed analysis in this study.
From the modified GM images, the GM volumes of

a 4-mm radius sphere around the seed ROI coordi-
nates were also calculated, followed by four separate
correlation analyses using the extracted GM volumes
as the covariates of interest. The two genotype
groups were modeled separately. For each genotype
group, specific contrasts were set to identify voxels
that showed positive correlations for each seed ROI,
forming the SCN. The results reflected the SCNs of
each ROI and the threshold was set at p < 0.01, cor-
rected for false discovery rate (FDR) with a cluster
size >100 voxels.

In addition, to investigate how genetic variance may
interfere with SCN clusters, voxels showing significant
differences in the regression slopes in each seed-peak
cluster correlations were compared, pointing to possible
interactions between TT > C-carrier or TT < C-carrier
based on the dosage-related IL-1 beta protein expression
[13]. Specific t contrasts were established to map the
voxels that expressed significant between-group associa-
tions. The threshold for the resulting statistical paramet-
ric maps was set at p < 0.001 (uncorrected) with a
cluster size >100 voxels. For the peak clusters showing
significant between-group differences, a 4-mm radius
sphere was placed on the peak voxel, and the GM vol-
umes were calculated for regression analysis. To evaluate
the clinical significance of the seed or identified peak
voxel, we used a linear regression model with the cogni-
tive test scores serving as the dependent variable. The
threshold was set at p < 0.05 with multiple corrections.

WM analysis
The fractional anisotropy (FA) maps were obtained using
the functional MRI of the brain software library (FSL)
version 4.0.1 package (http://www.fmrib.ox.ac.uk). A dir-
ect comparison of two genotype groups of the diffusion

Fig. 1 Statistical maps depicting brain areas in which the gray matter intensity covaried with (a) four target seeds, (b) comparisons of seed
volumes, and (c) separate structural covariance network in patients with Alzheimer’s disease with interleukin-1 beta genotypes (C carrier n = 108, T
homozygotes n = 27). There was no significant difference in seed volume between the genotype groups (p > 0.05). Z-statistic maps (p < 0.05,
corrected with a false discovery rate with extended cluster voxels >100) are displayed on a standard brain render
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indices used permutation-based, non-parametric infer-
ence for the cluster size [52] and Randomise 2.0 software.
A restrictive statistical threshold was used (the threshold-
free, cluster-enhancement threshold with p < 0.05, cor-
rected for multiple comparisons). To provide the
between-group quantitative analysis, the WM parcellation
algorithm [53] and calculation of 11 major bundles were
performed. The FA from the each association bundle was
extracted for group-interaction analysis or correlations
with neurobehavior scores.

Statistical analysis
Clinical and laboratory data were expressed as mean ±
standard deviation. The student’s t test was used to com-
pare levels of cerebrovascular risk biomarkers or continu-
ous variables of the C-carriers and T homozygotes. All
statistical analyses were conducted using SPSS software
(SPSS version 13 for Windows®, SPSS Inc., Chicago, IL).
Pearson correlation adjusted for possible confounders were
perfomed to assess the associations between continuous
variables. Statistical significance was set at p < 0.05.

Results
Demographic data, cognitive data, and NPI
The genotype distribution was in Hardy-Weinberg equi-
librium (χ2 = 0.28, p = 0.6) and the demographic charac-
teristics, neuropsychiatric test or cerebrovascular risk
biomarker results of the two genotype groups are shown
in Table 1. The clinical dementia rating scores and geno-
type groups distributions were not significant (E4 geno-
type, χ2 = 0.971, p = 0.262; IL-1 beta genotype, χ2 = 2.682,
p = 0.615).

Patterns of SCN and genetic variants
A direct comparison between the GM volume of C-
carriers or T homozygotes using voxel-based morphom-
etry [54] showed no significant volumetric differences
(with the threshold set at p < 0.05, corrected for a FDR
with a cluster size >100 voxels).
According to the genotype classification (C-carriers and

TT-carriers) and four seeds (Fig. 1a), there were no signifi-
cant differences in the GM volumes of each seed (Fig. 1b).
The SCN patterns and clusters for each genotype are
shown in Fig. 1c and Additional file 1: Table S1–S8.

Relationships between seed region volumes and
cognitive scores
We first explored whether each seed region volume was
correlated with the cognitive test scores in each group,
adjusted for years of education (Table 2). The posterior
cingulate, frontoinsular seed volume correlated variably
with cognitive test scores in both genotypes, while the
dorsolateral prefrontal seed showed significance only in
the TT group.

