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Abstract

seizure treatment.

Background: Microglia is responsible for neuroinflammation, which may aggravate brain injury in diseases like epilepsy.
Mammalian target of rapamycin (mTOR) kinase is related to microglial activation with subsequent neuroinflammation.

In the present study, rapamycin and everolimus, both as mTOR inhibitors, were investigated in models of kainic acid
(KA)-induced seizure and lipopolysaccharide (LPS)-induced neuroinflammation.

Methods: In vitro, we treated BV2 cells with KA and LPS. In vivo, KA was used to induce seizures on postnatal day 25 in
B6.129P-Cx3cr1 ™ /) mice. Rapamycin and everolimus were evaluated in their modulation of neuroinflammation
detected by real-time PCR, Western blotting, and immunostaining.

Results: Everolimus was significantly more effective than rapamycin in inhibiting iNOS and mTOR signaling pathways
in both models of neuroinflammation (LPS) and seizure (KA). Everolimus significantly attenuated the mRNA expression
of iINOS by LPS and nitrite production by KA and LPS than that by rapamycin. Only everolimus attenuated the mRNA
expression of mTOR by LPS and KA treatment. In the present study, we also found that the modulation of mTOR under
LPS and KA treatment was not mediated by Akt pathway but was primarily mediated by ERK phosphorylation, which
was more significantly attenuated by everolimus. This inhibition of ERK phosphorylation and microglial activation in the
hippocampus by everolimus was also confirmed in KA-treated mice.

Conclusions: Rapamycin and everolimus can block the activation of inflammation-related molecules and attenuated
the microglial activation. Everolimus had better efficacy than rapamycin, possibly mediated by the inhibition of ERK
phosphorylation. Taken together, mTOR inhibitor can be a potential pharmacological target of anti-inflammation and
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Background

Seizure is the clinical manifestation of abnormal, excessive,
hypersynchronous discharges of a population of cortical
neurons, while epilepsy is a chronic disorder characterized
by recurrent unprovoked seizures [1]. Seizure could be
initiated by neuronal abnormality as well as by glial activa-
tion [2, 3]. Kainic acid (KA), an agonist of kainate glutamate
receptors, can cause overstimulation of glutamate receptors
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and subsequent neuronal excitotoxicity and neuronal death
[4]. KA-induced seizure model is one of the most com-
monly used animal models of seizures [5].

Both clinical and experimental findings have demon-
strated that inflammation may play a role in the gener-
ation and modulation of seizures and epilepsies, and using
anti-inflammatory drugs, such as IL-1p blockers, has been
proposed as a potential strategy for seizure therapy [6, 7].
KA administration could induce microglial activation
and cytokines production, such as TNF-«, IL-1f3, IL-12,
and IL-18 [4]. The nucleotide-binding oligomerization
domain-like receptor family pyrin domain-containing 3
(NLRP3) inflammasome triggers the transformation of
procaspase-1 to caspase-1, as well as the production and
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secretion of mature IL-1p and IL-18 [8]. IL-1p and NLRP3
levels increased after amygdala kindling-induced status
epilepticus, and inhibition of NLRP3 provided neuropro-
tection in rats following status epilepticus [9].

In addition to inflammation, nitric oxide (NO) plays
an essential role in the epileptogenesis and excitotoxicity
in the brain [10, 11]. Nitric oxide synthase (NOS) activa-
tion and NO production were observed in animal
models of seizure, including the KA model [10-12].
Aminoguanidine, a selective inducible NOS (iNOS)
inhibitor, attenuated KA-induced neuronal death [13],
which proves the relationship between iNOS and KA-in-
duced excitotoxicity.

