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Abstract

Background: Astrocyte activation is one of the earliest findings in the brain of methamphetamine (Meth) abusers.
Our goal in this study was to identify the characteristics of the astrocytic acute response to the drug, which may be
critical in pathogenic outcomes secondary to the use.

Methods: We developed an integrated analysis of gene expression data to study the acute gene changes caused
by the direct exposure to Meth treatment of astrocytes in vitro, and to better understand how astrocytes respond,
what are the early molecular markers associated with this response. We examined the literature in search of similar
changes in gene signatures that are found in central nervous system disorders.

Results: We identified overexpressed gene networks represented by genes of an inflammatory and immune nature
and that are implicated in neuroactive ligand-receptor interactions. The overexpressed networks are linked to
molecules that were highly upregulated in astrocytes by all doses of methamphetamine tested and that could play
a role in the central nervous system. The strongest overexpressed signatures were the upregulation of MAP2K5,
GPR65, and CXCL5, and the gene networks individually associated with these molecules. Pathway analysis revealed
that these networks are involved both in neuroprotection and in neuropathology. We have validated several targets
associated to these genes.

Conclusions: Gene signatures for the astrocytic response to Meth were identified among the upregulated gene
pool, using an in vitro system. The identified markers may participate in dysfunctions of the central nervous system
but could also provide acute protection to the drug exposure. Further in vivo studies are necessary to establish the
role of these gene networks in drug abuse pathogenesis.
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Background
Astrocytes are glial cells that are involved in numerous
brain functions, including interacting with neurons and
maintaining brain structure [1, 2], synthesizing cholesterol
[3], and controlling synaptogenesis and neuronal plasticity
[4–6]. In addition, together with microglia cells, astrocytes
are first responders to both systemic and central nervous

system (CNS) localized insults [7, 8]. These cells can initi-
ate an inflammatory response, which can interestingly
both promote tissue healing and neuronal loss and dam-
age, as well as control the permeability of the blood-brain
barrier (BBB) [9–11].
Drug abuse is one of the factors that can induce the

activation of astrocytes [12]. One such drug is metham-
phetamine (Meth), which is widely used due to its strong
effects as a psychotropic stimulant and its low price.
Meth abusers develop an enormous number of degen-
erative symptoms, particularly in the CNS, manifested
by cognitive deficits and motor dysfunction [13]. Astro-
cytic activation is one of the most common findings in
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the brain of Meth abusers, as well as in various models
of Meth exposure [14–17], often associated with neuro-
toxicity. The effects of Meth on astrocytes could be po-
tentially direct and have been attributed to its binding to
sigma1 receptors [18].
In the present studies, we tested the hypothesis that

astrocytes, as important first responders, may develop
phenotypic changes that can contribute and be associ-
ated to neurological decline and multiple disorders com-
monly found in Meth abusers. We evaluated whether
Meth can affect astrocytes by producing changes in gene
expression and whether such changes can be critical at-
tributes in the development of CNS disorders. We ex-
amined genes that were upregulated following Meth
exposure, with an in vitro approach using primary cor-
tical astrocytic cultures. Using systems biology, we have
integrated the expression changes caused by Meth and
have identified important astrocytic patterns, finger-
prints, and pathways among genes that are transcrip-
tionally enriched by the exposure to Meth. Although the
analysis is limited to upregulated genes, these changes
could have important implications in the development
of neurological symptoms commonly associated with
drug abuse.

Methods
Primary rat astrocyte cultures
E18 embryonic Sprague Dawley rat cortical astrocytes
(BrainBits LLC, Springfield, IL) were cultured on poly-
D-lysine-coated coverslips and were maintained in
Neuro basal medium (Invitrogen, Carlsbad, CA) with
10% horse serum and 3 mM glutamine (Invitrogen),
until confluence was reached (day 12).

Methamphetamine treatment
(+)-Methamphetamine hydrochloride (Sigma-Aldrich,
Saint Louis, MO) was added to the confluent astrocytic
cultures, at the final concentrations of 1, 10, and
100 μM, diluted in PBS. The drug was maintained in the
cultures for 24 h prior to the harvesting of the cells.
Control cultures were incubated with PBS vehicle. All
results derive from three independent experiments, each
one performed in duplicate.

Apoptosis detection
The rat astrocytes were tested for development of
apoptosis 24 h after Meth treatment, using the ter-
minal deoxynucleotidyl transferase dUTP (TdT) in
situ TACS Blue (R&D systems), following the manu-
facturer’s instructions. Counterstaining was performed
with Gill’s hematoxylin (Sigma-Aldrich, St. Louis,
MO). Coverslips were applied over Cytoseal 60
mounting media (EMS, Hatfield, PA), and cells were
inspected in light microscope.

Cell harvest and RNA extraction
Total RNA was isolated from the cells using Trizol re-
agent (Thermofisher, Waltham, MA), according to the
manufacturer’s instructions. Total RNA concentration
was measured using the Nanodrop spectrophotometer
and then used for reverse transcription and for gene
array (below).

Gene expression array
The integrity of total RNAs was examined in an Agilent
Bioanalyzer 2100 (Agilent Technologies, Santa Clara, CA,
USA). Total RNA concentration was measured using the
Nanodrop spectrophotometer. The mouse Agilent micro-
array service was performed by Phalanx Biotech (San
Diego, CA). A total of 4 μg Cy5-labeled RNA targets were
hybridized to Gene Expression v2 4x44K Microarrays
(Agilent Technologies, Santa Clara, CA), according to the
manufacturer’s protocol. The data were analyzed using the
provided manufacturer’s protocol. Following the
hybridization, fluorescent signals were scanned using an
Axon 4000 (Molecular Devices, Sunnyvale, CA, USA).
Three replicates per condition were used. Microarray sig-
nal intensity of each spot was analyzed using the GenePix
4.1 software (Molecular Devices, Sunnyvale, CA, USA).
Each signal value was normalized using the R program in
the limma linear models package (Bioconductor 3.2,
https://bioconductor.org).

Gene expression analysis
Raw data was loaded into ArrayStudio (Omicsoft
Corporation, Cary, NC) and first filtered based on a
built-in ANOVA, as well as a t test, applied to fold
changes between experimental and control conditions.
Significant changes had a p value <0.05. In addition,
maximum least-squares (Max LS) mean ≥ 6 and a false
discovery rate by the Benjamini-Hochberg correction
(FDR_BH) <0.01 were applied. Using this method, we
found many genes with raw p values <0.05, but if the
FDR_BH did not reach <0.01, they were discarded. In
this particular analysis set, the genes were further fil-
tered to express a robust fold change above 4 between
control and experimental cultures. These filters allowed
the identification of significant, above background gene
expression changes. The list of genes that were signifi-
cantly upregulated by Meth in astrocytes, following the
described criteria, were loaded into Cytoscape 3.3
(http://cytoscape.org), using GeneMania [19], to identify
significantly changed interaction networks of genes and
relevant pathways. Pathway enrichment was examined
using iPathwayGuide (Advaita Bioinformatics, Plymouth,
MI) platform [20] and DAVID Bioinformatics data-
base [21] (https://david.ncifcrf.gov), which utilize the
Kyoto Encyclopedia of Genes and Genomes (KEGG)
(www.genome.jp/kegg) and in Gene Ontology (GO)
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terms (http://geneontology.org/page/go-enrichment-analysis).
Diseases associated to the changed profiles and genes
were identified in KEGG.