Peak clusters showing significant interactions between
genotype groups
For each seed, we further explored the genotypic inter-
actions with regards to the topography showing differ-
ences in structural covariance strength between seed
and peak clusters (Fig. 2; Table 3).
The middle cingulum that anchored to the entorhinal

seed was the only significant cluster showing C-
carriers > TT in covariance strength (Fig. 2a). In

Table 1 Demographical characteristics and neuropsychiatric
tests in the interleukin-1 beta C-carrier and TT-carriers in 135
cases

Group C-carrier
(n = 108)

TT-carriers
(n = 27)

p value

Age 71.7(14.2) 72.6(7.4) 0.77

Education (year) 6.9(4.7) 9.3(4.8) 0.02

Apolipoprotein E4 carrier
(positive case, %)

42.6% 48.1% 0.67

Sex (male/female) 56/52 14/13 1

Mini-Mental State Examination 20.2(6.2) 20.6(7.7) 0.82

CASI total scores 67.8(20.2) 68.3(25.1) 0.89

CASI executive function test scores 25.3(7.9) 25.2(10.1) 0.97

CASI subdomains

Short term memory 5.5(3.8) 5.4(3.8) 0.90

Orientation 12.8(5.1) 12.9(6.0) 0.88

Long term memory 8.3(2.4) 8.4(2.7) 0.90

Language 8.2(2.1) 8.1(2.8) 0.83

Drawing 7.8(2.8) 8.4(2.6) 0.37

Attention 6.3(1.4) 6.3(1.6) 0.98

Verbal fluency 5.2(2.5) 5.3(3.7) 0.86

Abstract thinking 8.2(2.8) 7.9(3.2) 0.64

Mental manipulation 5.6(3.2) 5.7(3.4) 0.92

Cerebrovascular risk biomarkers

High sensitive C reactive
protein (mg/L)

2.8(4.9) 2.4(5.2) 0.68

Homocysteine (umol/L) 12.9(4.3) 11.5(4.7) 0.14

Hemoglobin-A1C (%) 6.1(1.0) 6.2(1.7) 0.74

Creatinine (mg/dl) 0.9(0.4) 0.9(0.2) 0.52

High-density lipoprotein (mg/dl) 57.1(17.0) 61.0(16.6) 0.29

Low-density lipoprotein (mg/dl) 106.2(38.1) 97.4(28.6) 0.27

Total cholesterol (mg/dl) 188.5(40.8) 180.6(36.0) 0.36

Triglyceride (mg/dl) 120.7(62.0) 110.7(55.0) 0.44

Vitamin B12 (pg/dl) 589.1 (315.7) 687.2(428.1) 0.19

Folate (ng/dl) 12.0(5.6) 12.8(5.4) 0.52

Data are presented as mean (standard deviation) or number (percentage (%))
Attention, verbal fluency, abstract thinking, and mental manipulation sub-domain
scores of the CASI were added to assess executive function
APOE4 carriers were defined as the presence of one or two APOE4 alleles
CASI Cognitive Ability Screening Instrument
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contrast, there were two clusters that anchored to the
right frontoinsular seed (Fig. 2b) and four clusters that
anchored to the right dorsolateral prefrontal cortex seed
(Fig. 2c) showing TT > C-carriers in covariance strength.
Meanwhile, direct comparisons of the peak clusters vol-
ume between two genotype groups showed no signifi-
cant differences (Fig. 2d).

Clinical significance of peak clusters showing genotype
differences
The clinical significance of the aforementioned seven
peak clusters showing genotype interactions was evalu-
ated by partial correlation analysis with cognitive tests
(Table 4). For right cingulum volume, the correlation
analysis with cognitive test scores showed significance

Table 2 Correlation matrix between cognitive test scores with seed volume

Seed region R entorhinal L posterior cingulate R frontoinsular R dorsolateral prefrontal

MNI coordinates (25,-9,-28) (−2,-36, 35) (38, 26,-10) (44, 36, 20)

