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Abstract

Background: Axon development plays a pivotal role in the formation of synapse, nodes of Ranvier, and myelin
sheath. Interleukin-1(3 (IL-1(3) produced by microglia may cause myelination disturbances through suppression of
oligodendrocyte progenitor cell maturation in the septic neonatal rats. Here, we explored if a microglia-derived IL-
1B would disturb axon development in the corpus callosum (CC) following lipopolysaccharide (LPS) administration,
and if so, whether it is associated with disorder of synapse formation in the cerebral cortex and node of Ranvier.

Methods: Sprague-Dawley rats (1-day old) in the septic model group were intraperitoneally administrated with
lipopolysaccharide (1 mg/kg) and then sacrificed for detection of IL-13, interleukin-1 receptor (IL-1R;), neurofilament-68,
neurofilament-160, and neurofilament-200, proteolipid, synaptophysin, and postsynaptic density 95 (PSD95) expression
by western blotting and immunofluorescence. Electron microscopy was conducted to observe alterations of axonal
myelin sheath and synapses in the cortex, and proteolipid expression was assessed using in situ hybridization. The
effect of IL-1(3 on neurofilament and synaptophysin expression in primary neuron cultures was determined by western
blotting and immunofluorescence. P38-MAPK signaling pathway was investigated to determine whether it was
involved in the inhibition of IL-13 on neurofilament and synaptophysin expression.

Results: In 1-day old septic rats, IL-1(3 expression was increased in microglia coupled with upregulated expression of
IL-1R; on the axons. The expression of neurofilament-68, neurofilament-160, and neurofilament-200 (NFL, NFM, NFH)
and proteolipid (PLP) was markedly reduced in the CC at 7, 14, and 28 days after LPS administration. Simultaneously,
cortical synapses and mature oligodendrocytes were significantly reduced. By electron microscopy, some axons
showed smaller diameter and thinner myelin sheath with damaged ultrastructure of node of Ranvier compared with
the control rats. In the cerebral cortex of LPS-injected rats, some axo-dendritic synapses appeared abnormal looking as
manifested by the presence of swollen and clumping of synaptic vesicles near the presynaptic membrane. In primary
cultured neurons incubated with IL-13, expression of NFL, NFM, and synaptophysin was significantly downregulated.
Furthermore, p38-MAPK signaling pathway was implicated in disorder of axon development and synaptic deficit
caused by IL-1(3 treatment.
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Conclusions: The present results suggest that microglia-derived IL-13 might suppress axon development through
activation of p38-MAPK signaling pathway that would contribute to formation disorder of cortical synapses and node

of Ranvier following LPS exposure.

Keywords: Microglia, LPS, IL-13, PWMD, Axon, Neurofilament, Synapse

Background

Neonatal sepsis may cause a systemic inflammatory
response which is an important risk factor for periven-
tricular white matter (PWM) damage (PWMD) in the
developing brain [1-3]. A large number of immune ef-
fector cells are mobilized into the neonatal circulation
[1-3]. Concomitantly, these immune cells release proin-
flammatory cytokines such as tumor necrosis factor
(TNF-a) and interleukin-1p (IL-1p) which readily cross
the blood-brain barrier into the brain parenchyma [4].
In the latter, the serum-derived proinflammatory cyto-
kines can activate microglia, the resident immune cells
in the central nervous system (CNS), which initiates
complex inflammatory cascades including excessive re-
lease of proinflammatory cytokines, reactive oxygen
species (ROS), and glutamate excitotoxicity [5, 6]. It has
been reported that this may induce the injury of imma-
ture oligodendrocytes and axons resulting in hypomyeli-
nation, a hallmark feature of PWMD [7-9].

Various inflammatory mediators play different roles in
the pathogenesis of PWMD [10-16]. Among them, the
most widely studied mediators are the proinflammatory
cytokines including TNF-a and IL-1f [17, 18]. TNF-«a
produced by activated microglia may elicit the apoptosis
of oligodendrocytes via its TNFR; which activate the sig-
nal pathway of apoptosis in the oligodendrocytes [19, 20].
There is also mounting evidence suggesting that IL-1p is a
crucial contributor to various acute and chronic neurode-
generative diseases [21-23]. Unlike TNF-a, IL-1f was
documented as being nontoxic to oligodendrocyte lineage
cells in that it could not induce oligodendrocyte apoptosis
through its receptors [24]. However, some studies have
demonstrated that IL-1p can suppress oligodendrocyte
proliferation at the late developmental stage of oligo-
dendrocyte progenitor cell (OPC) [24]. Our previous stud-
ies have found that microglia-derived IL-1p could affect
OPC maturation and induce hypomyelination in the
PWM of septic neonatal brain [5]. In primary cultured
neurons administrated with recombinant IL-1p, a signifi-
cant increase in the phosphorylation of neuronal tau was
accompanied by a decline in synaptophysin levels [25]. IL-
1 receptor antagonist (IL-1ra) and anti-IL-1B antibody
attenuated the effects of IL-1 on neuronal tau and synap-
tophysin [25]. Systemic inflammation activated innate
immune response in the CNS and induced the release of
IL-1B from activated microglia, which increased axon

injury and synaptic deficit [26—-29]. However, the under-
lying molecular mechanisms whereby IL-1f is involved in
PWMD in septic neonatal rats have not been fully
addressed. Here, we provide evidences that IL-1p pro-
duced by activated microglia could induce disorder of
axon development and synaptic deficit in septic neonatal
brain. Expression of IL-1f in microglia and its receptor 1
on developing axons was first observed by double
immunofluorescence. The axon development, node of
Ranvier, and myelin sheath in the PWM and synapse for-
mation in the cerebral cortex were examined in septic rats
in comparison with the controls. Furthermore, the signal-
ing pathway via which IL-1p could suppress axon develop-
ment and synapse formation was investigated. It is
suggested that microglia-derived IL-1f may have a nega-
tive impact on axon development and synapse formation
through activation of p38-MAPK signaling pathway after
LPS administration.

