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Abstract

response when exposed to BMP7.

Background: Our previous studies have shown that BMP7 is able to trigger activation of retinal macroglia. However,
these studies showed the responsiveness of Mller glial cells and retinal astrocytes in vitro was attenuated in comparison
to those in vivo, indicating other retinal cell types may be mediating the response of the macroglial cells to BMP7. In this
study, we test the hypothesis that BMP7-mediated gliosis is the result of inflammatory signaling from retinal microglia.

Methods: Adult mice were injected intravitreally with BMP7 and eyes harvested 1, 3, or 7 days postinjection. Some mice
were treated with PLX5622 (PLX) to ablate microglia and were subsequently injected with control or BMP7. Processed
tissue was analyzed via immunofluorescence, RT-qPCR, or ELISA. In addition, cultures of retinal microglia were treated
with vehicle, lipopolysaccharide, or BMP7 to determine the effects of BMP7-isolated cells.

Results: Mice injected with BMP7 showed regulation of various inflammatory markers at the RNA level, as well as
changes in microglial morphology. Isolated retinal microglia also showed an upregulation of BMP-signaling components
following treatment. In vitro treatment of retinal astrocytes with conditioned media from activated microglia upregulated
RNA levels of gliosis markers. In the absence of microglia, the mouse retina showed a subdued gliosis and inflammatory

Conclusions: Gliosis resulting from BMP7 is mediated through an inflammatory response from retinal microglia.
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Background

The mammalian retina consists of at least two
distinct glial populations: the macroglia, which in-
cludes Miiller glia and retinal astrocytes, and the
microglia. The Miiller glia are the primary glial cells
found in the retina, having their nucleus in the inner
nuclear layer (INL) with processes extending from the
inner limiting membrane at the vitreal border to the
outer limiting membrane at the base of the photo-
receptor inner segments [1]. Retinal astrocytes
migrate into the retina from the optic nerve and
reside in the nerve fiber layer [2]. The microglia are
the resident macrophages found scattered through all
the retinal layers [3]. The retina of some species also
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contain oligodendrocytes and another glial-like cell type,
known as the non-astrocytic inner retinal glia-like (NIRG)
cells, that reside in the INL of the chick retina [4, 5].
Miiller glial cells and retinal astrocytes are essential for
maintaining retinal homeostasis. Any injury or disease
leading to retinal damage or disruption of the homeosta-
sis triggers the glial cells to become active, a response
termed reactive gliosis. Reactive gliosis has been
observed in all retinal disease and injury models includ-
ing glaucoma, age-related macular degeneration, and
diabetic retinopathy [6-9]. Reactive gliosis is character-
ized by hypertrophy, altered function brought about by
changes in expression of proteins such as glutamine
synthetase (GS), S100-B, extracellular matrix proteins,
chondroitin sulfate proteoglycans (CSPG), matrix metal-
loproteinases (MMP), and an increase in growth factors
such as ciliary neurotrophic factor (CNTF), leukemia
inhibitory factor (LIF), and vascular endothelial growth
factor (VEGF) [10, 11]. Multiple factors can trigger
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gliosis, including the bone morphogenetic proteins
(BMPs) [12-14]. Recent evidence from the Belecky-
Adams laboratory showed that BMP7 triggered gliosis in
both the Miiller glia and astrocytes of the mouse retina;
however, the mechanism by which BMP7 triggers gliosis
is unknown [11].

The BMPs are growth factors that belong to the trans-
forming growth factor beta (TGEF-B) superfamily. BMP
signaling is initiated following the binding of the ligand
to serine threonine kinase receptors. This leads to the
activation of the receptors and the subsequent phos-
phorylation and activation of downstream signaling
components. In the canonical pathway, the BMP signals
by phosphorylation and activation of downstream recep-
tor SMADs (RSMADs). The RSMADs form a dimer
with the co-SMAD (SMAD4) and are shuttled to the
nucleus to regulate transcription. BMP can also mediate
the activation of a non-canonical pathway referred to as
the BMP mitogen-activated protein kinase pathway
(BMP-MAPK). In the BMP-MAPK pathway, the receptors
recruit the X-linked inhibitor of apoptosis (XIAP) to a
complex containing TAB1 and TAKI1, thereby activating
TAKI. TAK1 then activates downstream kinases, eventu-
ally activating NF-«B, p38, and J]NK MAPKs [15, 16]. In
the CNS, BMP regulation has been observed in various
diseases and injury models, such as spinal cord injuries,
axonal damage, and ischemia [14, 17, 18]. In the retina,
upregulation of BMPs and their signaling components are
observed in the photo-damaged retina injury model and
in diabetic retinopathy [19-21].

Microglia are the innate immune cells of the retina. In
their resting state, the microglia act as sentinels, extend-
ing their processes throughout the retina. In the mouse
retina, the microglia are initially found in the ganglion
cell layer, entering the retina from the ciliary marginal
zone and vitreous. By postnatal day 7, the microglia
spread to the rest of the retinal layers, finally resting in
the plexiform layers [22]. Upon receiving signals from
injured or dying cells, the microglial cells become acti-
vated: they retract their processes, undergo an increase
in cellular area, become amoeboid in shape, and migrate
to the area of injury or disease to phagocytize cellular
debris and metabolic products [23, 24]. Stimuli such as
neuronal loss or damage, inflammation, and nerve
degeneration activate the microglia into a motile effector
cell with altered morphological characteristics [25, 26].

Microglial activation has been observed in all retinal
diseases, including diabetic retinopathy, age-related
macular degeneration, glaucoma, and models of retinal
pathologies. In addition to the morphological changes
following activation, microglia also induce a change in
production of various cytokines such as interleukin 1 beta
(IL-1B), IL-6, and interferon gamma (IFN-y), chemokines
such as RANTES, MCP1, growth factors such as colony
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stimulating factor (CSF) and VEGE, and various scavenger
receptors and antigen-presenting molecules such as the
scavenger receptor A (SR-A) and major histocompatibility
complex (MHC) [3, 27]. Furthermore, research has
revealed that activated microglia can be further classified
into the following phenotypes: the M1 or proinflammatory
phenotype and the M2 or the anti-inflammatory pheno-
type [28, 29]. Polarization to the M1 phenotype, following
exposure to factors such as lipopolysaccharide (LPS) and
IFN-y, the microglia upregulate proinflammatory factors
such as IL-1B, tumor necrosis factor alpha (TNF-a),
inducible nitric oxide synthase (iNOS), SRs, and MHC-II
[30, 31]. The M2 phenotype plays a role in the resolution
of the inflammation and tissue remodeling. This pheno-
type is induced by factors such as IL-4 and IL-10 or
through the maturation of the M1 cells. This phenotype
was characterized by an upregulation of markers such as
arginase-1 (Arg-1) and mannose receptor (Mr), cytokines
such as IL-10 and IL-13, and growth factors such as
TGE-B and VEGE [30, 32].