RT-PCR
Validation of gene array data was performed both in the
same samples and in two additional independent experi-
ments. RNA was reverse transcribed using SuperScript
III Reverse Transcriptase (Invitrogen, Waltham, MA).
Most primers were purchased from Qiagen (Valencia,
CA). PCRs were performed using RT2 SYBR Green ROX
FAST Mastermix (Qiagen), in a 7900HT Fast Real-Time
PCR System with Fast 96-Well Block Module (Applied
Biosystems, Foster City, CA) with a SDS Plate utility
v2.2 software (Applied Biosystems). The results were
normalized to the expression of GAPDH.

Protein extraction and western blots
Following a wash with ice-cold PBS, protein from cell cul-
tures was extracted by lysis in radio-immunoprecipitation
assay buffer (RIPA—Thermo Fisher Scientific, Waltham,
MA) in the presence of Complete protease inhibitor cock-
tail tablets (Roche Molecular Biochemicals, Indianapolis,
IN). The cells were scraped and transferred to a microfuge
tube and span at 10,000 rpm at 4 °C for 10 min. The
supernatant was transferred to a new tube and protein
concentration was measured using a Bradford Reagent
(BioRad, Hercules, CA). Protein was stored in −20 °C
until use. Ten micrograms of protein were loaded into
each lane of SDS-PAGE electrophoresis gels (BioRad)
in 4–20% gradient gels under reducing conditions.
Transfer and immunodetection were performed as pre-
viously described [22]. Nonspecific antibody binding
was blocked using 5% nonfat dried milk for 1 h at
room temperature. Immunoblotting was carried out
with antibodies against MEK5/MAP2K5 (PA5-29236,
Thermo Fisher Scientific), TDAG8/GPR65 (BS-7668R,
Bioss, Inc./VWR, Radnor, PA), and b-actin (Cell Signal-
ing, Danvers, MA), followed by secondary antibody
HRP-conjugated anti-rabbit IgG (GE Healthcare, Little
Chalfont, UK). Blots were developed in film (Kodak)
with 1:1 solution of Super Signal West Pico Chemilu-
minescent Substrate and Luminol/Enhancer (Thermo
Fisher Scientific, Rockford, IL). Bands were scanned
and band intensities were calculated in ImageJ 1.43u
(National Institute of Health, Bethesda, MD). Experimen-
tal bands were normalized to the intensity of b-actin
bands in each sample.

Immunocytochemistry
Cells were cultured on poly-L-lysine (Sigma-Aldrich)-
treated 8-well glass chamber slides (Thermo Scientific),
fixed with 4% paraformaldehyde for 20 min in the dark,
and then washed with PBS. Wells were then incubated

with PBS containing 0.1% Triton X-100 for 15 min at
room temperature, rinsed 3 times with PBS, and then
blocked with 5 g/l Casein (Sigma-Aldrich) in PBS, con-
taining 0.5 g/l Thimerosal (Sigma-Aldrich) for 1 h at
room temperature. The primary antibodies against
MEK5/MAP2K5 (PA5-29236, Thermo Fisher Scientific),
TDAG8/GPR65 (BS-7668R, Bioss, Inc./VWR, Radnor,
PA), and CXCL5 (BS-2549R, Bioss Inc./VWR, Radnor,
PA) were diluted in blocking solution and placed in the
wells for 2 h at room temperature. Then, cells were
rinsed 3 times for 10 min with 1% blocking solution in
PBS, followed by incubation with a secondary Alexa594-
labeled donkey anti-rabbit IgG (Thermo Fisher Scien-
tific) for 2 h at room temperature, in the dark. After
rinsing, 4′,6-diamidino-2-phenylindole dihydrochloride
(DAPI) was diluted to 300 ng/ml in 1% blocking solution
for 10 min, in the dark. Cells were rinsed and main-
tained in PBS and observed in a Nikon A1R laser-
scanning confocal mounted onto a Nikon-inverted Ti-E
scope (Nikon, Melville, NY), and with a 20× PlanApo
objective, 0.8NA (Nikon) and images were acquired
using a NIS-Elements C software (Nikon). Fluorescence
intensity was normalized against background (secondary
antibody only) and calculated in ImageJ 1.43u (National
Institute of Health, Bethesda, MD).

Statistical analysis
Group comparisons for individual genes across differ-
ent culture conditions were performed using one-way
ANOVA, followed by Bonferroni’s post hoc tests. The
difference between the means was considered signifi-
cant at p < 0.05. Tests were performed using Prism
software (GraphPad Software, San Diego, CA, USA) for
Macintosh.

Results
Astrogliosis is among the earliest consequences of Meth
use to the CNS. We investigated the early effects of
Meth exposure on primary cortical astrocytes, by focus-
ing on genes that were upregulated to above a conserva-
tive 4-fold threshold, which corresponded to more than
62% of the total changes in gene expression caused by
the drug at any concentration over 24 h of exposure, as
determined by gene array. Importantly, over the course
of the experiment, we did not observe significant de-
crease of cell viability due to the exposure to different
concentrations of Meth, as assessed by TdT detection by
in situ hybridization (not shown).
We found that 411 genes were increased when the

astrocytic cultures were exposed to Meth at concentra-
tions of 10 or 100 μM, in comparison to controls, while
in treatments with 1 μM of Meth, 180 genes were sig-
nificantly increased. All together, 179 genes were signifi-
cantly upregulated to above 4-fold by all the three doses
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of Meth compared to vehicle-treated astrocytes (Table 1).
The correlation coefficient confirms that for the majority
of the genes, Meth induced a dose-dependent response
pattern (Table 1), which is visualized in Fig. 1. Figure 1a
shows fold change of all the upregulated genes at the dif-
ferent doses of Meth. All genes that increased to above
4-fold at 10 μM of Meth compared to control were also
significantly increased with 100 μM, but only 32% of
those were also increased by the 1-μM condition. The
calculation of the average fold change showed a signifi-
cant overall dose-response effect (Fig. 1b), with a Pear-
son coefficient equal to 0.89 and a p value ≤0.0001.
However, the examination of a correlation coefficient in
all the individual upregulated genes showed that 28% of
all genes exhibited a flat response that was equal in all 3
doses, while 22% of the genes showed a negative correl-
ation coefficient, suggesting an inverse dose-response
effect.
We examined the top 30 most upregulated genes in

each of the three doses of Meth used to stimulate astro-
cytes (Table 2). Surprisingly, the majority of the genes
differed between the three doses. However, a few genes
appeared among the 30 most upregulated genes by all
conditions, compared to controls. These genes, which
appear in Table 1 as italics, were the mitogen-activated
protein kinase kinase 5 (MAP2K5), the G protein-
coupled receptor 65 (GPR65), ectodysplasin A (ED1),
the neuron navigator 3 (NAV3), and CXCL5, which were
chosen for a deeper analysis of the behavior of genes in
network with them and pathway changes resulting from
Meth exposure.
MAP2K5, GPR65, and CXCL5 were further validated