The mammalian target of rapamycin (mTOR), a protein
kinase, is part of two larger signaling complexes, mTORC1
and mTORC2. mTORC], sensitive to the inhibition by
rapamycin, is regulated by the upstream Akt pathway in
anabolic states and by the AMPK pathway in catabolic
states [14]. mTOR signaling pathway has been found to in-
fluence the immune response [15], tumorigenesis [16],
brain development [17], and epilepsy [14]. Regarding im-
mune response, mTOR is implicated in the regulation of
both innate and adaptive immune responses [15]. Rapamy-
cin (or sirolimus), the prototype mTOR inhibitor, en-
hanced the anti-inflammatory activities of regulatory T
cells, decreased the production of proinflammatory cyto-
kines and chemokines by macrophages and microglia, and
thus attenuated secondary injury after focal ischemia in
rats [18]. Several animal and human studies have shown
that mTOR activation resulted in neuroexcitability, seizure,
and epilepsy [14, 19], which encouraged researchers to use
mTOR inhibitors in seizure therapy [14, 19, 20]. Everoli-
mus is a second-generation rapamycin derivative. Although
having a similar structure, the two drugs exhibit significant
differences in their pharmacokinetic, pharmacodynamic,
and toxicodynamic properties, resulting in distinct clinical
profiles [21, 22]. Everolimus and rapamycin share a central
macrolide structure and differ in the functional groups
added at C40 [22]. The functional groups added at C40
affect their pharmacokinetics, e.g., bioavailability, half-life,
and distribution [22]. Everolimus has higher potency of
interacting with the mTORC 2 than rapamycin [21].
Everolimus demonstrated better ability than rapamycin in
treating subependymal giant cell astrocytomas and other
tuberous sclerosis (TSC) manifestations, based on more
robust clinical trial experience [22]. However, to our
knowledge, their efficacy in seizure treatment had never
been investigated.

In this study, we used BV2 microglial cell line and
B6.129P-Cx3cr1™™"/] mice to investigate the in vitro
and in vivo effects of rapamycin and everolimus on
neuroinflammation. We hypothesize that their different
effects on neuroinflammation may contribute to their
different anti-seizure efficacies.

Page 2 of 10

Methods

BV2 microglial cell line

BV2 cell line is the most frequently used substitute for
primary microglia and has been used in studies related
to neurodegenerative disorders [23]. In the present
study, BV2 cells were cultured in DMEM (Corning,
Manassas, VA, USA), supplemented with 10% fetal bo-
vine serum, 1% non-essential amino acids, and 1% anti-
biotics (penicillin 100 U/mL, streptomycin 100 pg/mL),
and were kept in an incubator at 37 °C, 5% CO,, and
95% relative humidity.

Animals

B6.129P-Cx3cr1™™"/] mice (The Jackson laboratory)
possess microglia with a fluorescent protein, which ex-
presses fluorescence when the microglia are activated by
stimuli such as inflammation and damage. The mice
were raised in the National Laboratory Animal Center
(NLAC) in Taiwan and housed and maintained on a
12-h-on/12-h-off light/dark cycle. All of the animals
were allowed free access to food and water. The main-
tenance of the mice and the experiments were con-
ducted in accordance with the Guide for the Care and
Use of Laboratory Animals [24] and the study was ap-
proved by the animal ethical committee of Medical Col-
lege of National Taiwan University.

Chemicals and drugs

Lipopolysaccharide (LPS), KA, minocycline, everolimus,
and rapamycin were purchased from Sigma-Aldrich (St.
Louis, MO, USA). The primary antibodies Akt and GAPDH
used for Western blotting were purchased from Santa Cruz
Biotechnology (Dallas, TX, USA) and Genetex (Irvine, CA,
USA), respectively. The other primary antibodies, including
ERK and phosphor-ERK, used for Western blotting were
purchased from Cell Signaling (Danvers, MA, USA).

MTT assay for cell viability

Before the nitrite assay and the qPCR assay, the MTT
(3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium brom-
ide) assay was performed to assess whether the drugs and
the combination of drugs at the specific concentrations we
used affect the cell viability. BV2 cells at a concentration of
1.5 x 10° cells/well were seeded into 24-well plates over-
night. After treatment with different drugs for 24 h, MTT
(Sigma-Aldrich, St. Louis, MO, USA) was added to each
well at the final concentration of 0.5 mg/mL. After 3 h of
incubation, the medium was removed and 500 uL of
DMSO was added to each well. After 15 min of shaking for
thorough mixing of DMSO and formazan, 200 uL of the
mixture from each well was collected and placed into
96-well plates. The optical density was measured at 570 nm
using a spectrophotometer. The amount of formazan
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formed directly correlates well with the number of live cells
in the culture.