Methods

Animals

One hundred and thirty SD rats (1-day old) provided by
the Experimental Animal Center of Sun Yat-sen University
were used. They were randomized into the control group
and septic experimental group. The rats (n=65) in the
septic model group were intraperitoneally administrated
with lipopolysaccharide (LPS) (1 mg/kg) derived from
Escherichia coli 055:B5 (Sigma-Aldrich, St. Louis, MO,
USA Cat. No. L2880). The rats were then housed in an
animal house at room temperature for 6 h, and 2, 4, 6, 7,
14, and 28 days before being used for experiments
(Table 1). The rats in the control group (n = 65) (Table 1)
were intraperitoneally injected with equal volume of 0.01-
M phosphatebuffer saline (PBS). Only male rats at 1 day
of age were used for the study when the sex of rats can be
determined with certainty. All animals were handled ac-
cording to the protocols of Institutional Animal Care and
Use Committee, Guangdong Province, China.

Primary cultures of cortical neurons

Primary cortical neuron culture was performed using
neonatal SD rats (1-day old), as described previously
[30] with some modifications. The cerebral cortices were
dissected from the neonatal brain, minced into small
tissue pieces of size 1 mm?® excluding the hippocampus
and meninges, trypsinized for 15 min with 0.125%
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Table 1 Number of rats killed at various time points after the
LPS exposure (in brackets) and their age-matched controls for
various methods (outside the brackets)

Control(LPS)  Immunofluorescence  Western In situ Electron
blotting hybrization microscopy

6h 303) 5(5)

2 days 303) 5(5)

4 days 3(3) 5(5)

6 days 3(3) 5(5)

7 days 303) 5(5)

14 days 3(3) 5(5) 3(3)

28 days 3(3) 5(5) 3(3) 3(3)

trypsin (Gibco) at 37 °C, and then neutralized with fetal
bovine serum (FBS) (Life Technology). Cells were disso-
ciated by passage through a pasteur pipette. The suspen-
sion containing neural cells was centrifuged at 1100 rpm
for 5 min; thereafter, the cells were resuspended in Dul-
becco’s modified eagle medium (DMEM) containing
10% fetal bovine serum (Life Technology) and plated in
6-well plates (Corning) for various experiments, or
plated in 96-well plates (Corning) specifically for the
CCK-8 test. All the plates were pre-coated with poly-L-
lysine (Sigma). At 6 h after plating, DMEM/10% FBS
was replaced with neurobasal medium containing 2%
B27 and 1% glutamine; half of the medium was replaced
with neurobasal containing 2% B27 without glutamine
3 days later. For immunocytochemistry, primary cul-
tured neurons were detached from 75-cm” flask, then
plated at a density of 2.5 x 10°/well in a 24-multiwell
culture dish. For western blotting, primary cultured neu-
rons were plated at 1 x 10° cells per flask; thereafter, they
received different treatments according to experimental
protocols on the following day. The purity of cortical
neurons was examined through immunocytochemical
staining using MAP-2 (a marker of neurons) and 4'6-
diamidino-2-phenylindole (DAPI). The purity of primary
neuron cultures in this study was above 95%.

Treatment of primary cultured neurons

To determine the IL-1B concentration, the CCK-8 assay
(cell counting kit 8) was performed following the manu-
facturer’s instructions (DOJINDO). Primary cultured
neurons (3000 cells/well in 100-ul neurobasal medium)
were incubated with different concentrations (0, 5, 10,
20, 40, 80, 100, and 200 ng/ml) of IL-1p for 24 h in 96-
well plates (Corning) at 37 °C. Ten-microliter CCK-8 so-
lution was then added to each well, and the plates were
incubated at 37 °C for 6 h. The optical density (OD) in
each well was measured at 450 nm using an enzyme-
linked immunosorbent assay (ELISA) reader (BioTek,
Winooski, VT, USA) according to the manufacturer’s
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instructions. The neuronal cell activity remained rela-
tively changed when neurons were treated with IL-1f at
a dose less than 40 ng/mL (Additional file 1: Figure S1).

Primary neuron cultures were divided into three
groups as follows:

Group I

To examine the effects of IL-1p on expression of NFL,
NEM, and synaptophysin in primary cultured neurons by
western blotting analysis and immunocytochemical
staining, the cells were cultured in neurobasal medium
containing 2% B27 and 1% glutamine in a humidified
atmosphere of 95% air and 5% CO, for 24 h. The neurons
were plated in 6-well plates at the density of 2 x 10°/well
for western blotting analysis and in 6-well plates at the
density of 1.2 x 10%/well for immunofluorescence staining,
The neurons in group I were randomized into four groups
including the control group (0.01 M PBS), IL-1f (40 ng/
mL) group, IL-1f (40 ng/mL) + IL-1Ra (40 ng/mL) group,
and IL-1Ra (40 ng/mL) group.

Group II

The primary cultured cortical neurons in group II were
used to investigate the effects of IL-1f on the
phosphorylation of p38-MAPK pathway. For this, the
primary neurons were administrated with 40-ng/ml IL-
1B for 0.5, 1, 2, 4, and 6 h before harvest.

Group III

To determine whether p38-MAPK signaling pathway is
implicated in the effects of IL-1 on expression of NFL,
NEM, and synaptophysin in primary cultured cortical
neurons, the cells (2 x 10°/well) were cultured in 6-well
plates in a humidified atmosphere of 95% air and 5%
CO, at 37 °C. Subsequently, the cells were randomized
into four subgroups including the control group

(0.01 M PBS), IL-1B (40 ng/ml) group, IL-1p (40
ng/ml) + SB203580 (10 umol/L) group, and SB203580
(10 umol) group. After incubation with above-
mentioned reagents for 24 h, the cells were harvested.