Signals from neurons and macroglia, such as fractalk-
ine, neurotransmitters, and neurotrophins help keep the
glial population in the quiescent state [6, 33]. Activation
of the glial cells has been found to be mediated by
similar stimuli in vitro and in retinal disease models in
vivo [6, 25, 34-36]. Cytokines and other inflammatory
markers such as TNF-a, iNOS, CNTE, and LIF are not
only regulated during gliosis but are also factors known
to act on the glial cells and regulate gliosis [20, 37, 38].
Activated microglia are known to regulate Miiller cell
activity directly, regulating cell morphology, prolifera-
tion, and gene expression [26, 39]. Activated microglia
can also regulate the generation of Miiller glia-derived
progenitors [40]. Here, we provide evidence that
supports the hypothesis that BMP7 indirectly triggers
gliosis by activating the proinflammatory state of retinal
microglia.

Methods

Cell culture

Mouse retinal astrocytes were isolated in the Sheibani
lab and maintained as previously described in [11, 41].
Microglial cells were isolated from retinas of newborn
(PO-P4) immortomouse back crossed into C57BL/6] as
described in [42] with some modifications. Briefly, the
retinas were placed in a solution of Trypsin/EDTA
(5 ml; 0.25% trypsin and 1 mM EDTA; Thermo
Scientific) and incubated at 37 °C for 5 min. Following
incubation, the samples were triturated by pipette, and
5 ml of DMEM with 10% FBS was added to stop trypsin
activity. The digested tissue was centrifuged for 5 min
at 400 x ¢ at room temperature, the supernatant was
carefully aspirated, and the pellet was re-suspended in
the microglia medium [a 1:1 mixture of DMEM: F12
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(Thermo Scientific) containing 10% FBS and 44 U/ml
of interferon-y (R&D Systems, Minneapolis, MN)],
plated on a single well of a 6-well plate, and incubated
in a tissue culture incubator at 33 °C and 5% CO,. The
cells were allowed to grow for 1-2 weeks and fed every
3-4 days until nearly confluent. The medium was then
removed from the plate and rinsed with PBS containing
0.04% EDTA. The plate was then incubated with 2 ml
of PBS containing 0.04% EDTA and placed on a multi-
purpose rotator at 100 rpm at room temperature for
20-30 min. The supernatant was collected in a 15-ml
tube containing 3 ml of DMEM with 10% FBS and cen-
trifuged at 400 x g for 5 min. The detached cells were
then re-plated in the microglia medium, allowed to
reach confluence, and expanded into 60-mm dishes.
The purity of the microglial cultures was inspected by
immunocytochemical staining and flowcytometric ana-
lysis for F4/80 (eBiosciences; San Diego, CA) and kera-
tin sulfate (Seikagaku Corporation; Jersey City, NJ). The
purity of culture was nearly 95% using FACS and im-
munostaining analysis. Astrocytes and microglia were
grown in tissue culture dishes (BD Falcon) in an incu-
bator with 5% CO, at 33 °C and passaged every 5-
7 days using trypsin-EDTA, and the medium changed
every 3—4 days. Cells were treated with 1 pl/ml vehicle
(4 mM HCL with 0.1% BSA), 100 ng/ml of mouse bone
morphogenetic protein 7 (BMP7; R&D systems),
300 ng/ml mouse interferon-gamma (IFN-y; R&D sys-
tems), or 100 ng/ml LPS (Sigma). Medium from micro-
glial cells incubated with BMP7 or vehicle (conditioned
medium) for 24 h was used to treat retinal astrocytes.
The conditioned medium was added to the retinal as-
trocytes medium at 25% concentration in the presence
of DMSO or 2.5 uM ALK2/ALK3/ALK6 inhibitor
LDN193189 [43]. The retinal astrocytes were allowed
to grow for 24 h; after which, cells were harvested for
RNA isolation and RT-qPCR analysis.

Experimental groups

Experiments were carried out in 4-8 weeks old male
C57BL/6]. All procedures were in accordance with
the guidelines set by the Institutional Animal Care
and Use Committee (IACUC) at the school of science
IUPUI (protocol number SC230R). For BMP7 injec-
tion studies, n =8 mice were used with the left eye
injected with the vehicle and the right eye injected
with BMP7. For the PLX studies, two groups of mice
were considered, the age-matched control chow group
(n=12) and the PLX group (n=12), kept on PLX
chow diet. For the PLX BMP7 injection studies, two
groups of mice were considered, the age-matched
control group (n=12) and the PLX group (n=12),
kept on the PLX diet. Both the groups were injected
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with the vehicle control in the left eye and BMP7 in
the right eye. P30 VE-YFP mice (n=3), which express
YFP in endothelial cells, generated by crossing a line
of mice containing an enhanced yellow fluorescent
protein (YFP) with a floxed stop sequence upstream
of the YFP (B6.129X1-Gt(ROSA)26Sor"™ FYFPs /) strain
number 006148 Jackson laboratory) [44] with the VE-cad-
herin-cre line (B6.FVB-Tg(Cdh5-cre)7Mlia/J; stock num-
ber 006137 Jackson laboratory) [45], were used for
immunofluorescence experiments determining PU.1
co-localization in the retina.

Intraocular injections

Postnatal day 30 (P30), C57BL/6] mice were anesthetized
with ketamine and xylazine cocktail. Mice were injected
intravitreally with 1 pl of vehicle (4 mM HCL with
0.1%BSA) or 1 pul BMP7 (20 ng/ul) as previously stated
in [11]. Intraocular injections were performed using a
manual microsyringe (World Precision Instruments) and
pulled glass micropipettes.

Microglia ablation

C57BL/6] mice were kept on chow feed containing
1200 ppm PLX5622 (PLX; Plexxikon Inc.) for up to
21 days, starting at P30. Eyes were harvested at 7, 14,
and 21 days following start of the PLX diet for assess-
ment of loss of microglia. The control mice were kept
on the control chow supplied by Plexxikon Inc. To
determine if loss of microglial cells affected BMP7-
mediated gliosis, mice were maintained on PLX chow
for the entirety of the experiment. In some animals, eyes
were injected with 1 pl vehicle (4 mM HCL with
0.1%BSA) or 1 pl (20 ng/pl) BMP7 14 days following
treatment with PLX, and eyes were harvested and
processed 3 and 7 days postinjection.