IL-1 beta genotypes C-carrier TT C-carrier TT C-carrier TT C-carrier TT

MMSE 0.189 −0.122 0.324** 0.451* 0.355** 0.464* −0.039 0.489*

CASI total scores 0.140 −0.105 0.314** 0.391* 0.286** 0.393* −0.027 0.530**

CASI EFT scores 0.109 −0.158 0.294** 0.344 0.219* 0.407* 0.000 0.510**

CASI Subdomains

Short Term Memory 0.085 −0.012 0.308** 0.275 0.335** 0.475* 0.064 0.401*

Orientation 0.136 −0.133 0.308** 0.376 0.342** 0.362 −0.044 0.457*

Long Term Memory 0.188 0.074 0.172 0.351 0.148 0.131 −0.041 0.485*

Language 0.155 −0.101 0.290** 0.394* 0.235** 0.255 −0.057 0.484*

Drawing 0.045 −0.040 0.058 0.389* 0.054 0.281 −0.078 0.472*

Attention −0.013 −0.174 0.200 0.376 0.246** 0.421* 0.077 0.511

Verbal fluency 0.083 0.050 0.272** 0.406* 0.186 0.455* −0.001 0.349

Abstract thinking 0.288** −0.298 0.174 0.291 0.200** 0.141 0.030 0.478*

Mental manipulation −0.018 −0.028 0.285** 0.159 0.074 0.424* −0.091 0.367

Numbers indicate Pearson correlation coefficients, *p < 0.05; **p < 0.01
MMSE Mini-Mental State Examination, EFT executive function test, R right, L left, IL-1 interleukin-1, CASI Cognitive Abilities Screening Instrument, MNI Montreal
Neurological Institute

Fig. 2 Peak clusters showing significant interactions of (a) C-carriers (=C) > T homozygotes from the entorhinal seed, (b) C-carriers < T homozygotes
from the frontoinsular (FI) seed, or (c) C-carriers < T homozygotes from the dorsolateral prefrontal seed. (x,y,z) = Montreal Neurological
Institute coordinates. (d) peak cluster volume comparisons (displayed as mean and standard deviation) showed no significant differences.
Threshold set as p < 0.05
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only in the C-carriers. For the six peak clusters showing
TT > C-carriers in covariance strength, the frontoinsular
seed- BA10 or -BA6 and dorsolateral-right temporal
cluster showed significant correlations with cognitive
tests in TT genotype. For C-carriers, the fusiform gyrus
showed significant correlation with cognitive tests.

No differences of WM integrities between two genotype
groups
For major WM tract FA, the differences between the
two genotype groups and correlations with cognitive
tests are shown in Table 5. The correlation between fiber
bundle FA and cognitive tests were significant in both
groups but there were no statistic differences between
the two genotype groups.

Discussion
This study provides data on the network-specific geno-
type influence of IL-1 beta in the early stages of AD.
There were three main findings. First, the seed-based
SCN pattern validated the hypothesis that IL-1 beta C-
511 T polymorphism targets different functional net-
works in patients with AD, of which interactions
between C-carriers and T homozygotes differed in co-
variance strength. The increased covariance strength be-
tween the frontoinsular-BA10, frontoinsular-BA6, and
dorsolateral-temporal axis in TT homozygotes suggest
increased influences involving the anterior prefrontal-re-
lated degenerative scaffold by this genotype. In contrast,
the entorhinal-cingulum connections were increased in

the C-carriers. Second, IL-1 beta C-511 T functional poly-
morphism exerts no significant effects on the preselected
cerebrovascular risk biomarkers, seed, or peak cluster vol-
umes. Finally, the C-511 T genetic effect may interfere
with the SCN network independent of the WMHs, as no
differences were found between the two genotype groups
in diffusion parameters.

IL-1 beta genotypes and AD diagnosis
The impact of IL-1 beta C-511 T polymorphism on
amyloid beta immunoreactivity in the brains of patients
with AD [55] or amyloid beta levels in the cerebral
spinal fluid of patients with AD [56] suggest the import-
ant role of this polymorphism in modulating the path-
ology of AD, although findings regarding C-511 T
polymorphism on the susceptibility to AD or the effect
on AD onset age have been inconsistent [14, 55–58]. IL-
1 beta exerts a myriad of effects in the brain and, in par-
ticular, plays a significant role in hippocampal synaptic
function, which is implicated in the AD pathogenesis
[9]. Although an increased IL-1 beta expression has been
reported in Taiwan Chinese TT-carriers [14] which is
thought to modulate hippocampal function, we did not
find such relationships between the −511 TT poly-
morphism and entorhinal seed volume and cognitive
outcomes. In contrast, the significant correlations be-
tween cognitive test scores and cingulum volume (i.e.,
entorhinal-interconnect peak cluster) in the −511 C-
carriers may support the selective IL-1 beta genetic
modulation in the entorhinal anchored network of AD

Table 3 Connectivity interactions of interleukin-1 beta genotypes with pre-defined seed