Western blot

A protein extraction kit (Pierce Biotechnology Inc, IL,
USA) was used to extract proteins from the cortex or
the corpus callosum or primary cultured cortical neu-
rons following the standard protocol. Protein concentra-
tions were measured according to the bicinchonininc
acid (BCA) method [31]. Standard western blot proto-
cols were followed as described in a previous study by us
[19]. The primary antibodies used (Table 2) were as
follows: IL-1P, interleukin-1 receptor (IL-1R;), NFL,
NFM, NFH, synaptophysin, postsynaptic density 95
(PSD95), PLP, p38, Phos-p38, and p-actin. Following
three rinses in tris-buffered saline Tween (TBST), the
membranes were hybridized with the horseradish perox-
idase (HRP)-conjugated secondary antibodies (1:1000,
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Table 2 Antibodies used in experiments

Antibody Host Company Cat.No. Application Concentration
Phos-p38 Rabbit Cell Sigaling Technology, Danvers, MA, USA 4511S Cell (WB) 1:1000

p38 Rabbit Cell Sigaling Technology, Danvers, MA, USA 8690S Cell (WB) 1:1000

B-actin Mouse Cell Sigaling Technology, Danvers, MA, USA 3700S Tissue/cell (WB) 1:1000

IL-18 Rabbit Chemicon International, Temecula, CA, USA AB1832P Tissue (WB/IF) 1:1000

IL-1R; Rabbit Santa Cruz Biotechnology, Santa Cruz, CA, USA SC689 Tissue (WB/IF) 1:100

NFH Mouse Sigma-Aldrich, Saint Louis, MO, USA NO142 Tissue/cell (WB) 1:1000

NFM Mouse Sigma-Aldrich, Saint Louis, MO, USA N2787 Tissue/cell (WB/IF) 1:1000

NFL Mouse Sigma-Aldrich, Saint Louis, MO, USA N5139 Tissue/cell (WB/IF) 1:1000

MAP-2 Mouse Abcam, Cambridge, MA, USA ab11267 Cell (IF) 1:500
Synaptophysin Mouse Abcam, Cambridge, MA, USA ab8049 Tissue (IF) 1:200
Synaptophysin Rabbit Abcam, Cambridge, MA, USA ab14692 Tissue/cell (WB) 1:200

PSD-95 Rabbit Abcam, Cambridge, MA, USA ab18258 Tissue (WB/IF) 1:500

PLP Rabbit Abcam, Cambridge, MA, USA ab28486 Tissue (WB/IF) 1:500

Alexa Fluor555 Goat Invitrogen Life Technologies Corporation A-21422 Tissue/cell (IF) 1:200

Alexa Fluor555 donkey Invitrogen Life Technologies Corporation A-31572 Tissue/cell (IF) 1:200

Alexa Fluor488 donkey Invitrogen Life Technologies Corporation A-21202 Tissue/cell (IF) 1:200

Lectin Sigma-Aldrich, St. Louis, MO 2886 Tissue/cell (IF) 1:100

Cell Signaling Technology; Cat. No 7074 (anti-rabbit
IgG) or 7076 (anti-mouse IgG)) for 2 h at 4 °C. The
enhanced chemiluminescence detection system (Pierce
Biotechnology Inc, Rockford, IL, USA) was used to
develop the immunoblots on the membranes. Subse-
quently, the immunoblots were stripped using the
stripping buffer (Pierce Biotechnology Inc.; Cat. No.
0021059). Following this, the membranes were incubated
with total kinase or B-actin. The signal intensity of the
respective protein bands was calculated with FluorChem
8900 software, version 4.0.1 (Alpha Innotech Corpor-
ation, San Leandro, CA, USA), and the fold change
relative to control was measured.

Immunofluorescence

Coronal frozen brain sections of 10-um thickness were
incubated with 0.3% hydrogen peroxide in methanol to
deactivate endogenous peroxidase for 20 min. After
washing three times with PBS, the sections were blocked
with a mixed solution composed of 5% BSA and 0.3%
Triton X-100 in PBS for 30 min at room temperature.
Subsequently, the brain sections from rats at different
time points (n =3 at each time point) after PBS or LPS
injection were randomized into five groups. The sections
in group I from rats at 7, 14, and 28 days after PBS or
LPS injection were incubated with antibody against NFL
(Table 2). The sections in group II from the control and
septic rats at 14 and 28 days were incubated with PLP
antibody (Table 2). The sections in group III from the
control and septic rats at 14 and 28 days were incubated

with antibodies against PSD95 (Table 2) and synapto-
physin (Table 2). The sections in group IV from rats at
6 h and 2, 4, and 6 days after PBS and LPS injection
were incubated with IL-1p antibody (Table 2) and Lectin
(Table 2). The brain sections in group V from the con-
trol and septic rats at 2 and 4 days were incubated with
antibody against IL-1R; (Table 2) and NFL (Table 2). On
the next day, after washing three times with PBS, the
sections were incubated with secondary antibodies:
Alexa Fluor555 goat anti-mouse IgG (H + L) (Table 2)
for NFL in group I, Alexa Fluor555 donkey anti-rabbit
IgG (H+L) (Table 2) for PLP in group II, Alexa
Fluor555 donkey anti-rabbit IgG (H + L) (Table 2) and
Alexa Fluor488 donkey anti-mouse IgG (H + L) (Table 2)
for PSD95/synaptophysin in group III and for IL-1R,/
NFL in group V, and Alexa Fluor555 donkey anti-rabbit
IgG (H + L) (Table 2) for IL-1f in group IV for 1 h. After
three rinses in PBS, the sections in group IV were incu-
bated with Lectin (Table 2) for 1 h. Incubation of
sections for all groups was carried out at room
temperature. Finally, all sections were counterstained
with DAPI (Sigma-Aldrich, St. Louis, MO, USA, Cat.
No. D9542) and then observed using a fluorescence
microscope (Olympus System Microscope Model BX53,
Olympus Company Pte, Tokyo, Japan).