by PCR and also at the protein levels. The qPCR valid-
ation results confirmed the potential importance of these
three molecules in the direct response of astrocytes to
Meth (Fig. 2a). The PCRs were performed in the same
samples used for gene array and also in two independent
experiments. MAP2K5 and GRP65 were significantly up-
regulated by all three doses, and CXCL5 was signifi-
cantly upregulated in 10 and 100 μM treatments
(Fig. 2a). We confirmed the relevance of these findings
at the protein level, using specific antibodies against
MEK5, the protein transcribed by the MAP2K5 gene,
and GRP65, by western blot (Fig. 2b, c). The enrichment
of these proteins was also confirmed by imaging, using
specific antibodies against MEK5, GRP65, and CXCL5
(Fig. 2c, d). The increase in these markers first identified
using systems biology tools suggests the value of the ap-
proach and its power for the identification of changes in
genes that depend on or are associated with MAP2K5,
GRP65, and CXCL5. We again utilized systems biology
to search for gene networks associated to these genes, as
well as to ED1 and NAV3, exhibiting synchronic behav-
iors in response to Meth in astrocytes.

For the examination of the behavior of genes in net-
work with MAP2K5, GPR65, CXCL5, ED1, and NAV3,
we used GeneMania in Cytoscape, and for that, we fo-
cused on the 10 μM dose, which represents levels of
drug reaching the brain in Meth users [23]. The analysis
of the changes was conducted using a protocol utilized
in our lab, to determine the behavior of genes associated
to the ones we chose to prioritize, based on pathway,
physical and genetic interactions, shared protein do-
mains, or coexpression, in order to predict molecular
networks with which astrocytes might respond to acute
drug abuse. Using GeneMania and JActiveModules in
Cytoscape [24–27], we identified such gene node clus-
ters. The highest score node contained 141 genes, which
were all upregulated, and which clustered with a coeffi-
cient of 0.174, suggesting that Meth has a strong effect
on astrocytic gene networks. Ninety of those genes
(63.8%) showed multi-edged node pairs, suggesting a
strong interaction between molecular changes and pro-
cesses triggered by Meth in astrocytes (Additional file 1:
Figure S1). MAP2K5, GPR65, and ED1 (EDA or the rat
homolog of CD68), which were consistently among the
30 genes most upregulated by all three doses of Meth
(Table 2—italic letters), were also represented in this
large gene cluster. A literature examination suggests that
these genes could be a link between the acute response
of astrocytes to Meth and the potential development of
CNS alterations. For instance, ED1 is a microglial
marker but it can be found expressed on tumoral astro-
cytes [28]. Interestingly, MAP2K5 is also a characteristic
of tumorigenesis [29]. GPR65, on the other hand, is a
proton- and acid-sensing G-protein receptor that plays
an important role in cell survival and is also known as
TDAG8 [30, 31].
We examined subfamilies of genes assembled as child

nodules, by connecting first neighbors of MAP2K5
(Fig. 3a) and GPR65 (Fig. 3b), which led to subnetworks
respectively assigned to neuronal support and inflamma-
tion. For instance, the genes that appeared in connection
with MAP2K5 (Fig. 3a) were annotated to MAPK signal-
ing (p = 0.0022), gap junction (p = 0.0051), the GnRH
signaling pathway (p = 0.0062), and also neuroactive
ligand-receptor interactions (p = 0.008), suggesting asso-
ciation to neurological outcomes. The genes connected
to GPR65 (Fig. 3b) were associated to pathways involv-
ing cytokine-cytokine interaction (p = 0.00027), chemo-
kine signaling pathway (p = 0.04), B cell receptor
signaling pathway (p = 0.003), Fc-gamma R-mediated
phagocytosis (p = 0.0048), and systemic lupus erythema-
tous (p = 0.0052), suggesting a role in potential inflam-
matory outcomes.
ED1 was not represented in either one of these subnet-

works, but a cluster analysis centered on first neighbors
of this gene (Fig. 3c), resulted in a group of genes
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Table 1 List of genes that were significantly upregulated to above fourfold compared to control, in astrocytic cultures stimulated
with 1, 10 or 100 μM of Meth for 24 h and the calculated correlation coefficient

Genes 1 μM Meth/Ctr 10 μM Meth/Ctr 100 μM Meth/Ctr Correlation coefficient

HRH4 5.22 6.00 14.15 0.999994447

PRO2610 5.96 7.26 22.63 0.999923265

LOC160313 7.61 8.69 21.71 0.999909473

LOC284244 4.31 4.68 7.68 0.999847888

IL2RG 9.46 10.02 13.82 0.99936847

FLJ21125 4.64 4.92 6.73 0.999151048

CXCL11 10.63 12.83 25.68 0.998567259

CFLAR 4.03 4.05 4.81 0.998443584

ZNF407 14.94 15.12 23.88 0.997905826

DLEU2 4.42 4.65 27.26 0.997318927

BLZF1 5.86 6.02 30.54 0.997077518

CA5A 4.35 7.04 20.25 0.997050779

WNT4 9.36 9.28 17.78 0.99591735

ZNF256 5.47 7.97 18.80 0.995466993

FLJ23022 5.35 5.26 10.05 0.995146093

ANKRD2 7.26 9.06 15.97 0.99339194

RPIB9 8.30 7.64 16.58 0.988926108

EIF5A2 8.95 9.24 10.13 0.988863198

NAV3 18.93 25.26 43.44 0.985779001

CXCL11 12.21 5.50 72.41 0.984990642

LOC115648 6.34 5.73 11.47 0.984194119

EPOR 5.35 5.05 7.68 0.982893395

FHL5 6.31 5.27 14.20 0.98214045

FLJ12476 5.03 4.14 11.13 0.980241319

AGTR2 4.51 10.44 25.06 0.979647991

PTPN11 5.92 5.39 9.24 0.978342528

ERBB3 4.21 5.69 9.13 0.976733781

C17orf31 7.89 9.07 11.75 0.975527055

COVA1 4.97 5.76 7.51 0.97455129

IL21 6.43 5.35 12.13 0.973672943

MGC5347 7.52 5.04 19.93 0.971790582

PRO1483 10.46 11.72 14.24 0.968741946

IL1RN 5.88 6.42 7.44 0.965964206

ROCK1 5.21 8.71 15.25 0.964364225

ZCCHC4 5.85 4.36 11.88 0.96376171

HPCA 4.04 5.48 7.90 0.956547336

NUP62 5.45 4.72 7.97 0.955960582

RW1 19.68 14.85 35.53 0.953075462

C14orf105 13.55 4.01 38.76 0.938912869

CXCL5 11.65 4.91 27.58 0.93015087

IL18RAP 7.38 6.14 10.30 0.929932455

ZNF154 5.31 4.37 7.48 0.928233605

CPB1 7.73 4.35 14.93 0.92105335

Bortell et al. Journal of Neuroinflammation  (2017) 14:49 Page 5 of 20



Table 1 List of genes that were significantly upregulated to above fourfold compared to control, in astrocytic cultures stimulated
with 1, 10 or 100 μM of Meth for 24 h and the calculated correlation coefficient (Continued)