Tissue processing

Eyes from euthanized C57BL/6] mice were enucleated,
washed in PBS, and either fixed in 4% paraformalde-
hyde (PFA) for immunofluorescence (IF) or dissected
to isolate the retina for preparation of RNA and/or
protein. For IF analysis, enucleated eyes were washed
and fixed in 4% PFA, incubated in ascending series of
sucrose, and frozen in a sucrose OCT solution as
previously described [11]. Thick sections (12 um)
were cut using Leica CM3050S cryostat onto Super-
frost Plus slides (ThermoScientific) and stored at —80 °C
until use. Retinas from enucleated eyes were isolated
as previously described [11]. Isolated retinas were
immediately processed for RNA isolation using
RNeasy kit (Qiagen).
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RT-qPCR

Reverse transcriptase-quantitative polymerase chain
reaction (RT-qPCR) was performed to detect changes in
markers associated with gliosis and inflammation as
previously described [11]. The primers for RT-qPCR
analysis are listed in Table 1 of [11]. Included in this
table is the accession number of each gene, the
sequence of each primer, product length, and calcu-
lated efficiency of each primer. Primers used for

Table 1 The primers used for gPCR analysis

Gene Primer Sequence Product length

Gm-Csf ~ Forward ~ AGTCGTCTCTAACGAGTTCTCC 178
Reverse AACTTGTGTTTCACAGTCCGTT

Csf1 Forward ~ ACCAAGAACTGCAACAACAGC 91
Reverse GGGTGGCTTTAGGGTACAGG

Inf-a Forward ~ CAAGCCATCCCTGTCCTGAG 131
Reverse  TCATTGAGCTGCTGGTGGAG

Inf-y Forward ~ CAACAGCAAGGCGAAAAAGGA 90
Reverse AGCTCATTGAATGCTTGGCG

I-1B8 Forward ~ TGTCTGAAGCAGCTATGGCAA 141
Reverse GACAGCCCAGGTCAAAGGTT

Il Forward ~ ACTTCACAAGTCGGAGGCTT m
Reverse TGCAAGTGCATCATCGTTGT

VEGF Forward  ACTGGACCCTGGCTTTACTG 74
Reverse CTCTCCTTCTGTCGTGGGTG

Tnf-a Forward =~ TAGCCCACGTCGTAGCAAAC 136
Reverse ACAAGGTACAACCCATCGGC

Ccls Forward ~ TGCCCACGTCAAGGAGTATTT m
Reverse ACCCACTTCTTCTCTGGGTTG

Thbs1 Forward ~ GCCACAGTTCCTGATGGTGA 149
Reverse TTGAGGCTGTCACAGGAACG

Thbs2 Forward ~ GGGAGGACTCAGACCTGGAT 105
Reverse CGGAATTTGGCAGTTTGGGG

Cd45 Forward  TGACCATGGGTTTGTGGCTC 134
Reverse  TTGAGGCAGAAGAAGGGCAT

Cde6s Forward  AAGGGGGCTCTTGGGAACTA 139
Reverse AAGCCCTCTTTAAGCCCCAC

lbal Forward ~ ACGAACCCTCTGATGTGGTC 118
Reverse  TGAGGAGGACTGGCTGACTT

Irf8 Forward ~ CGGATATGCCGCCTATGACA 73
Reverse CTTGCCCCCGTAGTAGAAGC

Sdha Forward ~ GGACAGGCCACTCACTCTTAC 130
Reverse CACAGTGCAATGACACCACG

Srp14 Forward ~ CCTCGAGCCCGCAGAAAA 134
Reverse CGTCCATGTTGGCTCTCAGT
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assessing changes in inflammation are listed in
Table 1. RT-qPCR was performed using SYBR green
master mix (Roche) with the reactions carried out in
the LighCycler480 system (Roche). The change in
RNA levels was measured using the 2 ~**' method,
where Ct is the crossing threshold/crossing point
(Cp) value. Relative RNA levels were calculated using
the geometric means from the Ct value derived from
three housekeeping genes: 8- 2 Microglobulin (B2m),
succinate dehydrogenase complex subunit A (Sdha),
and signal recognition particle 14 kDa (Srpl4). A no
template control was also tested for each marker.

Immunofluorescence

Frozen tissue sections were labeled as previously
described [11]. Antigen retrieval was performed by using
1% sodium dodecyl sulfate (SDS) in 0.01 M PBS (5 min at
room temperature) or by heat antigen retrieval method.
Briefly, sections were washed with 1x PBS, postfixed with
4% PFA, and permeabilized with methanol. Sections were
then incubated in 10 mM sodium citrate buffer at 65 °C
for 45 min, allowed to cool at room temperature (RT) for
20 min, rinsed in deionized (DI) water 3x, and washed in
PBS once. To reduce autofluorescence, slides were then
incubated with 1% sodium borohydride in PBS for 2 mins
at RT. Slides were then blocked with 10% serum (goat or
donkey) in 1x PBS with 0.25% TritonX-100 for 1 h
followed by primary antibody diluted in blocking buffer
overnight at 4 °C. Slides were then incubated with Dylight
conjugated secondary antibodies (1:800; Jackson Immu-
noresearch) or Alexa flour (1:500; Invitrogen) conjugated
secondary antibodies for 1 h at RT in the dark, washed
with 1x PBS, incubated with Hoechst staining solution
(2 pg/ml in PBS), and then mounted with Aqua
Polymount (Polysciences).

Biotin-streptavidin amplification was done by
incubating slides with biotinylated antibody (1:500;
Vector Labs) for 1 h at RT followed by Dylight conju-
gated to streptavidin (1:100; Vector Labs) for 1 h at
RT, in lieu of Dylight or Alexa flour conjugated
secondary antibodies. For co-labeling involving pri-
mary antibodies made in the same host, tyramide
signal amplification was performed as per manufac-
turer’s protocol (Perkin Elmer). For primary anti-
bodies made in mouse, reagents from the mouse on
mouse kit (Vector Labs) were used for blocking and
primary antibody dilution. Labeled slides were imaged
using Olympus Fluoview FV 1000. Antibodies used
for immunofluorescence are listed in Table 2. Cell
counts were performed using the cell counter plugin
of Image]. 40x images (n=9) of retinal sections la-
beled with SOX9, CALBINDIN, CHX10, and BRN3A
and 60x image of retinal flatmounts (n=38) labeled
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Table 2 List of antibodies
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Marker Company If concentration Flatmount concentration Western blot concentration
IBA1 WAKO 1:500 1:250

PU1 CELL SIGNALING 1:100

SOX9 MILLIPORE 1:500

GaTl SANTA CRUZ 1:100

CALBINDIN SIGMA 1:250

CHX10 EXALPHA 1:500

BRN3A CHEMICON 1:250

GFAP DAKO (polyclonal) 1:250 1:100

GFAP DAKO (monoclonal) 1:1000
S1008 ABCAM 1:300 1:1000
NCAN R&D SYSTEMS 1:100

TXNIP SANTA CRUZ 1:250
phospho-SMAD1/5/9 CELL SIGNALING 1:100

phsopho-TAK ABCAM 1:500

B - TUBULIN SIGMA 1:1000
GFP THERMO SCIENTIFIC 1:150

for GaTRANSDUCIN were used for cell count
analysis. Retinal thickness was measured on cross sec-
tion of retina 200 um away from the optic nerve.