Nitrite assay

Nitrite is a metabolite of NO, and NO production
can be measured through quantification analysis of
nitrite production [25]. BV2 cells at a concentration
of 1.5x 10° cells/well were seeded into 24-well plates
overnight. After treatment with different drugs for
24 h, 100 pL of medium from each well was col-
lected and placed into 96-well plates, mixed with
100 pL of Griess reagent (Sigma-Aldrich, St. Louis,
MO, USA) and shaken for 15 min to measure the
nitrite amount. The optical density was measured at
562 nm using a spectrophotometer. The amount of nitrite
in medium correlates well with the NO production by
the cells.

Real-time PCR

BV?2 cells at a concentration of 4.5 x 10° cells/3 mL were
seeded into 40-mm dishes overnight. After treatment
with different drugs for 24 h, total RNA was extracted
by TRIZOL, and reverse transcribed to cDNA using the
RevertAid H Minus First Strand ¢DNA Synthesis Kit
(Thermo Scientific, Waltham, MA, USA). For real-time
PCR, Maxima SYBR Green qPCR Master Mix (Thermo
Scientific, Waltham, MA, USA) was used. For detecting
iNOS, mTOR, NLRP3, and IL-1B level, we used the
following primer sequences: iNOS, forward 5'-CTG
CAT GGA ACA GTA TAA GGC AAA C-3’ and reverse
5'-CAG ACA GTT TCT GGT CGA TGT CAT GA-3';
mTOR, forward 5'-ACT GAG GAG GGA GAA CAG
CA-3’ and reverse 5'-TGG CTC CAT CTG CTA GTG
TG-3"; NLRP3, forward 5'-AGA GCC TAC AGT TGG
GTG AAA TG-3' and reverse 5'-CCA CGC CTA CCA
GGA AAT CTC-3'; IL-1B, forward 5'-CCC TGC AGC
TGG AGA GTG TGG A-3’ and reverse 5'-TGT GCT
CTG CTT GTG AGG TGC TG-3'; and [-actin, forward
5'-CTA AGG CCA ACC GTG AAA AG-3' and reverse
5'-ACC AGA GGC ATA CAG GGA CA-3'. Relative
amounts of the indicated mRNA levels were determined
by the 272" method, normalizing with B-actin levels.

KA-induced seizures and the two-hit seizure model

The severity of seizures induced by KA can be distin-
guished using the modified Racine’s scale based on the
abnormal behavior of mice as follows: stage I—chewing;
stage II—head nodding; stage III—unilateral forelimb
clonus; stage IV—bilateral forelimb clonus; stage V—bi-
lateral forelimb clonus and falling; stage VI—running or
bouncing seizure; stage VII—tonic hindlimb extension;
and stage VIII—tonic hindlimb extension culminating
in death [26—28]. The behavior from stage III to stage
VIII can be recognized in the present mouse model.
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The rearing and falling behavior of stage V can be easily
demonstrated in mice. Mice exhibiting at least stage V
were included in this study due to microglial activation
and neuronal loss in this stage [28-32]. The latency
was recorded when mice first showed rearing behavior
of stage V in this study. Koh et al. [33] developed a
two-hit seizure model, demonstrating that “an early-life
seizure permanently decreases seizure threshold and
increases the susceptibility to seizure-induced cell death
in adulthood”. In addition, they showed that anti-
inflammatory therapy with minocycline after the initial
status epilepticus blocked the epileptogenic process and
mitigated the long-term damaging effects of early-life
seizures [34].