ABCC3 13.96 12.93 16.14 0.920806618

C10orf6 7.30 5.12 11.75 0.916688112

UPK1A 4.89 5.10 5.34 0.914921573

PTGER3 6.96 27.56 49.18 0.910059159

HYAL3 6.44 4.78 9.16 0.893055409

RANBP2L1 7.02 6.85 7.31 0.892766347

IGF1R 8.99 8.40 9.89 0.883899673

PRKRIP1 7.88 7.09 9.06 0.88130575

CPT1B 5.01 4.01 6.43 0.873310822

CDH19 4.56 7.24 9.34 0.871735485

FLJ20130 5.40 5.01 5.93 0.867880389

ACSL6 6.38 11.00 14.22 0.855571102

ALS2CR8 10.31 5.58 15.43 0.834990904

PHF3 30.59 15.06 47.05 0.831376032

TRGC2 8.13 20.42 26.81 0.812813175

POU4F1 4.38 8.73 10.68 0.791279314

C14orf136 10.74 8.45 12.60 0.787208769

MAP2K5 47.30 40.66 51.74 0.751719778

FLJ10254 13.09 4.71 18.20 0.734959034

KIAA0125 6.26 11.21 12.42 0.711285891

MAN1A2 4.45 7.58 8.29 0.702683293

FLJ21463 18.35 28.81 30.81 0.686425762

ED1 28.51 18.13 32.47 0.653331221

C21orf55 4.04 5.13 5.26 0.646315568

GNRHR 4.46 4.91 4.95 0.6183026

ADCK4 8.69 11.02 11.14 0.602818956

NSBP1 12.62 25.17 25.78 0.602619958

SSBP1 6.90 10.61 10.76 0.596964796

PPFIBP1 5.71 4.16 6.10 0.590195955

TRIM29 4.78 19.48 19.47 0.569146877

CYP2C9 9.23 9.13 9.25 0.56683014

OR2B2 7.57 8.57 8.56 0.561685078

PRELP 6.43 5.61 6.51 0.504686246

SSA2 37.28 4.89 39.64 0.481229307

PRO1600 6.99 12.36 11.48 0.438516158

XCL1 19.84 8.61 19.69 0.416074655

HSD11B1 10.34 7.07 10.24 0.403740827

CYP19A1 7.65 5.86 7.50 0.358844363

MGC3262 8.68 4.67 8.30 0.347905863

LAK 6.66 4.17 6.39 0.335763779

FLJ11292 15.84 26.79 23.78 0.329911393

KIAA0506 4.56 34.32 25.68 0.314405937

DNAH17 4.47 6.52 5.90 0.302712912

SLC28A3 7.41 17.06 14.14 0.301973863
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Table 1 List of genes that were significantly upregulated to above fourfold compared to control, in astrocytic cultures stimulated
with 1, 10 or 100 μM of Meth for 24 h and the calculated correlation coefficient (Continued)

ELSPBP1 7.95 11.66 10.44 0.274977991

ZNF41 4.86 5.39 5.20 0.241177993

FLJ11348 8.42 11.42 10.30 0.226653077

EPB41 11.15 7.87 10.37 0.208972082

SMG1 154.71 11.40 120.32 0.207904327

TNP2 23.46 15.58 21.25 0.164160589

GAGE8 4.48 13.21 9.39 0.153207816

CENPF 4.21 5.08 4.67 0.116060881

PIGO 4.46 10.82 7.73 0.09831086

NFAT5 23.00 6.44 17.20 0.088932883

POLR2A 9.09 4.73 7.55 0.0851526

CLCA1 5.32 12.11 8.72 0.082447917

PAX2 9.46 5.85 8.16 0.079652497

GPR65 15.67 38.31 26.87 0.075789877

FLJ13265 6.84 20.68 13.46 0.057111998

MSR1 7.69 4.99 6.58 0.018886308

POGZ 42.73 12.20 29.02 −0.023536687

CPB2 8.02 4.16 6.27 −0.02790024

MAP3K2 4.82 5.09 4.93 −0.032387929

HCFC1 6.05 12.51 8.24 −0.100973451

CG018 6.96 16.00 9.89 −0.117326039

VPS13D 4.60 6.27 5.10 −0.144143951

ZNF198 25.51 20.32 22.63 −0.145242887

TBXA2R 4.72 6.30 5.19 −0.150283188

ICOSL 5.22 12.20 7.06 −0.183375741

KIAA1111 7.10 10.54 7.92 −0.211199313

LTBP1 9.46 7.01 7.95 −0.211941907

GLI2 4.23 7.75 5.06 −0.212825862

MR1 8.98 20.62 11.69 −0.215175838

FLJ22349 5.58 4.14 4.66 −0.237602369

FLJ14075 11.93 8.12 9.50 −0.238880951

ATF5 5.48 4.41 4.78 −0.259393542

SLC38A3 4.74 10.60 5.68 −0.286870158

C13orf10 26.12 16.12 19.26 −0.289504282

DKFZp547G183 27.90 12.34 17.11 −0.297276605

FLJ13315 4.10 14.76 5.39 −0.324025634

LAD1 4.16 5.80 4.35 −0.325934689

CXCL10 5.56 10.82 6.16 −0.330535675

HS3ST1 10.35 6.53 7.46 −0.363755006

PPARBP 13.49 4.11 6.08 −0.39467915

XTP2 8.78 4.50 5.39 −0.395501804

CCNF 7.88 5.06 5.63 −0.40201752

KCNJ5 6.48 8.95 6.50 −0.422109284

EPS15L1 5.88 17.45 5.74 −0.437001047
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Table 1 List of genes that were significantly upregulated to above fourfold compared to control, in astrocytic cultures stimulated
with 1, 10 or 100 μM of Meth for 24 h and the calculated correlation coefficient (Continued)