Western Blotting

Extraction of proteins from retinal tissue was performed
using lysis buffer as previously described in [11]. Briefly,
retinal tissue was homogenized in PBS and centrifuged at
13,000 rpm, 4 °C for 10 min. The supernatant was
discarded, and the pellet incubated with lysis buffer
(150 mM NaCl, 50mMTris pH 8.0, 2 mM EDTA, 5%
TritonX-100; 100 mM PMSF and protease inhibitor
cocktail, RPI corp.) for 20 min at 4 °C. The samples were
centrifuged at 13,000 rpm, 4 °C for 10 min, and total
protein was estimated using BCA protein assay kit
(ThermoScientific).

Forty micrograms of protein was loaded onto 4-20%
SDS precast gels (Expedeon), placed in a Biorad gel run
apparatus, and run at 150 V for 1 h. Proteins were trans-
ferred onto a PVDF membrane, which was blocked with a
5% milk in tris buffered saline tween 20 (TBST) at RT for
1 h on a shaker. The blots were incubated with primary
antibody-diluted TBST at 4 °C overnight on a shaker. The
following day, the blots were washed in TBST and
incubated with HRP conjugated secondary diluted 1:5000
in TBST for 1 h at RT. Blots were washed in TBST,
incubated with super signal west femto chemilumines-
cent substrate (ThermoScientific), and visualized on
x-ray films. B-TUBULIN was used as a loading
control, and the concentrations of antibodies used are
listed in Table 2.

ELISA

Enzyme linked immunosorbent assay (ELISA) for IFN-y
was performed on media from treated cells in vitro or
from whole mouse retina protein lysates using the mouse
IFN-y ELISA kit (Cat # ENEM1001, ThermoScientific) as
per manufacturer’s protocol.

Retinal flatmounts

Preparation of retinal flatmounts and immunolabeling
was done as described in [46]. Briefly, enucleated eyes
were washed in 1x PBS, fixed in 4% PFA for 15 min,
transferred to 2x PBS on ice for 10 min, and followed by
retina isolation. Four to five radial incisions were made
in the retina to create a petal shape. Excess PBS was
absorbed, and retinas were transferred to cold methanol
(=20 °C) for 20 min. The tissue was washed with 1x PBS
and blocked in Perm/Block solution (1x PBS, 0.3%
TritonX-100, 0.2% bovine serum albumin, and 5%
donkey or goat serum). The tissue was then washed in
PBSTX (1x PBS + 0.3% TritonX-100) and incubated with
primary antibody (Table 2) overnight at 4 °C. On the
following day, the tissue was washed in PBSTX, incu-
bated with secondary antibody, washed, incubated with
Hoechst solution, and mounted onto a slide with Aqua
Polymount (Polysciences, Inc). Labeled slides were
imaged using Olympus Fluoview FV 1000. Morpho-
logical analysis of labeled microglia (n=4 per time
point) for changes in area and number of branches was
performed using the Scholl analysis plugin in Fiji image
analysis software [47]. Briefly, the flatmount image was
loaded on to the Fiji software and converted to binary.
To calculate the area of the cell, the “Measure” plugin
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was selected from the “Analyze” options. To determine
the number of branches, a center of analysis was
defined via the straight line method. This line was
drawn from the center of the cell to the end of the lon-
gest branch to define a valid “Startup ROL” The pro-
gram was run on the default parameters with the
starting radius set at 10 pixels.

Statistical analysis

Statistical analysis was performed via unpaired Students’s ¢
test using SPSS software (IBM) between control/vehicle
and treated groups for RT-qPCR, cell counts, and microglia
morphology. RT-qPCR and densitometries from PLX and
control mice injected with vehicle or BMP7 were analyzed
via one way ANOVA with Tukey’s test for post hoc analysis.
p <0.05 were considered to be statistically significant.
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Results

BMP signaling in retinal microglia

Previous studies have shown that BMP7 triggers reactive
gliosis of the retinal macroglia. Both the canonical as well
as the non-canonical BMP-MAPK pathways were active
in the retinal Miiller cells and astrocytes following BMP7
treatment [11]. However, the mechanism by which BMP7
triggered gliosis remains unclear. To determine if any of
these pathways were activated in the microglia of control-
or BMP7-treated retina, double-label immunohistochem-
istry was performed using antibodies to phospho SMAD
1/5/9 (pSMAD), phospho TAK1 (pTAK1), and PU.1 (a
nuclear marker of microglia; Additional file 1: Figure S1)
on adult retinas following intravitreal injection of vehicle
or BMP7. In both vehicle- (Fig. 1a—d) and BMP7-treated
retinas (Fig. le-h), sections showed nuclear co-labeling
with PU.1 and pSMAD. In contrast, pTAK1 was localized

PpSMAD 1/5/9

1d Veh

1d BMP7

WOri ¢ -

e

P 48 o 2%uny GEL

1d Veh

1d BMP7

m

Fig. 1 pSMAD and pTAK1 are localized to retinal microglia. Retinal sections from P30 mouse injected with vehicle or BMP7 24 h postinjection were
double-labeled with antibodies that label microglial nuclei (PU.1) and phospho SMAD 1/5/9 (oSMAD; a-h) or phospho TAK1 (pTAK1; i-p). Thin plane
confocal microscopy images with y,z (strips to right of the panel) and x.z planes (strips at the bottom of the panels) shown in (d), (h), (), and

(p). PSMAD-labeled cells were primarily found in the GCL in the vehicle-treated retina, with some colocalization with the nuclear microglial
marker PU.1 (a-d). The BMP7-injected retina had an increase in pSMAD expression in the INL as well as substantial colocalization with PU.1
(e-h). In contrast, vehicle-injected retina showed pTAK1 expression in the GCL with little to no PU.1 colocalization (i-1), while the BMP7-injected retinas
showed increased levels of pTAK1 levels in the INL, as well as significant colocalization with PU.1 (m—p). Magnification bar in a= 50 um, for images (@-p) )

pSMAD1/5/9/: / pSMAD1/5/9/
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primarily to the nuclei of GCL of vehicle-injected retinas
with no apparent co-localization with PU.1 (Fig. 1i-1), but
co-labeled PU.1+ cells in the BMP7-treated retinas, in
addition to other cells in the INL and GCL (Fig. 1m—p).
There was also a striking increase in the localization
of pTAK1l in both the inner and outer plexiform
layers of BMP7-treated retinas that was not apparent
in vehicle-treated retinas (Fig. lm—p). Retinal sections
were also co-labeled with IBA1 and pTAKl or
pSMAD to show localization in microglia (Additional
file 2: Figure S2). Negative controls showed no label
(Additional file 3: Figure S3).