Based on the 7-day protocol of Koh et al. with some
modification, in this study, the postnatal day 25 (P25)
mice received intra-peritoneal injection of KA 25 mg/
kg on days 1 and 7. The durations from injection to
stage V seizures on days 1 and 7, which were defined as
latency 1 and 2, respectively, were recorded. Three
hours after the seizure onset on day 1 and the following
days until day 6, mice were injected with everolimus or
PBS as control q.d. intraperitoneally. Mice were divided
into the following three groups: KpK group, KA injec-
tion on days 1 and 7 and PBS from day 1 to day 6; KeK
group, KA injection on days 1 and 7 and everolimus
from day 1 to day 6; and PpP group as controls, PBS
injection throughout the experiment. A 14-day protocol
was followed with the same procedures: the first and
second KA injection on days 1 and 14 and everolimus
or PBS from day 1 to day 13.

Quantification of microglial activation

Five to six mice were analyzed per group. Mice were
sacrificed and perfused with PBS and 4% paraformalde-
hyde/0.1 M sodium phosphate buffer. The brains were
harvested and kept in 4% paraformaldehyde/0.1 M
sodium phosphate buffer for post-fixation. Before
slicing the brains, they were kept in 30% sucrose/4%
paraformaldehyde solution. Then the brains were cut
into 30-pum horizontal slices until the hippocampus was
revealed. The slices were then collected every six slices,
and at least six slices were gathered for each brain.
Images of the hippocampus CA1 and CA3 regions were
taken by a fluorescence microscope and a camera under
x10 objective. All images were captured under identical
settings. The activated microglial cells exhibited fluor-
escence. The number of activated microglial cells in
each slice was counted within the CAl and CA3
regions in each animal. The mean number of activated
microglial cells was calculated by the Image ] software.
Data were expressed as the mean of activated microglial
cells in CA1 or CA3 regions per slice in each animal.
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Western blotting

For in vitro experiment, the BV2 cells were seeded at a
concentration of 1.5x10° cells/10 mL into 100-mm
dishes overnight. After treatment with different drugs
for 24 h, the cell lysates were collected for protein
analysis. For in vivo experiment, 5 to 11 mice were
sacrificed 24 h after KA injection on day 7, and the
hippocampi were resected and stored in liquid nitrogen.
After homogenization, protein expression was analyzed
by Western blotting. After electrophoresis and transfer
to nitrocellulose membranes, the membranes were
blocked with 5% bovine serum albumin (BSA) in PBST
(PBS and 0.05% tween-20) for 30 min, incubated with
primary antibodies in 5% BSA solution overnight, and
then incubated with secondary antibodies in 5% BSA
solution for 1 h. Signals were visualized using the ECL
reagent and a chemiluminescence and fluorescence
image analyzer. Image] software was used to subtract
background and to perform densitometry.

Statistical analysis

For in vitro and in vivo experiments, one-way ANOVA
test was used to analyze cell viability, nitrite production,
mRNA levels, and protein phosphorylation among the
different treatment groups, with post hoc comparison by
LSD test. Seizure severity at days 1 and 7 was compared
using chi-square test. All data were analyzed using IBM®
SPSS° Statistics software version 19.0 (IBM Inc., Somers,
NY, USA). A p value <0.05 was considered to be statisti-
cally significant.

Results

No effect on cell viability under LPS and KA treatment for
different drugs in BV2 cell line

The BV2 cells were treated with KA (150 uM), LPS
(500 ng/mL), minocycline (1 ng/mL), everolimus (1
nM), rapamycin (1 nM), KA with minocycline, KA with
everolimus, KA with rapamycin, LPS with minocycline,
LPS with everolimus, and LPS with rapamycin. After
24 h of treatment, all combinations of the drugs showed
no effect on the viability of BV2 cells.