MDM2 17.42 6.02 7.88 −0.437851968

NDRG2 4.12 10.59 4.02 −0.439445915

PC 7.00 19.67 6.18 −0.475353048

KRTAP2-2 7.24 20.52 5.99 −0.495867331

TP73L 7.46 4.80 5.04 −0.49958314

PYGO1 6.10 4.07 4.24 −0.50597972

ZNF492 12.76 53.53 8.28 −0.506554374

EIF3S5 7.75 32.72 4.24 −0.526505038

KCNN2 6.32 4.28 4.39 −0.527171032

KIAA1061 10.24 4.60 4.64 −0.564918257

ICAM5 5.65 10.15 4.69 −0.569881474

ADAM3A 13.97 39.21 7.92 −0.584876673

KBTBD10 13.67 46.06 5.78 −0.586881473

MLL4 8.09 20.74 4.94 −0.589848953

C14orf161 7.61 5.92 5.76 −0.632312086

LOC51233 5.49 8.92 4.27 −0.642741323

THEA 8.13 12.93 6.35 −0.648630838

LOC153077 49.55 10.43 5.54 −0.649861448

RNF40 7.17 4.47 4.10 −0.655819595

SAMSN1 12.07 25.74 6.02 −0.67845578

MYO15B 15.81 10.96 10.02 −0.687237714

MPHOSPH9 7.66 4.97 4.38 −0.699214766

GAD2 19.96 9.83 6.74 −0.738789688

DKFZp761K1824 16.25 7.33 4.25 −0.7549633

ERO1LB 17.38 9.75 6.47 −0.785862655

CDC27 7.96 11.36 4.92 −0.802905584

R3HDM 9.32 13.58 5.26 −0.814306845

FER1L4 4.37 4.69 4.05 −0.819705072

CRISP1 11.33 17.94 4.26 −0.83259712

KIAA0711 12.39 10.16 8.77 −0.839558326

SHANK2 10.09 15.00 4.39 −0.845688215

CXCL5 18.68 28.57 5.46 −0.866462528

MAS1 7.31 8.37 5.09 −0.918996442

FLJ10884 7.11 7.99 5.21 −0.922608325

SYT13 8.20 7.74 7.15 −0.930388821

DEFA1 17.12 13.97 9.33 −0.945454774

LOC254531 8.06 7.15 5.70 −0.951989998

DKFZP564O0523 9.67 11.20 4.31 −0.956606755

ZNF277 9.80 8.37 5.95 −0.957461038

COX6CP2 13.97 11.27 6.34 −0.962461413

TP73L 9.20 9.85 6.65 −0.962541835

PRO1496 11.83 9.38 4.89 −0.962971923

DKFZP434H132 6.52 7.00 4.30 −0.968953829

CCL27 21.35 24.51 4.44 −0.973907967
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functionally assigned as glycoproteins (p = 0.0018), and
functionally annotated to immune response (p = 0.029)
and cell adhesion (p = 0.03).
Other genes among the 30 most upregulated ones by all

three doses were NAV3 and CXCL5 (Table 2). NAV3 was
represented within subnetworks associated to GPR65
(Fig. 3b), as well as to ED1 (Fig. 3c). CXCL5, on the other
hand, segregated on a network (Fig. 4) that was heavily as-
sociated to chemokine signaling pathway (p = 8.7E−7),
cytokine-cytokine receptor interaction (p = 6E−5), neu-
roactive ligand-receptor interaction (p = 0.0037), and
calcium signaling pathways (p = 0.01).
We further dissected the highest score node, to

produce subnetworks that were derived by the intro-
duction of a display restriction connecting genes
only through pathway and physical associations. This
restrictive approach generated one network (Fig. 5),
in which MAP2K5 appeared as the strongest upregu-
lated gene, in correlation with other genes described
in neurological processes, metabolism, and inflam-
mation (Fig. 5). Importantly, as a control, the cor-
tical astrocyte marker ErbB3 [32] was represented in
this network.

We performed pathway enrichment analysis on the
set of genes that were upregulated by Meth in astro-
cytes, using the DAVID Bioinformatics Database
(KEGG_PATHWAY) (Table 3) and the iPathwayGuide
(Fig. 6). We found that Meth treatment on astrocytes
caused an important enrichment of genes that are
relevant in neuroactive ligand-receptor interactions,
immunity, and metabolic outcomes, as shown in
Table 3.
Further analysis was conducted to examine the num-

ber of gene perturbation accumulation (pACC) versus
overrepresentation p value (pORA) within pathways
(Fig. 6) and that also indicated that CNS- and
pathology-relevant genes were strongly represented. For
instance, genes involved in neuroactive ligand-receptor
interaction (p = 0.001) and circadian rhythm (p = 0.012)
led to an important contribution to changes induced by
Meth in astrocytes. A substantial, but not statistically
significant, representation of genes involved in chemo-
kine signaling pathways was also observed (p = 0.056).
Interestingly, Meth also triggered genes that are involved
in the resistance to infections (Fig. 6). The strong repre-
sentation of pathways that may be involved in

Table 1 List of genes that were significantly upregulated to above fourfold compared to control, in astrocytic cultures stimulated
with 1, 10 or 100 μM of Meth for 24 h and the calculated correlation coefficient (Continued)

CCRL1 7.67 7.97 5.67 −0.979552762

GLRA2 16.63 15.51 12.76 −0.979704777

FLJ20045 14.96 12.76 5.22 −0.990893832

OR5V1 7.20 6.79 5.09 −0.994534383

Fig. 1 Changes in astrocytic gene expression pattern following exposure to different doses of Meth for 24 h. a Three doses of Meth were used,
1 μM (blue diamonds), 10 μM (red squares), and 100 μM (green triangles). The genes that showed a robust 4-fold increase in all Meth treatments
were plotted as fold change in Meth-treated cells compared to controls. b The average fold change of all the genes was plotted for each one of
the doses of Meth, and the Pearson coefficient was calculated (r2 = 0.89). One-way ANOVA p value ≤0.0001
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neurological outcomes prompted an analysis of individ-
ual genes.
Of the genes annotated to the neuroactive ligand-

receptor interaction pathway (Fig. 7), a few were
interesting for being associated to neurological dis-
orders in other systems, for instance, the Period
Circadian Clock 2 (PER2) [33, 34]. Others have been also
described to have essential inflammatory roles, for in-
stance, prostanoid receptors, such as the prostaglandin E
receptor 3 (PTGER3), the thromboxane A2 receptor
(TBXA2R), and the prostaglandin D2 receptor (PTGDR),

which play important roles in inflammatory reactions and
hyperalgesia [35].
The other genes upregulated by Meth treatment of as-

trocytes that could be mentioned for their potential con-
nection with CNS-related syndromes were the following:
the inositol 1,4,5-triphosphate receptor, type 1 (ITPR1,
9.24-fold upregulation) is involved in spinocerebellar
ataxia [36]; the cold autoinflammatory syndrome 1
(CIAS1, 10.94-fold) in cryopirin-associated periodic syn-
drome [37]; the RET proto-oncogene (7.4-fold) in con-
genital central hypoventilation syndrome [38, 39]; PER2

Table 2 List of the 30 most upregulated genes by each one of the three doses of Meth utilized to stimulate astrocytes

Genes upregulated by Meth in primary astrocyte cultures

Dose 1 μM Meth Fold change Dose 10 μM Meth Fold change Dose 100 μM Meth Fold change