For primary cultured cortical neurons, the cells were
treated with protein IL-1f, IL-1p + IL-1Ra, IL-1Ra, and
the equal volume of PBS for 1 day. After three rinses in
PBS, the cells were fixed in 4% paraformaldehyde for
30 min and then blocked in 1% BSA for 1 h. After this,
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the cells were incubated with NFM antibody (Table 2)
overnight at 4 °C. On the next day, after three rinses in
PBS (10 min each time), the cells were incubated with
Alexa Fluor488 donkey anti-mouse IgG (H + L) (Table 2)
for 1 h. Following three washes in PBS, the cells were in-
cubated with DAPI for 5 min and observed under a
fluorescence microscope (Olympus System Microscope
Model BX53, Olympus Company Pte, Tokyo, Japan).

Electron microscopy

LPS-injected rats (n =3 at 28 days) and littermate con-
trols (n =3 at 28 days) were transcardially perfused with
a mixed aldehyde fixative composed of 2% paraformalde-
hyde and 3% glutaraldehyde. Coronal sections of the
brain at about 1-mm thick were prepared. Blocks of the
corpus callosum (CC) and cerebral cortex were trimmed
from the brain slices. These blocks were cut into vibra-
tome sections of 80—100-um thickness by a vibratome
(Model 3000™, The Vibratome™ Company, St Louis, MO,
USA). The vibratome sections were then washed over-
night in 0.1-M phosphate buffer, postfixed for 2 h in 1%
osmium tetroxide, dehydrated, and embedded in
Araldite mixture. Ultrathin sections, doubly stained with
uranyl acetate and lead citrate, were observed under a
Philips CM 120 electron microscope (FEI™ Company,
Hillsboro, OR, USA). Four different areas of the CC or
cerebral cortex from each of the brain were scrutinized
and photographed at three different magnifications.
Image ] software (SummaSketch III Summagraphics,
Seattle, WA) was used to measure the diameter of each
axon magnified at 6800 times by a blind researcher.

In situ hybridization

We performed in situ hybridization on 10-pm-thick
coronal frozen brain sections as previously described
[32, 33]. Briefly, brain sections were incubated with pro-
teinase K (S3004, Dako, Carpinteria, CA, USA) for
10 min and then rinsed in distilled water in 96% ethanol
and in isopropanol for 5 min each. Following this, the
brain sections were incubated with 125 uL of hybridization
mixtures composed of 15 uL of distilled water, 25 uL of
20x saline-sodium citrate (SSC) buffer, 62.5 pL of 50%
formamide, 12.5 pL of 50% dextran sulfate, 2.5 pL of
Denhardts solution (D2532, Sigma-Aldrich, Saint Louis,
MO,USA), 6.25 uL of herring sperm DNA (D7290, Sigma-
Aldrich), and 1.25 uL of 3’-digoxigenin-conjugated probe
(presented from prof fu hui’ lab). The probe, 5'-CAAGGG
AAGGGAGGAAGAGACAG-3/, in final concentration of
100 ng/mL, detects a segment of the 5.8S ribosomal RNA
of PLP. The sections were incubated at 95 °C for 6 min,
immediately chilled in ice, and then incubated at 40 °C for
14-16 h in a humidified chamber. After this, the sections
were washed in 2x SSC, 1x SSC, and 0.1x SSC buffer for
5 min each, followed by incubation with the anti-
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digoxigenin antibody conjugated to alkaline phosphatase,
diluted in tris-buffered saline (TBS) (1:200, 11093274910,
Roche Diagnostics, Indianapolis, IN, USA) for 1 h, and
then washed in TBS. Visualization was achieved using
NBT/BCIP (nitro blue tetrazolium/5-bromo-4-chloro-3-
indolyl-phosphate) (11681451001, Roche Diagnostics) for
1 h in the dark. The reaction was stopped with TE buf-
fer (pH 8.0) for 10 min and then washed in distilled
water. The sections were counterstained with Mayer’s
hematoxylin and mounted in aqueous medium (Faramount,
$3025, Dako). PLP-positive cells were examined under a
microscope (Olympus System Microscope Model BX53,
Olympus Company Pte, Tokyo, Japan). Four nonoverlap-
ping regions of the corpus callosum from each animal were
photographed at two different magnifications. PLP-positive
cells were enumerated under x10 magnifications.

Statistical analysis

The present data were analyzed by the SPSS 20.0 statis-
tical software (IBM, Armonk, New York, USA). The re-
sults were presented as mean + SD. Statistical significance
was examined by Student’s ¢ test. The statistical signifi-
cance of the results was considered at P < 0.05.

Results

Neurofilament protein expression in the CC

NFL, NFM, and NFH protein expression was markedly
decreased in the CC at 7, 14, and 28 days after LPS admin-
istration when compared with the matching controls
(Fig. 1a—j). The optical density of immunoreactive bands
of NFL, NEFM, and NFH protein expression was signifi-
cantly reduced at the same time points in LPS-injected
rats in comparison with the matching controls (Fig. 1g—j).
Immunostaining showed that NFL expression was notice-
ably reduced in the CC at 7, 14, and 28 days after LPS
administration (Fig. 1a—f).