Reduction of nitrite production by everolimus under both
LPS and KA treatment, while by rapamycin only under KA
treatment in BV2 cell line

As mentioned above, NO plays an essential role in the
epileptogenesis and excitotoxicity in the brain [10, 11].
We therefore measured nitrite, a metabolite of NO.
Previous studies have shown that both LPS and KA
increased nitrite production in microglia [11, 35].
Similarly, LPS and KA significantly increased nitrite
production in BV2 cell line in this study (p < 0.001 and
p =0.040, respectively) (Fig. 1). Minocycline and everoli-
mus significantly attenuated nitrite production under
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both LPS and KA treatment (p<0.05 and p<0.001,
respectively). However, rapamycin inhibited nitrite
production only under KA treatment (p = 0.001) and did
not attenuate the increased nitrite production stimulated
by LPS in the BV2 cell line.

Inhibition of iNOS mRNA production under both LPS and

KA treatment by minocycline, everolimus, and rapamycin

in BV2 cell line

Both everolimus and rapamycin attenuated nitrite produc-
tion under KA treatment, while only everolimus attenuated
nitrite production under LPS treatment. We further investi-
gated their effects on the mRNA levels of IL-1f3, NLRP3,
mTOR, and iNOS. LPS, a component of the outer mem-
brane of Gram-negative bacteria, can elicit a strong im-
mune response and has been commonly used in animal
experiments of inflammation. LPS significantly increased
the mRNA expression levels of IL-13, NLRP3, and iNOS
(p <0.001), and marginally increased expression of mTOR
mRNA (p =0.058) (Fig. 2). Under LPS treatment, minocy-
cline, rapamycin, and everolimus, all inhibited the mRNA
expression of iNOS (Fig. 2d), and the inhibition by everoli-
mus was significantly better compared to that by rapamycin
(p<0.001). KA alone significantly increased the mRNA
expression of mTOR and iNOS (p =0.047 and p <0.001,
respectively). The elevated mRNA expression of iNOS
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Fig. 1 Minocycline and everolimus reduced nitrite production under
both LPS and kainic acid treatment, while rapamycin only reduced nitrite
production under kainic acid treatment in BV2 cell line. After treatment
with different drugs for 24 hours, nitrite was assayed. Both LPS (n = 10)
and kainic acid (KA, n=4) increased nitrite production significantly.
Minocycline (LM and KM groups, n=5 and 4, respectively) and everolimus
(LE and KE groups, n= 10 and 5, respectively) attenuated the increased
nitrite levels under both LPS and KA treatment,. Rapamycin, however,
attenuated the elevated nitrite level only under KA treatment (KR group,
n=>5), and it had no effect on the nitrite level under LPS treatment (LR
group, n=5). **p < 0.001; *p < 005, compared with the control group
Ct, n=17). Wp <0001; ##p <001; #p <005, compared with the LPS and
KA groups, respectively. Data are presented as mean + SEM. Ct/ control,
Eve/E everolimus, KA/K kainic acid, LPS/L lipopolysaccharide, Min/M

minocycline, Rap/R rapamycin
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Fig. 2 Inhibition of inflammation-related mMRNAs and iNOS mRNA production under both LPS and kainic acid treatment by minocycline, everolimus, and
rapamycin in BV2 cell line. Lipopolysaccharide (LPS) increased IL-1(3, NLRP3, mTOR, and iNOS mRNA production (a—d), and kainic acid (KA) increased only
mTOR and iNOS mRNA production (¢, d). a Minocyclin, rapamycin, and everolimus had no effect on IL.-13 mRNA production under both LPS and KA
treatment. b Rapamycin increased NLRP3 mRNA production under KA treatment significantly, but not under LPS treatment. Minocyclin and everolimus
had no effect on NLRP3 mRNA production. ¢ Everolimus decreased mTOR mRNA production under both LPS and KA treatment, while minocyclin and
rapamycin had no effect on it. d Minocyclin, rapamycin, and everolimus all attenuated iNOS mRNA production under both LPS and KA treatment. n=4
for each group. **p < 0.001; **p < 0.01; *p < 0.05; m: p < 0.1, compared with the control group (Ctl). p < 0.001; *p < 0.01; *p < 0.05, compared with the
LPS and KA groups. Data are presented as mean =+ SEM. Ct/ control, £ everolimus, KA/K kainic acid, LPS/L lipopolysaccharide, M minocycline, R rapamycin
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stimulated by KA was significantly attenuated by minocy-
cline, rapamycin, and everolimus. However, only everolimus
attenuated the mRNA expression of mTOR under both
LPS and KA treatment (Fig. 2¢, p = 0.021 and p = 0.034, re-
spectively), and rapamycin did not inhibit mRNA expres-
sion of mTOR under both LPS and KA treatment.
However, both drugs had no effect on IL-1p expression,
and rapamycin increased the mRNA expression of NLRP3
under KA treatment (Fig. 2b, p = 0.009), which may aggra-
vate the neuroinflammation.