1 SMG1 154.71 ZNF492 53.53 SLC12A1 124.70

2 LOC153077 49.55 KBTBD10 46.06 SMG1 120.32

3 MAP2K5 47.30 MAP2K5 40.66 CXCL11 72.41

4 POGZ 42.73 ADAM3A 39.21 TACR3 54.41

5 SSA2 37.28 GPR65 38.31 RBPMS 51.89

6 PHF3 30.59 KIAA0506 34.32 MAP2K5 51.74

7 ED1 28.51 EIF3S5 32.72 PTGER3 49.18

8 DKFZp547G183 27.90 FLJ21463 28.81 R29124_1 49.00

9 C13orf10 26.12 CXCL5 28.57 KIAA1579 48.75

10 ZNF198 25.51 PTGER3 27.56 PHF3 47.05

11 TNP2 23.46 FLJ11292 26.79 NAV3 43.44

12 NFAT5 23.00 SLC12A1 26.12 RGS13 42.76

13 CCL27 21.35 SAMSN1 25.74 SSA2 39.64

14 GAD2 19.96 NAV3 25.26 RIT2 39.33

15 XCL1 19.84 NSBP1 25.17 C14orf105 38.76

16 RW1 19.68 FLJ22595 25.09 RW1 35.53

17 NAV3 18.93 CCL27 24.51 IBTK 34.45

18 CXCL5 18.68 MLL4 20.74 CEACAM8 34.23

19 FLJ21463 18.35 FLJ13265 20.68 ED1 32.47

20 MDM2 17.42 MR1 20.62 FLJ21463 30.81

21 ERO1LB 17.38 KRTAP2-2 20.52 BLZF1 30.54

22 DEFA1 17.12 TAP2 20.47 ARTN 29.96

23 GLRA2 16.63 TRGC2 20.42 POGZ 29.02

24 DKFZp761K1824 16.25 ZNF198 20.32 CSHL1 28.22

25 FLJ11292 15.84 PC 19.67 CXCL5 27.58

26 MYO15B 15.81 ELL2 19.67 DLEU2 27.26

27 GPR65 15.67 TRIM29 19.48 SOX30 27.15

28 FLJ20045 14.96 TACR3 18.76 TAP2 27.07

29 ZNF407 14.94 ED1 18.13 GPR65 26.87

30 ADAM3A 13.97 CRISP1 17.94 TRGC2 26.81

The doses of Meth corresponded to low (1 μM), moderate (10 μM), and high (100 μM) Meth exposure. All genes in the list have been curated for significance as
described in the Methods section. The genes in italics correspond to molecules that consistently appeared among the 30 upregulated genes in all three doses of
Meth and, for this reason, were prioritized for validation.
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(4-fold) in familial advanced sleep phase syndrome [40];
nucleoporin 62 kDa (NUP62, 4.72-fold) in infantile bilat-
eral striatal necrosis [41]; ubiquitin-activating E1
(UBE1,10–45-fold) [42] and ankyrin repeat domain 2
(stretch responsive muscle, ANKRD2, 9.06-fold) in para-
lytic syndromes and cerebral palsy; interleukin 1 recep-
tor antagonist (IL1RN, 6.43-fold), the interleukin 2
receptor common gamma chain (IL2RG, 10.02-fold), the
ATP-transporter 2 (TAP2, 20.47-fold), PTGDR (11.97-
fold), PTGER3 (27.56-fold), TBXA2R (6.3-fold), and the
Complement Component 2 (C2, 5.8-fold) in CNS
inflammation; the AarF domain containing kinase 4
(ADCK4, 11.04-fold) in coenzyme Q deficiency [43]; the
zinc finger protein 41 (ZNF41, 5.39-fold) and the angio-
tensin II receptor, type 2 (AGTR2, 10.44-fold) in fragile
X syndrome, cerebral ataxia, mental retardation, and

disequilibrium syndrome [44, 45]; laminin, alpha 2
(LAMA2, 4.31-fold) in congenital muscular dystrophies
and control of the blood-brain barrier [46]; and the cho-
linergic receptor, nicotinic, alpha 1 (CHRNA1, 7.73-fold)
involved in congenital myasthenic syndrome and consid-
ered as an important potential drug target [47].
Using qRT-PCR, we confirmed the transcriptional up-

regulation of several of these genes, prioritized by their
presence in the two most strongly represented pathways,
the neuroactive-ligand and the cytokine-cytokine recep-
tor interaction pathways (Table 4), in all three doses of
Meth in vitro. These genes were the IL1RN, IL2RG, as
well as the prostanoid receptors PTGDR, PTGER3, and
TBXA2R (Fig. 8 and Table 4). These genes play import-
ant functions in inflammatory processes in the brain and
elsewhere. We also examined other upregulated genes

Fig. 2 Validation of selected upregulated genes. a Transcriptional levels of MAP2K5, GRP65, and CXCL5 in astrocytes stimulated with 1, 10, and
100 μM of Meth for 24 h, examined by SyBrGreen qRT-PCR. Results are the Mean ± SEM of three independent experiments performed in
duplicate. b Representative western blots for detection of MEK5, the protein encoded by MAP2K5 gene, GPR65, and normalizing b-actin,
in protein extracts from astrocytes stimulated with 1, 10, and 100 μM of Meth for 24 h. c Normalized band intensity was calculated in
ImageJ software (NIH). d Confocal imaging showing representative astrocytic cultures stained with specific antibodies for detection of
MEK5, GPR65, and CXCL5 in 10 and 100 μM Meth treatments. e Fluorescence intensity of the expression of MEK5, GPR65, and CXCL5 was
calculated in ImageJ (NIH) for cultures stimulated with 1, 10, and 100 μM, as well as controls. *p < 0.05 in one-way ANOVA followed by
Bonferroni’s post hoc comparison against control conditions
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that have been described as molecules that could poten-
tially influence the immune environment in the CNS,
TAP2, and C2 (Fig. 8). All these validated genes have
been suggested to play important roles in the CNS and
neurological disorders [23, 48–53]. Our validation by
PCR confirmed that the Meth treatment has the capacity
to directly stimulate the upregulation of these genes,
which have an involvement in inflammatory processes in
the brain. Among them, TAP2 and PTGDR were upreg-
ulated by 10 and 100 μM Meth but not by 1 μM, while
the other genes were transcriptionally increased by all
the doses, validating the gene array data.
Although our analysis of changes in astrocytic gene

expression was focused on enrichments, a few of the
genes highlighted in our study have showed network
connections with genes downregulated by the Meth
treatment. The increase in MAP2K5, for instance, was
associated with the decrease on serine/threonine pro-
tein kinase 2 (PAK2) (0.6-fold, p = 0.041) (Fig. 5). Other
molecule that showed several downregulated connec-
tors was IL2RG (Fig. 9). A gene cluster centered on
IL2RG was associated with several components of the
Jak-Stat signaling pathway (p = 0.0002, Benjamini =
0.002), primary immunodeficiency (p = 0.008, Benjamini
= 0.03), and cytokine-cytokine receptor interaction

(p = 0.006, Benjamini = 0.06) pathways. Of the genes
in the IL2RG interactive subnetwork, several were
significantly downregulated, such as the inducible
T cell costimulator ligand (ICOSLG) (0.3-fold, p =
0.006) or the cytochrome P450 family member
CYP2B6 (0.1-fold, p = 0.0012), suggesting that the
upregulated genes may interfere with, or become
affected by, transcriptional suppressions. The role
of the downregulated genes in the development of
astrocytic changes caused by Meth must be exam-
ined in the future.