Seed Peak regions Stereotaxic coordinates Extent MaxT p value

x y z

C-carrier > TT

Entorhinal seed Middle cingulum R 5 −12 48 118 3.81 0.0001

PCC seed N.A

Frontoinsular seed N.A

Dorsolateral prefrontal N.A

C-carrier < TT

Entorhinal seed N.A

PCC seed N.A

Frontoinsular seed BA 10 R 19.5 63 3.0 196 4.51 0.0001

Middle frontal R 31.5 10.5 58.5 243 3.47 0.0001

Dorsolateral prefrontal Superior frontal R 21 37.5 49.5 671 5.09 0.0001

Precentral L −52.5 −1.5 −43.5 214 3.58 0.0001

Fusiform L −43.5 −54 −15 123 4.17 0.0001

Inferior temporal R 40.5 −55.5 −9 119 4.03 0.0001

Peak regions are within the main cluster
Max T is the maximum T statistic for each local maximum. p < 0.001 with cluster size = 100
N.A not available, PCC Posterior cingulate cortex, BA Brodmann area, R right, L left
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patients. In contrast, no association was reported be-
tween the IL-1 −511 TT polymorphism and AD in Hong
Kong [59] or China [60] Han Chinese. This discrepancy
may partially reflect differences in ethnicity among Han
Chinese [61].
While the DMN in patients with AD has been demon-

strated to show reduced connectivity compared with
controls, enhanced resting-state functional connectivity
of the SN [62] or ECN [32, 33] has also been found in
AD patients. The increase in network connectivity in
AD has been hypothesized to reflect a compensatory
mechanism for weakened posterior hubs [63] and to

participate in functions such as sustained attention,
working memory, response selection, or suppression
[31]. As such, changes in structural covariance
strength in the IL-1 beta C-511 T polymorphism may
infer the capacity of this polymorphism to modulate
symptoms in patients with AD. As increased covari-
ance strength indicates stronger interconnections be-
tween seed and peak clusters, we speculate the −511
TT variant may potentially be a more vulnerable
genotype group in this context. Once the compensa-
tory regions located in the anterior brain axis were
involved by pathology, the specific involvement of the

Table 4 Correlation matrix between cognitive test scores with peak clusters volume