Decreased ERK phosphorylation, but not Akt
phosphorylation by everolimus under both LPS and KA
treatment, while that by minocycline and rapamycin only
under LPS treatment in BV2 cell line

Rapamycin and its analogs, e.g., everolimus, bind to
FK506-binding protein 12 (FKBP12), form a ternary
complex with mTORCI, and thus allosterically inhibit
the functioning and downstream signaling of mTOR
[36]. Interestingly, everolimus inhibited the mRNA ex-
pression of mTOR under both LPS and KA treatment in
the present study, while rapamycin did not. mTOR
expression is regulated by the upstream Akt pathway in

anabolic states and by the AMPK pathway in catabolic
states [14]. Therefore, we further investigated the influ-
ence of Akt and ERK phosphorylation by rapamycin and
everolimus in the BV2 cell line. As shown in Fig 3, there
was no statistically significant effect of rapamycin or
everolimus treatment on Akt phosphorylation. In con-
trast, monotherapy with everolimus, minocycline, or
rapamycin inhibited ERK phosphorylation under both
LPS and KA treatment, and the effect of everolimus on
the inhibition was most significant compared to those of
minocycline and rapamycin (Fig. 3a, p < 0.001).

Change of seizure latency after treatment with KA and
everolimus

To investigate the effect of KA and everolimus treatment
on the seizure latency, B6.129P-Cx3crl™ "%/ mice,
which express fluorescence when the microglial cells are
activated, were used in this study. KA was administered
at days 1 and 7 for the KpK group. For the KeK group,
everolimus (1 mg/kg/day) was also injected daily for
7 days. The seizure staging for all mice were recorded
after injection. All mice in KpK group at most reached
stage V in days 1 and 7. In contrast, 4 of 12 mice in KeK
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group reached stage VI at day 1, while no mice in KeK
group reached stage VI at day 7 (p = 0.047). The seizure
latency to stage V after the first dose and second dose
of KA was 2200+ 874 s and 1940 +450 s in the KpK
group (n=9), and 1909 + 363 s and 2287 + 706 s in the
KeK group (n=12), respectively (p=0.077) (Fig. 4).
Although there was no statistical significance in seizure
latency, treatment with everolimus tended to prolong

the seizure latency to stage V and attenuated seizure
severity.

Significantly decreased ERK phosphorylation by
everolimus in the animal model of KA-induced seizures
To support our in vitro finding, we investigated the effect
of everolimus on Akt and ERK phosphorylation by
applying the two-hit seizure model of KA in mice [33].
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Fig. 4 Boxplots of seizure latency to stage V in days 1 and 7 for KpK and KeK groups, showing the relative prolonged seizure latency to stage V
in day 7 for KeK group
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The two-hit seizure model of KA i.p. injection at days 1
and 7 significantly increased ERK phosphorylation (p =
0.004) and mTOR phosphorylation (p=0.034) in the
hippocampus of mice in the KpK group (Fig. 5 a, c).
Compared with the KpK group, everolimus significantly
inhibited ERK phosphorylation similar to the results of
the in vitro studies (Fig. 5a, KeK group, p=0.048).
However, there was no significant difference in ERK
phosphorylation in control group and KeK group (p =
0.167). In contrast, the two-hit seizure model of KA injec-
tion did not increase Akt phosphorylation significantly
(Fig. 5b, p = 0.135).