Discussion
We examined the hypothesis that astrocytes respond to
Meth exposure by developing gene expression signatures
and upregulation of genes that may participate in patho-
genesis. For that, we used an in vitro approach, where
primary cortical astrocyte cultures were directly exposed
to Meth for 24 h. Our system-wide approach combined
experimental and computational methods to systematic-
ally identify and integrate the important characteristics
of astrocytes following the direct exposure of Meth,
without taking into account downregulated genes. This
approach was chosen in order to address a gap in the
knowledge of dopamine-independent effects of drug

Fig. 3 Connectivity of genes that were upregulated in astrocytes by Meth. JActiveModules was applied to the whole data set, using a significant
(p < =0.05) minimum of a 4-fold upregulation, in genes identified in astrocytes that were treated with 10 μM Meth for 24 h, for identification of
hotspots. This approach identified a (a) cluster of MAP2K5-first neighbor genes, a (b) cluster of GPR65-first neighbor genes, and a (c) cluster of
ED1-first neighbor genes. Shades of red represent the level of upregulation of each gene, where light red is less upregulated and darker red is
more upregulated. Genes that are connected by a green line are in the same pathway, whereas orange lines connect genes that are colocalized,
yellow lines mean coexpression, gray lines mean genetic interactions, blue lines mean shared protein domains, and red lines mean
physical interactions
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abuse, which may play an important role in the develop-
ment of response patterns in glial cells. With a focus on
significantly upregulated genes, we identified signature
patterns that were validated by qPCR and by changes at
the protein level. A review of the literature revealed that
several of these markers could have implications to CNS
pathogenesis.
The validated changes in MAP2K5 (MEK5) levels and

the detection of changes in many genes associated with
this kinase were particularly remarkable and indicated a
pathway of interest. MAP2K5 is a component of the
MAPK family intracellular signaling pathway in the
brain. In the context on cell-cell communication, it is
highly responsive to extracellular growth factors such as
brain-derived neurotrophic factor (BDNF), nerve growth
factor (NGF), insulin-like growth factor 2 (IGF2) [54],
granulocyte colony-stimulating factor [55], and epider-
mal growth factor [56]. MAP2K5 is particularly respon-
sive to oxidative stress, for instance, in muscle
differentiation where it activates ERK5 [57]. In the brain,
its upregulation could play a role in neuroprotection of
dopaminergic neurons [58], suggesting that the acute re-
sponse of astrocytes to drug abuse could provide

survival signals. On the other hand, in isolated astrocyte
cultures, the MAP2K5 gene clusters with other genes
that suffered similar changes, which have been described
to be involved in CNS disorders. One of these genes is
LAMA2, which is associated with muscular dystrophies
and with the blood-brain barrier control [46]. LAMA2
also regulates other genes, such as the ladybird homeo-
box corepressor 1 (LBXCOR1), which is a corepressor of
transcription playing a role in GABAergic phenotype of
interneurons in some areas of the brain, associated for
instance to the susceptibility to restless legs syndrome
[59]. Another one of these genes is MDM2, which is de-
scribed as an important regulator of tumorgenesis in
astroglioma models [60].
GPR65, which was also validated, is also known as

T cell death-associated gene 8 (TDAG8), an acidosis-
sensing molecule [61, 62] and that has been described
in association with susceptibility to autoimmunity,
including in the CNS. Given that one of the adverse
effects of Meth abuse is metabolic acidosis [63], this
finding could be of relevance. On the other hand,
GPR65 is a negative regulator of inflammation [64,
65]. Its upregulation may partially protect the brain
environment in the response to acute Meth. In astro-
cytes exposed to Meth, CXCL5 was one of the genes
highly upregulated by all Meth doses, with a strong
connection to inflammatory pathways that can poten-
tially lead to important changes in the context of the
brain environment [66]. Importantly, CXCL5 has been
reported as a potential marker of ischemic brain
injury [67]. Conversely, the most enriched molecular
pathways corresponded to Neuroactive ligand-receptor
interactions and cytokine-cytokine receptor interactions,
which respectively include MAP2K5 and GPR65, as well
as CXCL5 genes.
We found that Meth caused the upregulation of sev-

eral prostanoid receptors, including TBXA2R, PTGDR,
and PTGER3, on astrocytes. These characteristics in
the context of the brain could contribute to the in-
flammatory pathophysiology seen in the CNS of Meth
abusers. These targets were validated by quantitative
real-time polymerase chain reaction (qRT-PCR). Inter-
estingly, the expression of PTGER3 was particularly
sensitive to Meth, in a dose-dependent manner. In the
context of pathology, PTGER3 has been found to be
upregulated in aged patients with schizophrenia, sug-
gesting the participation of the eicosanoid signaling in
mental disorders [68]. In addition, the prostanoid
receptors could affect major signaling pathways, such
as the MAP kinase pathway [69], providing a potential
link between the inflammatory and neuroactive aspects
of the astrocytic acute response to the drug.
There was an intriguing induction of circadian

rhythm-associated molecules in astrocytes that were

Fig. 4 CXCL5-centered gene network upregulated in astrocytes in
response to Meth exposure. Shades of red represent the level of
upregulation of each gene, where light red is less upregulated and
darker red is more upregulated. Genes that are connected by a green
line are in the same pathway, whereas orange lines connect genes
that are colocalized, yellow lines mean coexpression, gray lines mean
genetic interactions, blue lines mean shared protein domains, and
red lines mean physical interactions
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treated with Meth. This supports findings in the litera-
ture where mammalian astrocytes display circadian func-
tional profiles, particularly regarding the expression of
the clock genes such as PER2, as well as regarding ATP
release [33, 34]. It remains to be determined whether the
expression of this gene specifically in astrocytes can play
a role in vivo, since it has been shown that PER2 does
modify circadian sleep cycle during sleep disruptions
[70] and also in substance abuse [71, 72].

The genes that promote inflammation are of particu-
lar interest, because when applied to the context of the
brain, they could play a role both in neuroprotection
and neurodegeneration [73, 74]. In Meth abuse, it is
known that neuroinflammation plays a critical role in
the development of neurological decline [75–78]. Our
results indicate that the acute, direct response of
astrocytes to the drug could contribute to the inflam-
matory pathogenesis. Therefore, the genes with pro-
inflammatory roles in the two most enriched pathways,
which were the neuroactive ligand-receptor and the
cytokine-cytokine receptor interactions, were priori-
tized for validation. These genes were the IL2RG,
TAP2, and IL1RN, in addition to the prostanoid recep-
tors. The ability of Meth to upregulate them was con-
firmed by qRT-PCR. The induction of IL2RG by Meth
in astrocytes could be a factor modulating phenotype
of other glial cells in vivo, as previously described by
us in the context of HIV/Meth comorbidities [23].
TAP2, on the other hand, is a molecule that is
involved in the expression of class I major histocom-
patibility complex molecules, which affects antigen
presentation [79–82]. The role of the class I-mediated
cytotoxic response in the HIV and in the HIV/Meth
comorbidities has also been described by us [80, 81,
83, 84]. We also validated the upregulation of IL1RN
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Table 3 Statistically significant pathways that are disturbed in
astrocytes following Meth exposure