Covariance strength relationship C > TT C < TT

Seed region R entorhinal R frontoinsular seed R dorsolateral seed

Peak clusters R cingulum BA10 BA6 R superior sagittal
prefrontal

L precentral L fusiform gyrus R temporal

Cognitive tests IL-1 beta genotype :-511 C-carriers

MMSE 0.24* 0.07 0.15 0.16 0.24* 0.17 0.06

CASI total scores 0.26** 0.09 0.19* 0.17 0.28** 0.19 0.05

CASI EFT scores 0.21* 0.12 0.16 0.13 0.25** 0.19* 0.07

CASI subdomains

Short-term memory 0.21* 0.04 0.08 0.12 0.26** 0.07 0.05

Orientation 0.22* −0.03 0.15 0.09 0.24* 0.16 0.08

Long-term memory 0.31** 0.05 0.16 0.18 0.25** 0.04 0.15

Language 0.16 0.04 0.16 0.30** 0.25 0.09 −0.06

Drawing 0.14 0.16 0.19 0.11 0.05 0.29** −0.06

Attention 0.17 0.05 0.17 0.06 0.30** 0.01 −0.07

Verbal fluency 0.23* 0.04 0.04 0.18 0.23* 0.18 0.03

Abstract thinking 0.20* 0.11 0.12 0.09 0.12 0.25* 0.07

Mental manipulation 0.07 0.14 0.14 0.12 0.17 0.17 0.15

Cognitive tests IL-1 beta genotype :-511 TT

MMSE 0.12 0.43* 0.39* 0.36 0.30 0.40* 0.48*

CASI total scores 0.14 0.47* 0.44* 0.48* 0.34 0.35 0.56**

CASI EFT scores 0.21 0.44* 0.39* 0.39* 0.40* 0.35 0.60**

CASI Subdomains

Short Term Memory −0.03 0.34 0.19 0.38 0.02 0.37 0.22

Orientation 0.16 0.43* 0.39 0.42* 0.24 0.30 0.46*

Long Term Memory 0.02 0.36 0.49 0.54** 0.39* 0.22 0.56**

Language 0.11 0.38 0.51 0.48* 0.43* 0.30 0.60**

Drawing 0.09 0.55** 0.48 0.54** 0.31 0.26 0.51**

Attention 0.06 0.32 0.27 0.35 0.39 0.33 0.57**

Verbal fluency 0.30 0.69** 0.46* 0.27 0.29 0.23 0.39*

Abstract thinking 0.26 0.37 0.40* 0.39 0.41* 0.19 0.56**

Mental manipulation 0.01 0.29 0.30 0.29 0.28 0.43* 0.47*

Numbers indicate Pearson correlation coefficients between peak cluster volume and test scores, *p < 0.05; **p < 0.01
MMSE Mini-Mental State Examination, EFT executive function test, R right, L left, IL-1 interleukin-1, CASI Cognitive Abilities Screening Instrument, BA Brodmann area,
C IL-1 beta C-carrier, TT T Homozygotes
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SN and ECN in the TT group may accelerate the de-
generation process.

IL-1 beta genotypes and brain network analysis
The mechanism by which IL-1 beta C-511 T polymorph-
ism affect the brain networks in patients with AD has
yet to be fully established. The higher IL-1 beta gene ex-
pression during long-term potentiation suggests its role
in synaptic function [15]. In patients with mild to mod-
erate stage AD, carriers of the -511C allele have been
shown to have a reduced inflammatory response, and
this has been proposed to allow for better cognitive im-
provements on a ketone body based treatment [64].
Studies of other IL-1 beta polymorphisms have also sug-
gested the anti-correlated relationships between the ex-
pression of IL-1 beta and cognitive performance [65].
Functional connectivity analysis in normal elderly has
shown that the IL-1 beta −511 TT carriers have reduced
connectivity of the anterior mid-cingulate-prefrontal-
striate networks [66], pointing to the role of this func-
tional polymorphism and the anterior brain network.
Our analysis provides evidence that GM network alter-

ations may be considered as the endophenotype of the
IL-1 beta C-511 T polymorphism that predicts the cog-
nitive outcomes. Although we purposed that increased
structural covariance strength within functional network
may lead to detrimental effects in patients with AD,
whether the genetic effects by our reports fully address
the hippocampal IL-1 beta expression still left unex-
plored. Data on IL-1 beta genotypes and postmortem
IL-1 beta level examinations are needed to elucidate the
consequences. In line with our findings, several neuro-
imaging studies have also demonstrated the detrimental

effects of IL-1 beta -511 T allele on fronto-temporal GM
[67, 68], left dorsolateral prefrontal cortex [68–70], or
parahippocampus [71] in various brain disorders.
Increased structural covariance between the cingulum

peak cluster and entorhinal seed was found in the C-
carriers compared with TT homozygotes. Adjusted for
educational years, this covariance also determines cogni-
tive test scores in the C carriers, suggesting the unique
covariance strength relationship in terms of spatial dis-
tribution in AD. Current research criteria of AD [40] do
not include the influence of genomic data; however, re-
cent results from studies on neuronal exosomes and
nanosomes [72–74] support the importance of metabolic
and inflammatory abnormalities in predicting the pro-
dromal phase. Since metabolic and inflammatory func-
tions are greatly under genetic control, this may be
productive if genetic profiling is taken into consideration
in the diagnosis of patients with cognitive deficits.

IL-1 beta genotypes and cognition
There have been many IL-1 beta genetic association
studies on individuals without dementia during the cog-
nitive aging stages. A cross-sectional study reported a
significant relationship between C-511 T polymorphism
and episodic memory, with a better performance in the
C homozygous than in the CT/TT group [75]. As the
authors [75] did not find any association between this
polymorphism and attention, processing or motor func-
tion, they suggested that the effect of this IL-1 beta poly-
morphism on cognition may be domain-specific (i.e.,
memory-specific). In accordance with their findings, two
other studies on elderly males [45] and elderly females
[76] showed that −511 C-carriers had higher scores in

Table 5 Significant relationships between major white matter tracts integrity and interleukin-1 beta genotype groups or cognitive
test scores

Fractional anisotropy MMSE CASI total scores CASI EFT

Major white matter tract fractional anisotropy C-carrier TT C-carrier TT C-carrier TT C-carrier TT

Forceps major 0.47(0.04) 0.48(0.05) 0.25* 0.40* 0.29** 0.34 0.35** 0.40*

Forceps minor 0.35(0.03) 0.35(0.03) 0.26* 0.48* 0.28** 0.44* 0.34** 0.52*

Anterior thalamic radiation 0.60(0.06) 0.61(0.06) 0.22* 0.48* 0.24* 0.42* 0.30** 0.48*