Treatment with everolimus decreased the microglial

activation in the hippocampus under KA treatment

To investigate the effect of everolimus treatment on
microglial activation in the hippocampus (both CA1 and
CA3 regions), we further counted the activated micro-
glial cells in the KpK and KeK groups at day 15 after
treatment with KA for two times. We found that the
number of activated microglial cells in the CAl and
CA3 regions was statistically significantly higher in the
KpK groups than in the KeK group. The mean number
of activated microglial cells in CA1 and CA3 regions per
slice in the KpK and KeK groups was 51.8 +22.1 vs.
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15.1+£5.1 in CAl (p=0.009) and 35.7 £ 6.2 vs. 9.5+2.2
in CA3 regions, respectively (p < 0.001). This result indi-
cated that everolimus can significantly downregulate the
activation of microglial cells in the hippocampus of mice
with KA-induced seizures.

Discussion

Several animal and human studies have demonstrated
that mTOR activation can result in neuroexcitability,
seizure, and epilepsy [14, 19]. Therefore, mTOR inhibi-
tors have been applied in seizure therapy. Although both
rapamycin and everolimus are mTOR inhibitors, the
present study showed that both drugs had differential ef-
fects on nitrite production, mRNA expression of iNOS
and mTOR, and ERK phosphorylation (Fig. 6). Both
drugs had no effect on IL-1P expression while rapamycin
increased NLRP3 expression, which may aggravate the
neuroinflammation. Everolimus was significantly more
effective than rapamycin in inhibiting iNOS and mTOR
signaling pathways in both models of neuroinflammation
(LPS) and seizure (KA). In the iNOS pathway, everoli-
mus attenuated the iNOS mRNA expression stimulated
by LPS and nitrite production by KA and LPS more
significantly than rapamycin. In the mTOR pathway, only
everolimus attenuated the mTOR mRNA expression
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was resected, and the protein expression was analyzed by Western blotting. a KA injection twice significantly increased ERK phosphorylation, which was
attenuated by everolimus. b, ¢ Everolimus did not decrease Akt and mTOR phosphorylation after repeated KA injection. Bars depict mean + SEM. The
number of mice used in each experiment was shown in the bottom of each bar figure. *p = 0034 and **p = 0004, compared with the sham group; m:
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induced by LPS and KA treatment. We also found that
the modulation of mTOR under LPS and KA treatment
was not mediated by Akt pathway but may be primarily
mediated by ERK phosphorylation, which was attenuated
more significantly by everolimus. Everolimus was also
shown to inhibit ERK phosphorylation and microglial
activation in the hippocampus of KA-treated mice.

Although not involved in regulating KA seizure gener-
ation and propagation, NO has been shown to be involved
in status epilepticus-induced neuronal degeneration [11].
Rapamycin has been shown to reduce the mRNA levels of
iNOS in the astrocytes under treatment with cytokines or
LPS plus INFg [37]. Everolimus has also been shown to
affect NOS activity and NOS2 expression, thereby reducing
microglial proliferation [38]. The present study demon-
strated that both rapamycin and everolimus can decrease
iNOS mRNA and nitrite production after LPS or KA treat-
ment in the microglia, suggesting that the neuroprotective
role of mTOR inhibitors may partially arise from iNOS
inhibition. However, our data also showed that everolimus
was significantly more effective than rapamycin in the
inhibition of iNOS and nitrite production.