BMP7 induces inflammatory changes in vivo

To determine whether BMP7 regulated inflammatory
signals that could then either trigger or enhance the
gliosis response, BMP7-treated retinas were analyzed for
messenger RNA (mRNA) levels of proinflammatory
markers (Fig. 2a). For the analyses of mRNA levels,
values plotted in graphs were all relative to control levels
which were set to a value of 1.0; hence, increases in
mRNA levels in comparison to controls are bars above a
level of 1.0, while a decrease is represented by bars
below the level of 1.0. Three days postinjection,
increases of 1.5-fold or more in mRNA levels of Tnf-a,
Il-1B, and Ifu-y were present. However, larger increases
were evident in multiple factors 7 days postinjection,
including granulocyte macrophage colony stimulating
factor (Gm-Csf), colony stimulating factor (Csf), Ifn-a,
Ifu-y, II-6, Vegf, thrombospondins-1 and-2 (Thbsl &
Thbs2), and Cd68. We also observed more than a 2-fold
increase in microglial marker Ibal and Irf8, markers for
activated microglia.

To determine if the increases in proinflammatory
markers present in BMP7-treated retinas were medi-
ated by retinal microglial cells, the effect of BMP7
treatment on isolated mouse retinal microglial cells in
vitro was observed using RT-qPCR. mRNA levels
were investigated in microglial cells incubated with
vehicle or BMP7 for 3, 6, 12, or 24 h (Fig. 2b). Again,
changes in mRNA levels relative to controls were
plotted, where a value of 1.0 indicates levels of con-
trol mRNA. Following 3 h of incubation with BMP7,
only levels of Ifu-y were 1.5-fold greater, whereas at
6 h the average mRNA levels of Gm-csf, Ifu-y, Csfl, Tnf-a
and /-6, and Cd68 were increased to 1.5-fold above con-
trol or greater (Fig. 2b). By 24 h of incubation, many
of the molecule levels were decreased in comparison
to the 6-h time point; however, Ifin-y and Thbs2 were
increased in comparison to control and 6-h mRNA
levels. As a positive control for inflammation, micro-
glia were incubated with LPS for 3 h (Fig. 2c¢). To
determine if the changes in RNA levels are being
translated to protein, we determined IFN-y levels by
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an ELISA using medium from microglial cells incu-
bated with BMP7 for 24 h and whole retinal lysates
from mice treated with vehicle or BMP7 (Fig. 2d).
Values plotted in graph are relative to the respective
vehicle controls; hence, increases in mRNA levels in com-
parison to controls are bars above a level of 1.0, while bars
below the level of 1.0 represent a decrease. We observed a
2-fold increase in the IFN-y protein levels in the astrocytes
and microglial cell medium, and a 5-fold increase in IFN-y
protein level was detected in retinal lysates 7 days
posttreatment with BMP7 compared with vehicle.

Changes in morphological characteristics of microglia
following control and BMP7 treatments were subse-
quently investigated. It has been reported by other
investigators that activated microglia increase in area
with an increase in branch points [48]. Retinal flat-
mounts of 1 day BMP7- and vehicle-treated retinas were
labeled with IBA1 and analyzed for average cell area and
number of branch points in cellular processes (Fig. 3a,
b). Graphs show relative changes in the area and number
of branches (“Median intersections” output from the
Sholl analysis). Morphological analysis revealed that the
BMP7-treated retinas contained microglia with a larger
area in comparison to vehicle-treated retinas, and a
decrease in the number of branches (Fig. 3c).

Activated microglia secrete factors that induce gliosis

We have observed that BMP7 is able to activate retinal
microglia in vitro and in vivo (Figs. 2 and 3, respect-
ively). To determine if microglia secrete factors that
trigger reactive gliosis in vitro, we used conditioned
medium obtained from mouse microglia cultures
treated with vehicle (vehicle conditioned media) or
BMP7 (BMP7-conditioned media) for 24 h, and used
for treatment of mouse retinal astrocytes (Fig. 4b—d).
Graphs represent mRNA levels in astrocyte cultures
treated with BMP7-conditioned media relative to
cultures treated with vehicle-conditioned media;
pretreated with DMSO or LDN193189. Retinal astro-
cyte cells were incubated for 24 h with microglial cell--
conditioned medium and were assessed for changes in
markers associated with gliosis. To reduce the possibil-
ity that the BMP7 added to the microglial medium
might directly affect the astrocytes, an inhibitor of BMP
receptors, LDN193189, was added to the conditioned
medium (Fig. 4d). RT-qPCR analysis showed a statisti-
cally significant increase in expression of gliosis
markers glial fibrillary acidic protein (Gfap), S100-f,
Gs, epidermal growth factor receptor (Egfr), and phos-
phacan (Pcan) 1.5-fold above that of astrocyte cells
treated with DMSO and vehicle-treated conditioned
media (Fig. 4b). When BMP inhibitor was added to the
astrocyte medium prior to addition of conditioned
medium from microglia, statistically significant
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Fig. 2 BMP7 injection triggers inflammatory changes in the mouse retina. Expression levels of a panel of proinflammatory markers were analyzed
by RT-gPCR in RNA samples from mouse retina injected with vehicle or BMP7, harvested 3 and 7 days postinjection (a). At 3 days post-BMP7
injection, about a 2-fold increase in RNA levels, relative to the vehicle controls, was observed in levels of Ifn-y, Tnf-a, and /I-15. Seven days
post-BMP7 injection, 2-fold increase in levels was observed in Csf, Vegf, Thbs1, and Thbs2, and greater than 3-fold increase in Gm-csf, Ifn-y, ll6,
and CD68 RNA levels relative to the vehicle-injected control. Mouse retinal microglial cells treated with BMP7 for 3, 6, 12, and 24 h were also
analyzed for changes in RNA levels of inflammatory markers (b), with LPS treatment used as a positive control (c). In vitro treatments showed
a significant increase in Ifn-y levels at the 3-h time point. At 6 h post-BMP7 treatment, mRNA levels of Gm-cst, Ifn-y, Csf, Tnfa, II-6, and Cd68
were increased to 1.5-fold or greater. By 12 h, we observed no significant differences between BMP7 and vehicle-treated samples. At the 24-h
time point, however, we observed significant increases in the levels of Ifn-y and Thbs. The LPS-treated microglia showed a relative increase in
most of the markers, with significant increases observed in levels of Gm-csf, Ifn-y, II-6, and Thbs2 (c). Protein levels of IFN-y was also determined
via ELISA (d). We observed a 2-fold increase in levels in medium from microglial cells incubated with BMP7 for 24 h and in protein from whole
retinal tissue from mice injected with BMP7 for 3 days, when compared to their respective vehicle control. Protein from 7 days BMP7-injected
retina showed a 5-fold increase in protein levels compared to the vehicle control. Data shown in graphs represent relative expression levels of
RNA or protein of BMP7 or LPS-treated samples to their respective vehicle control. Bars above a level of 1.0 (solid black line) represent an increase in
mRNA levels while bars below the level of 1.0 represent a decrease in mRNA levels relative to the corresponding vehicle control. Statistical analysis was
performed by unpaired Student’s t test. *p value <0.05. Abbreviations: CD cluster of differentiation, Csf colony stimulating factor, Gm-csf granulocyte
macrophage colony stimulating factor, Ifn interferon, Il interleukin, Tnf-a tumor necrosis factor alpha, Thbs thrombospondin, Vegf vascular endothelial
growth factor