Number of neurons in the cerebral cortex

To ascertain if there was a significant loss of neurons in
the whole cortex in the frontal lobe after LPS treatment,
the sections from the control and septic rats at 7, 14,
and 28 days were incubated with antibodies against
NeuN and Caspase-3, an apoptotic marker. After LPS
treatment, the number of mature and apoptotic neurons
at 7, 14, and 28 days in the cerebral cortex (Additional
file 2: Figure S2D-F, J-L, and P-R) was comparable to
that in the matching controls (Additional file 2: Figure
S2A-C, G-I, and M-0). To confirm this, Nissl’s stain-
ing was carried out in sections from the control and
septic rats at 7, 14, and 28 days. The results showed that
the number of neurons was not significantly changed in
the cerebral cortex in the frontal lobe at 7, 14, and
28 days after LPS injection (Additional file 3: Figure S3B,
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Fig. 1 LPS inhibits axon development. a—j show NFL, NFM, and NFH protein expression in the PWM of postnatal rats at 7, 14, and 28 days after
LPS injection and their corresponding controls. Immunofluorescene shows NFL expression in PWM of postnatal rats at 7, 14, and 28 days after
LPS injection (b, d, and f) and their corresponding controls (a, ¢, and e). g The immunoactive bands of NFL (68 kDa), NFM (160 kDa), NFH

(200 kDa), and B-actin (42 kDa) by western blot analysis. h—j Bar graphs depicting significant decrease in the optical density of NFL, NFM, and
NFH expression, respectively, following LPS challenge when compared with matched control. *P < 0.05, **P < 0.01. Scale bars: a—f 100 um

D, and F) in comparison with the corresponding control
(Additional file 3: Figure S3A, C, and E).

Ultrastructural study

By electron microscopy, at 28 days after LPS injection,
the packing density of myelinated axons was decreased
significantly in the CC (Fig. 2b, d) when compared with
the corresponding controls (Fig. 2a, ¢) under low and
high magnification. Indeed, in LPS-injected rats, many
axons appeared unmyelinated (Fig. 2b, d). Additionally,
in LPS-injected rats, the diameter of axons was notice-
ably smaller at 28 days in comparison with that of the

matching controls. The average axonal diameter in
28 days control rats was 2.84 + 0.12 pum. It was obviously
reduced to 1.91+0.10 pm in rats with LPS treatment,
indicating thinner axons in the septic rat brain. Ultra-
structural study also showed damaged myelin sheath
(Fig. 2g, h) and Ranvier node at 28 days after LPS injec-
tion (Fig. 2f) (arrow) when compared with the intact
myelin sheath and Ranvier node (Fig. 2e) (arrow) in the
corresponding control.

The neurons in the cerebral cortex above the CC
appeared relatively normal in the P28d control rats by elec-
tron microscopy (Fig. 3a). The neurons were characterized



Han et al. Journal of Neuroinflammation (2017) 14:52

Page 7 of 18

Fig. 2 Electron micrographs show thinner axons and aberrant Ranver node in PWM of 28-day rats. Electron microscopic images of PWM in cross-sections
are shown at different magnifications. a Myelinated axons are regularly packed in the control with intact two oligodendrocytes (asterisks) under low
magnification. b Note drastic reduction in myelinated axons at 28 days after LPS injection. Normal Oligodendrocyte (asterisk)) appears less. ¢ Myelinated
axons in the control. Note the thick myelin sheath under high magnification. d Note drastic reduction in myelinated axons at 28 days after LPS injection
and some are distorted (asterisk). Many unmyelinated axons (UA) are seen. @ Normal node of Ranvier (arrow) in the control. f Disrupted node of Ranvier
(arrows) at 28 days after LPS injection. g Disrupted axon (asterisk) and myelin sheath at 28 days after LPS injection. h Disrupted myelin sheath (arrows) at
28 days after LPS injection. Scale bars:a 2 um; b 5 pm; ¢ 1 um; d 500 nm; e=f 0.5 um; g 0.2 um; h 0.5 pm

by a round to oval nucleus containing mainly euchromatin.
Profiles of myelinated axons and dendrites were present in
the neuropil. Axo-dendritic synapses were readily iden-
tified (Fig. 3b), while axo-somatic synapses were less
common. In LPS-injected rats, sacrificed at 28 days,
some neurons showed enhanced electron density af-
fecting both the soma and dendrites (Fig. 3c—f). On
closer examination, the “darkened neurons” showed

dilated cisternae of rough endoplasmic reticulum and
mitochondria. In the neuropil of LPS-injected rats,
profiles of myelinated axons containing dense inclu-
sions and with disrupted myelin sheath were observed
(Fig. 3g). Some axo-dendritic synapses appeared ab-
normal looking as manifested by the presence of
swollen and clumping of synaptic vesicles near the
presynaptic membrane (Fig. 3h, i).



Han et al. Journal of Neuroinflammation (2017) 14:52 Page 8 of 18

Fig. 3 Electron micrographs. Few normal neurons in the cerebral cortex in a control rat (a). They show a round or oval nucleus with fine and discrete
chromatin clumps. Profiles of myelinated axons are seen in the neuropil. At a higher magnification (b), axon terminals (AT) makes synaptic contact
with dendrites (d) are common. Note the presence of a granular synaptic vesicles (asterisk) in the terminal; synaptic membrane thickening is evident. In
rats given LPS injection at 28 days (c), some neurons show enhanced electron density in both the soma and dendrites (DN). An activated microglia
(Mi) is seen closely associated with the soma of a “darkened neuron” (c, d). In an enlarged view (d), the “darkened neuron” showed dilated profiles of
rough endoplasmic reticulum and mitochondria with disrupted cristae. The nucleoplasm of the “darkened neuron” also shows increased density (e).
Profiles of “darkened dendrites” (dd) often appear to course through the neuropil (f). In the neuropil are present myelinated axons with disrupted
myelin and contain dense inclusions (g). Axo-dendritic synapses in which some synaptic vesicles (circled) are swollen, clumped, and aggregated near
the presynaptic membrane (h, i). AT, axon terminal; d, dendrite, DN, darkened neuron; Mi, microglia. Scale bars are indicated in the respective images