The reason why rapamycin increased NLRP3 mRNA
in the present study was not clear. NO has been re-
ported to suppress NLRP3 inflammasome activation
under LPS treatment [39]. In our study under KA
treatment, rapamycin inhibited iNOS mRNA and NO/
nitrite production, which may contribute to the in-
crease of NLRP3 mRNA (Fig. 2). However, everolimus
also inhibited iNOS mRNA and NO/nitrite produc-
tion without increase of NLRP3 mRNA, which needs
further investigation.

mTOR is part of two larger signaling complexes,
mTORC1 and mTORC2. The primary pharmacody-
namic effect of mTOR inhibitors is selective binding to
FKBP12 and subsequent association with and inhibition
of mTORC 1 [22]. Everolimus exhibited higher potency
of interacting with mTORC 2 than rapamycin [21] and
was shown to be better than rapamycin in treating
subependymal giant cell astrocytomas and other TSC
manifestations [22]. Interestingly, our study also
showed that everolimus decreased the mRNA levels of
mTOR under LPS and KA treatment compared with
rapamycin. This finding may explain the higher potency
of everolimus in inhibiting mTORC2 than that of
rapamycin.

mTOR is regulated by the upstream Akt pathway and
the AMPK pathway [14]. Inhibition of ERK phosphoryl-
ation by everolimus observed in the present study is
consistent with an earlier study [40]. In a previous
study of anti-HLA antibody-mediated endothelial cell
signaling, everolimus was shown to be more effective in
inhibiting mTORC2 and thus more effective in prevent-
ing Akt phosphorylation and ERK phosphorylation, an
ability that rapamycin lacked [40]. ERK pathway plays a
well-known role in neuroinflammation and neuro-
degeneration [41]. Therefore, everolimus may play a
protective role in neuroinflammation via inhibiting
ERK phosphorylation. Interestingly, in N-methyl-D-
aspartic acid-induced retinal neurotoxicity in rats, the
protective effect of everolimus was mediated partially
by the activation of ERK pathway [42]. Nevertheless,
both anti-inflammation and neuroprotection by everoli-
mus are beneficial.
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Our study showed that everolimus reduced neuroin-
flammation more effectively than rapamycin. mTORC1
and mTORC?2 play different roles in inflammation [43,
44]. mTORC2 exerts a pro-inflammatory effect, while
mTORC1 exerts some anti-inflammatory effect [44].
Therefore, everolimus, by inhibiting mTORC2, may be
more effective than rapamycin in inhibiting neuro-
inflammation. Similarly, a recent study showed that a
dual mTORC1 and mTORC?2 inhibitor was more effect-
ive against neuroinflammation than rapamycin [45]. In
addition, as shown in the present study and previous
studies, everolimus, but not rapamycin, can inhibit
ERK phosphorylation [21]. This inhibition of ERK
pathway may augment the anti-inflammatory activity
of everolimus.

Other mechanisms except for attenuating neuroin-
flammation may also play a role in anti-seizure activ-
ity of mTOR inhibitors. Activation of the mTOR
pathway may trigger several downstream cellular and
molecular events in brain leading to increased neur-
onal excitability and seizure generation. mTOR path-
way is also implicated in epileptogenesis, especially
mossy fiber sprouting [46]. Furthermore, the mTOR
pathway may be involved in anti-seizure effects of the
ketogenic diet and has a close link with nutrient
signaling [47]. Therefore, the anti-seizure effect of
mTOR inhibitors may arise from multiple mecha-
nisms, and attenuation of neuroinflammation is one
of the important mechanisms.

In this study, we also found that mice treated with
everolimus following the initial seizure tended to
prolong the seizure latency at second KA-induced seiz-
ure. Microglial activation with production of proinflam-
matory cytokines plays important roles in seizure
generation [48, 49]. Previous study had shown that
KA-induced exaggerated microglial response may
increase the susceptibility to the second seizure later in
life and produce CNS injury [34, 48, 49]. Therefore, the
inhibition of seizure-induced microglial activation may
prolong the seizure latency and attenuate the seizure-
related CNS damage [50, 51].

Conclusions

In this study, a direct comparison of rapamycin and
everolimus in both cell and animal models of neuro-
inflammation and seizure was made. Everolimus showed
greater inhibition of iINOS mRNA production, nitrite
production, and mTOR mRNA production than rapamy-
cin, which may partly arise from the inhibition of ERK
phosphorylation. mTOR as a target of anti-epileptic
therapy may be a potential pharmacological target of
reducing neuroinflammation and deserves more applica-
tion in the future.
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