increases were detected in Gfap, Gs, S100-, Egfr, and toll
like receptor-4 (Tlr4; Fig. 4d). Treatment of retinal astro-
cytes with DMSO or LDN alone or with conditioned
media in presence of DMSO were used as experimental
controls (Fig. 4a, c¢). We did not observe any changes
when cells were treated with LDN alone (Fig. 4a). Treat-
ment of retinal astrocytes with conditioned media in the
presence of DMSO showed similar changes in expression
as cells treated with conditioned media alone (Fig. 4c).

PLX ablates retinal microglia

To further investigate the role of microglia in BMP7-
mediated gliosis, a means to ablate microglial cells
within the retina was sought. Previous reports have
shown colony stimulating factor receptor 1 (CSFRI)
inhibitor, PLX3397, to selectively ablate microglia in the
brain [49]. We have used a variant of the drug,
PLX5622, supplied by Plexxikon Inc. in chow form to
determine its effect on retinal microglia. Starting at
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Fig. 3 BMP7 alters microglial morphology. Retinal flatmounts from

1 day BMP7- and vehicle-injected retina were labeled for IBA1 (a, b)
and analyzed for morphological changes. An increase in the area of
the microglia was observed when compared to the vehicle control
(c). Number of branches and branch length were also assessed for the
treated cells, and increase in the number of branches was observed
with a decrease in the branch length of the cells incubated with LPS or
BMP7 when compared to the vehicle control (c). Data shown in ¢ represent
relative change in area and number of branches in BMP7-treated samples
to the vehicle control. Bars above a level of 1.0 (solid black line)
represent an increase while bars below the level of 1.0 represent a
decrease in the parameter measured, relative to the corresponding
vehicle control. Magnification bar in a= 50 um, for images (a) and (b).
Abbreviation: IBAT ionized calcium-binding adapter molecule 1

postnatal day 30, mice were switched to control chow or
chow containing 1200 ppm PLX. The mice continued
treatment with the inhibitor-laced chow until sacri-
ficed 7, 14, or 21 days later. Retinal flatmounts from
control and PLX mice were isolated for 7, 14, and
21 days, and labeled for IBA1 and GFAP (Fig. 5).
Although no apparent change in GFAP was observed
(Fig. 5b—e), there was a clear decrease in the number
of IBA1+ cells 7 days after starting the PLX diet, and
IBA1 immunoreactivity was completely lost by 14 days
(Fig. 5f—~m). Retinal tissue sections from these mice
were also analyzed for ganglion cells (Brn3a), bipolar
cells (Chx10), Miiller glia (SOX9), and horizontal cells
(Calbindin) (Fig. 6a—d, f-i). Cell counts for labeled
cells showed no statistically significant change
between the control and PLX-treated mice (Fig. 6k).
Retinal flatmounts of PLX and vehicle-treated retinas
were also labeled with Ga transducin to label photo-
receptors (Fig. 6e, j). Cell count of labeled images
showed no statistically significant change in cell
numbers (Fig. 6l). Thickness of retinal sections of
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the control and PLX treated mice also showed no
change (Fig. 6m).

Microglial ablation reduces BMP7-mediated gliosis

To determine if microglia were involved in BMP7-
mediated gliosis response, mice with ablated microglia
(PLX mice) were injected intravitreally with vehicle or
BMP7, and mRNA levels of proinflammatory markers or
gliosis-related molecules were determined by RT-qPCR
7 days postinjection. As in previous graphs, levels of
mRNA are relative to levels in the respective vehicle-
treated mice. Mice kept on control chow and treated with
BMP7 showed an increase in levels of inflammatory
markers including Gm-csf, Ifn-y, Il-6, and Ibal and gliosis
markers including vimentin (Vim), Gfap, Egfr, Mmp9,
lipocalin 2 (Lcn2), and thioredoxin interacting protein
(Txnip) (Fig. 7a, b). Analysis of inflammatory markers of
mice on PLX chow and treated with BMP7 via RT-qPCR
also showed only modest increases in levels of I[-13 and
Vegf compared to vehicle control (Fig. 7b). mRNA levels
of Gm-csf, Ifn-y, 1I-6, Cd68, and Ibal dropped drastically
when microglia were not present (Fig. 7b). RT-qPCR ana-
lysis of PLX mice 7 days post-BMP7 treatment showed no
increase in mRNA levels of gliosis markers compared to
the PLX vehicle controls (Fig. 7a). Markers indicative of
gliosis were further investigated by examining patterns of
immunoreactivity for GFAP, S100-f, and neurocan
(NCAN) (Fig. 8A, B). Three days following vehicle or
BMP?7 injection, the PLX mice showed similar levels of
GFAP and S100-f label in control and PLX mice (Fig. 8A
(a, b, d, e, g h, j, k). However, 7 days postinjection, the
PLX mice showed decreased GFAP and S100-f label in
BMP7-injected PLX retinas (Fig. 8B (j, k)), when
compared to the control BMP7-injected retinas
(Fig. 8B (d, e)). NCAN immunofluorescence label did
not diminish following PLX treatment in comparison
to controls at either 3 days (Fig. 8A (f, 1)) or 7 days
postinjection (Fig. 8B (f, 1)). Moreover, levels of
NCAN were increased in vehicle-injected eyes at both
3 and 7 days of PLX-treated mice in comparison to
vehicle-injected eyes of control-treated mice (compare
Fig. 8A (c and i) and Fig. 8B (c and i)), supporting a poten-
tial role for microglia in extracellular matrix remodeling.
Negative controls showed no label (Additional file 3:
Figure S3). Gliosis markers showed similar label in unin-
jected mice in comparison to the 3 day and 7 day vehicle
injected mice (Additional file 4; Figure S4). Protein levels
of gliosis markers GFAP, S100-f, and TXNIP were also
quantified using western blot (Additional file 5: Figure S5).