PLP protein expression in the CC

PLP is a specific marker for mature myelin sheath in
CNS that is produced by oligodendrocytes. Immuno-
staining showed that PLP immunoreactivity was
downregulated at 14 and 28 days in the CC of LPS-
injected rats in comparison with their corresponding
control littermates (Fig. 4a—d). The immumoreactive
band of PLP protein levels that appeared at approxi-
mately 30 kDa (Fig. 4e) was evidently reduced in the

optical density at 14 and 28 days in LPS-injected rats
in comparison with the age-matched controls (Fig. 4e,
f). The marked reduction of PLP expression was con-
firmed by immunostaining and western blot analysis.
In situ hybridization was performed with antisense
riboprobes to PLP in the CC of 28-day control
(Fig. 4g, i) and LPS-injected rats (Fig. 4h, j). PLP ex-
pression was obviously decreased in the CC at 28 days
following LPS injection (Fig. 4h, j). The number of
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Fig. 4 LPS inhibits the maturation of oligodendrocytes in the PWM at 14 and 28d. a—f show PLP protein expression in the PWM at 14 and 28d
after LPS injection and the matching controls. Immunofluorescene images showing the expression of PLP in the PWM at 14 and 28d of the LPS
exposure (b, d) and corresponding control rats (a, ). e PLP (30 kDa) and (3-actin (42 kDa) immunoreactive bands. Bar graph (f) shows significant
reduction in the optical density of PLP following LPS exposure in comparison with the corresponding controls (*P < 0.01). In situ hybridization in (g-k)
showing the number of PLP* oligodendrocytes in the PWM at 28 days after LPS exposure and the matching control. Panel (g, h) the number of PLP*
oligodendrocytes in the PWM under low microscopy (x10). Panel (i, j) the number of PLP™ oligodendrocytes in the PWM under high microscopy
(x40). Bar graph (k) showing the number of PLP™ oligodendrocytes in the PWM. Note that the number of PLP" oligodendrocytes in the PWM at
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PLP-positive oligodendrocytes was concomitantly re-
duced (Fig. 4h, k).

Synaptophysin and PSD95 protein expression in the
cortex

Immunofluorescence staining showed that synaptophy-
sin immunoreactivity was reduced in the cortex at 14
and 28 days following LPS injection in comparison with

the age-matched controls (Fig. 5b, e, h, and k). PSD95
protein expression at 14 and 28 days was comparable
between LPS-injected rats and age-matched control rats
(Fig. 5a, d, g, and j). Western blotting showed a signifi-
cant decrease in synaptophysin immunoreactivity at 7,
14, and 28 days in the cortex of LPS-injected rats
(Fig. 5m, n). However, PSD95 protein expression
remained relatively unchanged at 7, 14, and 28 days in
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the cortex in the septic rats when compared with the
controls (Fig. 5m, o).

IL-18 and IL-1R; protein expression in the CC

Double immunofluorescence showed that IL-1f expression
was specifically localized in lectin-labeled amoeboid micro-
glial cells (AMCs) in the CC (Figs. 6a—r and 7a—f). At 6 h

and 2, 4, and 6 days following LPS intraperitoneal injection,
IL-1p immunoreactivity was enhanced in large num-
bers of AMCs (Figs. 6d-f, j—1, and p—r; 7d—f) when
compared with the corresponding controls (Figs. 6a—c,
g—i, and m-o; 7a—c). The optical density of IL-1B
immumoreactive band was markedly upregulated at
6 h and 2, 4, and 6 days after LPS administration in
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comparison with the controls (Fig. 6g, h). Double im-
munofluorescence showed that IL-1R; immunoreac-
tivity was detected on the NFL-labeled axons (Fig. 8a—
). IL-1R; protein expression was significantly in-
creased along the closely packed axons at 2 and 4 days
following LPS exposure in the CC (Fig. 8a—c, d—f, g—i,
and j-1). The optical density of IL-1R; immumoreactive
band that appeared at approximately 80 kDa (Fig. 8m) was
significantly upregulated at 6 h and 2, 4, and 6 days follow-
ing LPS exposure (Fig. 8m, n).

NFL, NFM, NFH, and synaptophysin immunoreactivity in
primary cortical neuron cultures following administration
with IL-1B

To determine the expression levels of various neuronal
proteins after IL-1p treatment, assay using CCK-8 (cell
counting kit 8) was performed. When the dosage of IL-1
exceeded 40 ng/mL, expression of neuronal proteins was
drastically decreased (Additional file 1: Figure S1). Expres-
sion of various proteins was affected when neurons were
treated with IL-1f less than 40 ng/mL. Therefore, IL-1p at



Han et al. Journal of Neuroinflammation (2017) 14:52

Page 12 of 18

a Control 6d Lectin

re

g 6h 2d

b Control6dIL-1B

€ Control6hIL-1B

C Control 6d Merge

f controihIL-1p
'y .9 o

4d

Control LPS Control LPS

B-actin

h i1 protein

2.0+

Optical Density

Control

IL-1B e e .

A S G T canms A T e [2OKD

1.5
1.0

X
0.5 I=.
0.0

LPS

17KD

matching controls. *P < 0.05, **P < 0.01. Scale bars: a—f 20 um

\

Fig. 7 IL-1B3 protein expression in the corpus callosum of postnatal rats at 2 h and 2, 4, and 6 days after LPS exposure and their corresponding
controls. Panel (a-f) show that IL-13 immunoreactive cells (b, e, red) clearly overlap lectin-labeled AMCs (a, d, green) in (c and f) in the corpus
callosum of neonatal rats at 6 days after the LPS exposure and their corresponding controls. Panel (g) shows IL-13 (17 kDa) and -actin (42 kDa)
immunoreactive bands. Bar graph (h) shows significant increase in optical density of IL-1{3 following LPS injection in comparison with their