Pathway term p value Benjamini

Neuroactive ligand-receptor interaction 0.00053 0.044

Cytokine-cytokine receptor interaction 0.00079 0.035

Steroid hormone biosynthesis 0.0012 0.037

Androgen and estrogen metabolism 0.0025 0.051

Calcium signaling pathway 0.0032 0.051

Chemokine signaling pathway 0.0042 0.055

GnRH signaling pathway 0.0082 0.077

Glioma 0.0092 0.075

DAVID was utilized for identification of pathways with important gene
representation in changes induced by Meth
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by Meth, which could contribute to controlling astro-
cytosis, as suggested in the prion disease model [85].
IL1RN has been also suggested to participate in the
regulation of glutamate uptake by astrocytes [86].
These genes are therefore important in a context of
cellular interactions in the brain, and our results dem-
onstrate that the acute exposure to the drug can cause
their upregulation in a direct and dopamine-
independent manner.
Several of the genes acutely induced by Meth in

astrocytes have been described in association with neuro-
logical and inflammatory functions and with CNS disor-
ders that are linked to motor dysfunction [87, 88].

Interestingly, astrocytes have been previously suggested as
important cellular targets in CNS motor disorders [87,
88], although specific molecular targets are not clear. In
the context of Meth abuse, movement disorders are very
common sequels and comorbidities [89]. On the other
hand, the genes upregulated by Meth in astrocytes also
suggest a potential acute neuroprotective response. Inter-
estingly, the use of low doses of Meth has been previously
suggested to be beneficial immediately following severe
traumatic brain injury [90, 91]. However, whether the
character of the astrocytic response favors protection or
neuronal damage and disorder, acutely or during chronic
exposure remains to be investigated in vivo.

Fig. 6 Pathway enrichment analysis on genes upregulated by Meth treatment of astrocytes. iPathwayGuide derived analysis showing molecular
pathways segregated according to total perturbation accumulation (pACC) and gene overrepresentation within pathways (pORA). Red/Yellow dots
represent pathways modified with a significant p value

Fig. 7 Genes mapped to the neuroactive ligand-receptor pathway, identified by gene array in astrocytes that were treated with Meth. Data corresponds
to significant fold change in 10 μM Meth-treated astrocytes compared to vehicle-treated controls in the gene expression array
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An important aspect of some upregulated genes exam-
ined here was their connection with downregulated
network components. That was the case for genes associ-
ated with the increased expression of MAP2K5 and also
IL2RG. The molecules in connection with the expression
of IL2RG were of particular interest, given the role of the
IL2RG system components in brain inflammatory out-
comes and modulation of microglial phenotypes [92]. The
IL2RG subnetwork was associated with the increase of im-
portant pro-inflammatory molecules such as IL21 [93] but
also with the decrease of molecules such as the inducible

T cell costimulator ligand (ICOSLG), which is a pattern
recognition element that may impact immune response
[94], or the cytochrome P450 family member CYP2B6,
which plays a role in mood disorders and depression [95].
The interaction between genes that are up- and downmo-
dulated suggests the importance of extending the analysis
to genes that are decreased by Meth, for understanding
the full spectrum and implications of changes caused by
the direct exposure of astrocytes to that drug.
Our data analysis has suggested that acute Meth expos-

ure drives the development of response patterns in astro-
cytes that may cause these cells to play essential roles in
vivo, through dopamine-independent mechanisms. There
are limitations in the single-cell type system, as in vivo fac-
tors derived from the other cells may further modulate
the effects of Meth on astrocytes, and the response pat-
terns may not be exclusively a result of direct stimulation.
Therefore, given that the genes that are increased directly
by Meth can play critical roles influencing the brain cell
network, the changes in astrocyte gene expression do need
further examination, using in vivo models of drug abuse.
The focus on upregulated genes may limit the interpret-
ation of the data but may accelerate pre-clinical ap-
proaches, since upregulated molecules are favored as
targets for therapeutics. The gene signatures identified
among upregulated genes are highly relevant to inflamma-
tion and to CNS disorders but also suggest that Meth may
trigger neuroprotection pathways. These deviations in the
astrocytic response pattern may point to important targets
to be further investigated, for preventing and ultimately
reverting deleterious consequences and neurological se-
quels of drug abuse.

Conclusions
Astrocytes modify their molecular signatures in response
to direct exposure to methamphetamine. By applying a

Table 4 Genes that are present in the highest represented
pathways upregulated by Meth in astrocytes

Genes in the
neuroactive
ligand-receptor
Interaction Pathway

Fold change
in 10 μM/control

Genes in cytokine-
cytokine receptor
interaction pathway

Fold change
in 10 μM/control

PTGER3 27.56 CCL27 27.51

GLRA2 15.51 CXCL11 12.83

PTGDR 11.97 IFNG 12.46

AGTR2 10.44 CXCL10 10.82

MAS1 8.37 CCL15 10.54

GH2 7.37 IL2RG 10.02

TBXA2R 6.30 XCL1 8.61

TSHR 6.27 GH2 7.37

HRH4 6.00 IL1RN 6.42

TACR3 5.19 IL18RAP 6.14

OPRK1 4.91 CXCL5 28.57

GNRHR 4.91 IL21 5.35

PLG 4.70 EPOR 5.05

CSF2 5.04

DAVID was utilized for identification of pathways with important gene
representation in changes induced by Meth and the genes within
pathways that change as a result of Meth exposure on astrocytes

Fig. 8 Transcriptional validation of inflammatory gene changes induced by Meth in astrocytes. Gene expression was examined by SyBrGreen
qRT-PCR on mRNA extracts from primary astrocytes treated with 1 μM, 10 μM, and 100 μM of Meth, as well as controls, upon GAPDH
normalization. Results are from one representative experiment, confirmed by two independent biological replicates. *p < 0.05 in one-way ANOVA
followed by Bonferroni’s post hoc test, in comparisons indicated by lines
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systems biology analysis approach with a focus on up-
regulated molecular markers, we have identified overex-
pressed gene networks represented by genes of an
inflammatory and immune nature and that are impli-
cated in neuroactive ligand-receptor interactions.
MAP2K5, GPR65, and CXCL5 were molecules situated
in the core of the highest score gene networks and were
linked to markers associated with both neuroprotection
and neuropathology. We have validated several targets
and discussed their potential association with human
neurological disease. Further in vivo studies are neces-
sary to examine the role of these gene networks in drug
abuse pathogenesis and their potential as biomarkers.

Additional file

Additional file 1: Visualization of gene changes and networks for
identifying over-expression patterns and for initializing the analysis of astrocytic
gene network behaviors upon Meth exposure. Genes were connected based
on pathway, physical and genetic interactions, shared protein domains, or co-
expression, using GeneMania and JActiveModules in Cytoscape platform.
Highest score nodes were grouped by circular layout. (PNG 6917 kb)
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