Discussion

Our lab previously showed that BMP7 is able to trigger
reactive gliosis in the retina. Here, we show that the
Miiller cell gliosis triggered by BMP7 is an indirect
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Fig. 4 Activated microglia secrete factors that trigger retinal gliosis. Conditioned medium from microglial cells incubated with BMP7 or vehicle
for 24 h was added to the medium of the retinal astrocytes, directly or pretreated with LDN193189 (c, d). RNA was isolated from these cells 24 h
posttreatment and analyzed via RT-qPCR for a panel of gliosis markers. Statistically significant increase in levels of Gfap, Gs, S100-8, Pcan, Egfr, and
Tlr4 was observed in astrocytes incubated with conditioned medium added directly or pretreated with LDN193189 (c, d). Cells treated with DMSO
(carrier for LDN193189) or LDN only (@) or cells pretreated with DMSO and conditioned medium from BMP7 or vehicle-treated microglia (b) were
used as experimental controls. Data shown in graphs represent relative expression levels of RNA in retinal astrocyte cells treated with LDN193189
relative to DMSO (a) or with conditioned media from BMP7-treated microglial cells relative to retinal astrocyte cells treated with conditioned media from
vehicle-treated microglia (b—d). Bars above a level of 1.0 (solid black line) represent an increase in mRNA levels while bars below the level of 1.0 represent

a decrease in mMRNA levels relative to the corresponding vehicle control. Statistical analysis was performed by unpaired Student's t test. *p
value <0.05. Abbreviations: Egfr epidermal growth factor receptor, Gfap glial fibrillary acidic protein, Pcan phosphacan, Tir toll like receptor

effect resulting from microglial activation to a proinflam-
matory state. Following exposure to BMP7, microglia up-
regulated at least two molecules, IFN-y and IL-6, both of
which have been shown in previous studies to trigger glio-
sis [50—54]. The CSFR1 inhibitor PLX was used to specif-
ically target and ablate retinal microglia without affecting
numbers of other retinal cells, in order to show that the
BMP?7 triggers gliosis through microglial activation. We
observed that BMP7 injection into retinas lacking micro-
glia produced an abated inflammatory response and a
complete loss of gliosis, suggesting an important role for
the microglia in mediating the gliosis response.

BMP pathway in retinal disease
BMPs have been previously shown to be regulated in
injury and disease models of the CNS and retina

[21, 55-57]. The BMP receptors type 1A and 1B
regulate hypertrophic and scarring responses of
astrocytes following spinal cord injury [12]. In the
retina, BMP signaling components, phospho SMAD
1/5/8, have also shown to be upregulated following
NMDA-induced injury and promote retinal ganglion
cell's survival [8]. We observed an increase in
pTAK1 label in IBA-labeled cells in the retina, as well
as in other cells of the inner nuclear layer. Increases
in expression of pTAK1 in neurons have been previ-
ously reported in the brain following cerebral ischemia
and is known to be expressed in axonal arbors of
sensory neurons [58, 59]. BMPs have also been shown
to be important in retinal cell proliferation and regen-
eration in the chick retina [60]. Ueki and Reh [61]
showed that SMAD upregulation was essential in



Dharmarajan et al. Journal of Neuroinflammation (2017) 14:76

Page 11 of 18

IBA1

HOECHST/IBA1

14D PLX

21D PLX

! Y

Fig. 5 PLX ablates microglia in the retina. Mice were fed with chow-containing PLX or vehicle dye to determine ablation of microglia in the
retina. a Schematic describing the time points for which the mice were fed with chow-containing PLX, following which eyes were harvested.
Retinal flatmounts prepared from the eyes harvested at 7, 14, and 21 days were labeled for GFAP or IBA1 (b-i). Insets in b-e indicate the flatmount outline
and from where the images (b-i) was taken. While GFAP did not show any difference between the stages examine (b-e), there was a significant decrease
in IBA1 label in mice kept on PLX diet for 7 days (f, g). By 14 days, no IBA1 label was found in the retinal flatmount and this absence
persisted into the 21-day time point (h, i). Retinal sections control and PLX-treated mice labeled for IBAT to show loss of microglia in the deeper layers
of the retina (j-m). Statistical analysis was performed by unpaired Student’s t test. *p value <0.05. Magnification bar in b = 50 um, for images b-i. Magnification bar

in j=50 um, for images j-m. Abbreviations: GFAP glial fibrillary acidic protein, IBAT ionized calcium-binding adapter molecule 1
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mediating EGF dependent Miiller glial cell prolifera-
tion in the mouse. The presence of BMPs in disease
states is consistent with a potential role for them
playing a role in retinal gliosis.

Activated microglia drive retinal gliosis

We had previously reported that BMP7 was able to trigger
gliosis in retinal glia in vitro and in vivo. However, we
observed a higher response in the in vivo model, which
suggested there may be other cells involved in this

response. Microglia are the resident macrophages in the
retina. Similar to the macroglia, these cells also undergo
activation. Their activation has been observed in various
disease and injury models, such as retinitis pigmentosa,
diabetic retinopathy, retinal detachment, and glaucoma
[62—66]. Activated microglia change morphology from a
ramified cell to an amoeboid cell, along with changes in
expression of cell surface markers, such as the cluster of
differentiation molecule 11b (CD11b), CD68, major
histocompatibility complexes (MHC), scavenger receptors,
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and TLR and secreted actors such as RANTES, interferon,
interleukins, and TNFa. These changes serve to en-
hance the phagocytic effect of the microglial cells as
well as the cytotoxic effect on injured cells and for-
eign pathogen [23, 67]. Miiller glia also undergo acti-
vation following disruption of retinal homeostasis.
The reactive Miiller glia hypertrophy and upregulated
expression of various growth factors, reactive oxygen
species scavengers, protect neurons from excitotoxi-
city and, in some organisms, can regenerate retinal
neurons. These changes serve to protect the damaged
retina. However, gliosis can also have detrimental
effects by remodeling the extra cellular matrix and
due to loss of normal glial functions which are neces-
sary for normal neuronal activity [6, 7].