40 ng/mL was used in this study for determination of its
effects on neural proteins. To explore the effects of IL-
1P on development of neurofilament and formation of
synapse in primary cortical neurons in vitro, the immu-
noreactivity of NFL, NFM, NFH, and synaptophysin
was evaluated in primary cortical neurons in mixed cul-
ture medium for 24 h administered with IL-1f, IL-1f +
IL-1Ra, IL-1Ra, and equal volume of PBS as control, re-
spectively. Immunofluorescence staining showed that
immunoreactivity for NFM was decreased at 24 h after
IL-1B administration (Fig. 9f) in comparison with the
controls (Fig. 9¢). Administration of IL-1R antagonist
obviously reverted the reduction of NFM protein
expression induced by IL-1f treatment (Fig. 9g). In
addition, administration of IL-1R antagonist alone did
not alter the protein expression of NFM (Fig. 9h). The

optical density of NFL, NFM, and synaptophysin immu-
noreactive band was markedly reduced at 24 h following
IL-1f administration (Fig. 9a—d). Administration of IL-1R
antagonist reversed the decreased expression of NFL,
NEM, and synaptophysin induced by IL-1p (Fig. 9a—d).

Effect of IL-1B on p38-MAPK signaling pathway in primary
cortical neurons

Phosphorylated p38 level was examined in primary
cortical neurons incubated with IL-1$ (40 ng/ml) for 0,
0.5, 1, 2, 4, and 6 h by western blot analysis. The ex-
pression level was markedly upregulated at 0.5 h, peak-
ing at 1 h but gradually declined to basal levels at 6 h
after 1 L-1p treatment (Fig. 10a—b). Furthermore, IL-1p
administration did not affect the total p38 level at all
time points (Fig. 10a—b).
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IL-1B inhibited the protein expression of NFL, NFM, and
synaptophysin through promoting the phosphorylation
of p38-MAPK pathway in primary cortical neurons

To verify that IL-1p could suppress NFL, NFM, and
synaptophysin expression in primary cortical neurons
by activating the p38-MAPK pathways, NFL, NFM, and
synaptophysin protein levels were detected by western
blotting in primary cortical neurons treated with IL-1p
+ SB203580, a selective inhibitor of p38. Incubation of
primary cortical neurons with SB203580 30 min prior

to IL-1p administration for 24 h reversed the inhibition
of NFL, NFM, and synaptophysin protein expression in-
duced by IL-1p (Fig. 10c—f).

Discussion

There are five principal subunit proteins of neuron-specific
intermediate filaments (IFs) including the light, medium,
and heavy molecular mass neurofilament (NF) triplet pro-
teins (NFL, NFM, and NFH, respectively), a-internexin,
and peripherin [34—36]. Mature filaments are made up of
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different combinations of these five subunits [37]. NFL,
NEM, and NFH are the main cytoskeletal elements in ma-
ture neurons, although NFH expression is usually delayed
relative to NFL and NFM [38, 39]. Their main role is to in-
crease the axonal caliber of myelinated axons and conse-
quently axonal conduction velocity [38, 39]. NFM and NFL
are required for axonal radial growth [40-42]. Loss of
NFM and NFL results in small caliber axons [40-42]. The
axons are wrapped by many processes of oligodendrocytes
to form myelin sheath in the CNS [43]. The axolemma is
relatively uncovered at regularly spaced nodes of Ranvier
[44]. These structures allow rapid and efficient saltatory
propagation of action potentials along Ranvier nodes,
which enhance information transmission on axons [45].
The formation of synapses occurs between axons and
dendrites of different neurons in the CNS [46]. Synaptic
proteins including synaptophysin and post-synaptic
density-95 (PSD-95) are involved in synaptic plasticity [46].
Synaptophysin is localized in presynaptic vesicle

membranes, which play important roles in docking, fusion,
endocytosis, and membrane trafficking [47]. PSD-95 is a
post-synaptic protein, which is associated with regulating
the number and size of dendritic spines and developing
glutamatergic synapses [48]. Changes in these synaptic pro-
teins have been used to evaluate synaptic deficit [49]. The
present results have shown that NFL, NFM, and NFH pro-
tein expression level was significantly reduced in the CC at
different times after LPS injection. By electron microscopy;,
a lesser number and smaller diameter of axons were ob-
served. A striking structural feature or alteration in the
LPS-injected rats was the occurrence of some “darkened
neurons” which were not present in the cerebral cortex of
control rats. Interestingly, some of the “darkened neurons”
were seen in juxtaposition to normal looking neurons
which have also been found in ischemic monkey brain
[50, 51]. Therefore, it can be confidently argued that
they were not fixation artifacts rather they represent de-
generating neurons which have also been reported in
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traumatic brain injuries in the primates [52]. In light of this,
it is suggested that LPS injection had caused damage or
structural alterations to some neurons in the developing
cerebral cortex as well as their associated synapses. As a
result, it is possible that the neuronal proteins including
those that constitute the synapses in the cortex would be al-
tered. The close association of activated microglia with the
“darkened neuron” may not be fortuitous. LPS is known to
stimulate microglia in the brain and their release of proin-
flammatory cytokines such as IL-1( that might have in-
duced the neuronal changes affecting the soma, axons,
dendrites, and synapses as demonstrated in this study. It is
suggested that these are associated with decreased level of
synaptophysin, Ranvier node structural damage, and reduc-
tion of mature oligodendrocytes. In other words, axon

development in the CC was inhibited in the septic brain that
ultimately would lead to presynaptic deficit, axonal hypo-
myelination, along with Ranvier node structural damage.