Corticospinal tract 0.99(0.06) 0.99(0.06) 0.37** 0.10 0.39** 0.07 0.44** 0.17

Cingulum 0.68(0.06) 0.68(0.07) 0.29** 0.41* 0.32** 0.36 0.32** 0.43*

Cingulum (hippocampus) 0.58(0.07) 0.59(0.06) 0.41** 0.18 0.45** 0.16 0.38** 0.17

Inferior fronto-occipital fasciculus 0.74(0.05) 0.74(0.06) 0.22* 0.29 0.26* 0.24 0.34** 0.29

Inferior longitudinal fasciculus 0.74(0.05) 0.75(0.05) 0.26* 0.31 0.30** 0.29 0.37** 0.32

Superior longitudinal fasciculus 0.63(0.05) 0.63(0.06) 0.20* 0.24 0.23* 0.22 0.27** 0.29

Uncinate fasciculus 0.68(0.05) 0.68(0.04) 0.26* 0.20 0.28** 0.13 0.30** 0.17

Superior longitudinal fasciculus (temporal part) 0.90(0.08) 0.89(0.09) 0.14 0.26 0.18 0.27 0.24* 0.32

Data of Fractional Anisotropy represent mean (standard deviation), MMSE Mini-Mental State Examination scores, CASI Cognitive Ability Screening Instrument, EFT
executive function test, EFT Sum of attention, verbal fluency, abstract thinking, and mental manipulation sub-domain scores of the CASI, TT T homozygotes
Numbers indicate mean and standard deviation or Pearson correlation coefficient; *p < 0.05 **p < 0.01
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general or in selective cognitive tests compared to the T
homozygotes. After adjusting for years of education, our
correlation results suggested parallel relationships be-
tween seed and peak cluster volumes in relation to cog-
nitive tests scores in the genotype groups. As the cross-
sectional cognitive test design may have resulted in
population selections bias, data on cross-sectional
models may not fully address whether IL-1 beta C-511 T
polymorphisms mediate domain-specific cognitive defi-
cits or whether they are more generalized [45, 77, 78]. A
longitudinal follow-up study may increase the accuracy
of genotypes and involved cognitive domains. In contrast
to previous reports, our study analysis did not establish
a direct C-511 T genotype effect on cognitive test scores.

IL-1 beta genotypes and WMHs
Homozygotes for the IL-1 beta -511 T allele have been
associated with larger WMHs than other genotypic com-
binations in the elderly without dementia [24]; however,
we did not find such an association in AD. Nonetheless,
our results show that the IL-1 beta genetic effect can be
solely present in the GM network, and that this effect is
independent of the modulation of WMHs. Our study
only enrolls patients in the early stage and AD pathology
is more localized in the GM in the early stage of AD.
Thus, the influence of IL-1 beta C-511 T polymorphism
on WMHs may be stage-specific.

Study limitations
An important limitation of this study is that we did not
include a control group. The enrolment of controls may
help to understand whether IL-1 beta C-511 T poly-
morphism has similar effects on the normative brain
network. Nonetheless, the aim of this study was to deter-
mine whether changes in the SCN caused by IL-1 beta
genetic polymorphism in AD patients. Our results sup-
port the data from elderly healthy subjects [71] that gen-
etic variations of IL-1 beta mediate the dorsolateral
prefrontal cortex, yet the analysis of SCN patterns with
changes in structural covariance strength was not avail-
able. Another potential limitation is that we reported the
genetic effect between the C-carriers and TT homozy-
gotes, and such group stratification could not explore
the model of heterozygote advantage. We based this de-
cision on the small sample size and a previously pub-
lished report [13] on the IL-1 beta dosage effects.
Thirdly, as clinical significance was established in four
pre-defined networks, we did not test whether other net-
works participated in genetic modulation. The use of in-
dependent component analysis [79] or resting state
functional MRI data may elucidate other potential net-
works and also validate the findings observed in this
study. Finally, cognitive tests such as MMSE and CASI

are often used as screening tests. Further studies are
warranted that include an extensive battery of tests.

Conclusions
In the early stages of AD, our analysis supports that IL-1
beta C-511 T polymorphism modulates the strength of
the structural covariance independent of WMHs. The
−511 TT homozygotes convey increased covariance pat-
terns in anterior brain networks that may then modulate
the degenerative process differently from the patterns of
entorhinal-cingulum networks in C-carriers.
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