It is well documented that complex crosstalks occur
between developing axons and oligodendrocyte progeni-
tor cell processes during myelin sheath formation [53].
Normal axon development is indispensable for oligo-
dendrocyte proliferation, maturation, and subsequent
myelination [53]. The present results have shown that
PLP protein level was drastically downregulated in the
CC in septic brain coupled with reduction in the num-
ber of PLP-positive oligodendrocytes. It stands to reason
therefore that inhibition of axon development can cause
disorder of oligodendrocyte maturation and hypomyeli-
nation in the CC in LPS-injected rats.
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We show here that microglia, especially those closely
associated with the callosal axons in the CC, were acti-
vated and generated excess amounts of IL-1f after LPS
injection. Microglia activation may be elicited by serum-
derived proinflammatory mediators which have gained
access to the brain tissue by passing through the dis-
rupted blood-brain barrier [15]. Interestingly, microglial
activation was sustained up to nearly a week, suggesting
that it is a persistent and intense inflammatory response
in the CC in septic rats. Furthermore, at a late stage of
the inflammatory response, the reactive astrocytes would
be an additional cellular source for IL-1B [54]. Besides
IL-1B, activated microglia release other proinflammatory
mediators in adverse conditions including TNF-«, indu-
cible nitric oxide synthase (iNOS), and NO; all these
have been reported to cause the loss of oligodendrocyte
and myelination deficit through the corresponding
signaling pathways [19, 28, 55]. The exhibition of IL-1R;
expression on NFL immunoreactive axons was aug-
mented and remained to be so for about a week after
LPS challenge. It has been documented that IL-1[ exerts
direct inhibitory effect on axonal growth of developing
superior cervical ganglion sympathetic neurons via acti-
vating NF-«kB signaling pathway [56]. In agreement with
this, IL-1p exerted an inhibitory effect on the outgrowth
of axons from cultured dorsal root ganglion cells in vitro
[57]. In light of this, it was surmised that IL-1p derived
from the microglia might suppress the development of
axons via IL-1R; in the PWM of septic neonatal rats.
We show here reduction of NFM, NFL in the CC, and
synaptophysin expression in the cerebral cortex in vivo.
However, the number of neurons was not decreased signifi-
cantly in the cortex, albeit the identification by electron
microscopy of some “darkened neurons” indicative of neur-
onal degeneration or death. Additionally, IL-1p administra-
tion in vitro was found to decrease expression of NFM,
NFL, and synaptophysin in primary neurons. Remark-
ably, IL-1 receptor antagonist neutralized the inhibi-
tory effect of IL-1p on expression of NFM, NFL, and
synaptophysin. Taken together, these results suggest
that IL-1p treatment could inhibit axonal develop-
ment and synapse formation in primary culture
neurons. More importantly, the in vitro results cor-
roborated with in vivo findings.

Previous studies have reported that increased p38-
MAPK activity may be responsible for the loss of synapto-
physin following LPS administration [25, 58, 59]. In
addition, inhibition of p38-MAPK activity can revert the
loss of synaptophysin induced by IL-1p in rat primary cor-
tical neuronal cultures and in an animal model of Alzhei-
mer’s disease [25, 58, 59]. We have shown that the
phosphorylated p38 levels were markedly increased at
0.5 h and gradually declined to basal levels at 6 h in the
primary cultured neurons treated with IL-1B protein.
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Administration of SB203580, a selective inhibitor of
p38, upregulated NFM, NFL, and synaptophysin protein
levels that were suppressed by IL-1f3 incubation. On the
basis of these findings, it is concluded that IL-1p might
inhibit the expression of NFM, NFL, and synaptophysin
through IL-1R;-p38-MAPK signaling pathway in pri-
mary neurons; hence, inhibition of p38-MAPK signal-
ing pathway may help ameliorate axon injury and
synaptic deficit in the septic neonatal brain (Fig. 11).

Conclusions

This study has shown reduction of axonal neurofilament
protein expression coupled with disorder of axonal mye-
lin sheath formation and synaptic deficit in the PWM
and cerebral cortex, respectively, of septic developing
brain. Concomitantly, AMCs associated with the axons
were activated and produced a large amount of IL-1p.
The possible crosstalk between AMCs and axons
through IL-1p and its receptor 1 localized on axons
would perturb the development of axons, which would
contribute to disorder of myelin sheath formation and
synaptic deficit. In vitro, IL-1f inhibited the expression
of NFL, NFM, NFH, and synaptophysin in primary neu-
rons via p38-MAPK signaling pathway. Therefore, inhib-
ition of the biochemical and/or molecular processes
mentioned above may represent one potential thera-
peutic strategy in mitigating PWMD induced by LPS in
the developing brain.

LPS

IL-18

Neuron

Microglia

Fig. 11 TOCI. An illustration demonstrates the cellular and
molecular events associated with PWMD in the septic developing
brain. Microglia are activated after LPS intraperitoneal injection

and release proinflammatory cytokine IL-13, which inhibits the
generation of NFL, NFM, and NFH in the axon through its IL-1R; via
p38-MAPK signaling pathway. This suppresses axon development and
contributes to axonal hypomyelination in septic neonatal brain.
Moreover, the synaptogenesis of neurons involved in this process
is ultimately affected

~
g




Han et al. Journal of Neuroinflammation (2017) 14:52

Additional files

Additional file 1: Figure S1. The CCK-8 assay (cell counting kit 8) was
performed to determine the IL-13 concentration. The viability of neuronal
cells was significantly reduced when neurons were treated with IL-1(3 at
a dose exceeding 40 ng/mL. (TIF 820 kb)

Additional file 2: Figure S2. Apoptosis of neurons in the cortex. The
incidence of apoptotic neurons co-labeled by caspase-3 (red) and NeuN
(green) did not change markedly at 7 days (A-F), 14 days (G-L), and

28 days (M-R) in the cerebral cortex after LPS injection (D-F, J-L, P-R)
when compared with controls (A-C, G-I, M-0). Scale bars: A-R 20pm.
(TIF 6590 kb)

Additional file 3: Figure S3. Nissle staining shows the number of
neurons in the cortex of postnatal rats at 7, 14, and 28 days after LPS
injection (B, D, F) and their corresponding controls (A, C, E). (TIF 7048 kb)
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