The retinal astrocytes and Miiller glial cells exhibit simi-
lar responses to injury, such as hypertrophy, upregulation
of GFAP, vimentin, and GS, as observed in rat models of

retinal detachment and retinitis pigmentosa [68—70]. How-
ever, research has also revealed that there are differences in
the response of the two cell types. GFAP upregulation was
observed in Miiller glia and not in the astrocytes in rats
subjected to episcleral vein cauterization [71]. Similarly, up-
regulation of GFAP was observed in the Miiller glial cells in
the retina subjected to laser-induced ocular hypertension,
while the astrocytes of the contralateral control eyes also
exhibited an increase in GFAP and a change in the area
covered by the astrocytes [72, 73]. The differences observed
may suggest distinct functional roles for the astrocytes and
Miiller glia, which cooperate to restore retinal homeostasis.

Here, we observed a decreased gliosis response in the
retina following BMP7 treatment in mice lacking micro-
glia. We used a novel CSFIR inhibitor (PLX) to select-
ively ablate microglia. Following microglial ablation,
mice were treated with BMP7 to assess gliosis in the
retina. The inclusion of the inhibitor in the chow
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Fig. 7 Effect of BMP7 is diminished in the absence of microglia—RNA levels. BMP7 or vehicle was injected intravitreally into the eyes of mice
kept on regular chow or PLX chow and harvested 7 days postinjection. RNA isolated from the retina were analyzed via RT-qPCR for changes in

levels of inflammatory markers (a) and gliosis markers (b). Mice kept on the control chow and injected with BMP7 showed a relative increase by
2-fold or greater of inflammatory markers: Gm-csf, Csf, Ifn-y, Il-6, Vegf, Thbs1, Thbs2, and CD68 (b). Gliosis markers Gfap, Vim, S100-8, Gs, Ncan, Mmp?9,
Len2, and Txnip showed a 2-fold increase or more in these mice (a). Data shown in graphs (a, b) represent relative expression levels of RNA in
mouse retina to the respective vehicle treatments. Bars above a level of 1.0 (solid black line) represent an increase in mRNA levels while bars below the
level of 1.0 represent a decrease in mRNA levels relative to the corresponding vehicle control. Mice kept on the PLX chow and injected with BMP7
showed a 2-fold increase in inflammatory markers /18 and Vegf, while all the gliosis markers showed relatively unchanged RNA levels (a, b). Statistical
analysis was performed by one way ANOVA with post hoc Tukey test. Significant difference from vehicle-injected control mice *p value <0.05.
Significant difference from BMP7 injected control mice #p value <0.05. Abbreviations: Csf colony stimulating factor, Egfr epidermal growth
factor receptor, Gm-csf granulocyte macrophage colony stimulating factor, Gfap glial fibrillary acidic protein, Gs glutamine synthetase, /fn-y
interferon-gamma, // interleukin, Lcn lipocalin, Mmp matrix metalloproteinase, Ncan neurocan, Pcan phosphacan, Txnip thioredoxin interacting
protein, Tnf-a tumor necrosis factor alpha, Thbs thrombospondin, Tir toll like receptor, Vim vimentin, Vegf vascular endothelial growth factor

allowed its continual application over a longer period of
time, enabling the maintenance of a microglia-free
environment in the retina in which we could test the
role of the microglia in BMP7-mediated gliosis. With-
out continual application of the inhibitor, microglia
could repopulate the retina from one of two sources;
bone marrow-derived stem cells can penetrate the
blood-brain barrier and differentiate into microglia or
residential microglia can proliferate and replace lost
cells [74, 75]. The two sources of microglia are not
equivalent; residential microglia primarily give rise to
microglia that display an M1 inflammatory phenotype,
whereas the bone marrow-derived cells give rise to
microglia with an M2 anti-inflammatory phenotype
[75]. At any rate, in order for us to test the role of
BMP?7 in indirectly triggering gliosis, we had to main-
tain a microglial-free environment for the duration of
the experiments.

BMP and inflammation

Activation of microglia and macroglia have been studied
in various models. While there are differences in the
responses of the two glial populations, they do exhibit
similarities. These include regulation of inflammatory
markers, antigen presentation complexes, and various
factors such as IFN, TNFq«, and TLR [3, 6, 36]. While
several different factors have been shown to regulate
macrophage and microglia activation, the effect of BMPs
is still not completely characterized [39, 40, 76, 77].
BMP6 regulates expression of inflammatory markers
such as IL-6, IL-1B, and nitric oxide synthase in macro-
phages [78—80]. In addition, more recent studies indicate
that BMP exposure particularly leads to the M2 or anti--
inflammatory phenotype of the macrophages promoting
tissue repair [81-84]. Microglia are descendants of im-
mature macrophages and are thought to act as macro-
phages in disease and injury states [85]. In our studies,
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Fig. 8 Effect of BMP7 on gliosis in absence of microglia—localization of gliosis markers. Mouse retinal sections from eyes injected with vehicle or
BMP7 were labeled for gliosis markers GFAP (A, B (a, d, g, j)), S100-3 (A, B (b, e, h, k)), and NCAN (A, B (¢, f, j, ). Mice kept on the PLX diet did
not show an increase in label for the gliosis markers GFAP and S100-3 BMP7 or vehicle-injected retina 3 and 7 days postinjection (A, B (g, h, j, k)).
NCAN label appeared to be similar in the BMP7 injected and the respective age-matched vehicle controls in mice kept on the PLX chow (A, B (i, I)).
Mice kept on the control chow and injected with BMP7 clearly showed an increase in GFAP, S100-3, and NCAN levels 7 days postinjection,
when compared to their respective vehicle control (B (a—f)). Three days postinjection, there is an increase in GFAP and NCAN label in BMP7-injected
retinas in comparison to the respective vehicle control-injected retinas (A (a, ¢, d, f)). When comparing mice kept on control chow or the PLX chow,
there is an increase in GFAP and S100-( label in the mice kept on control chow in comparison to the mice kept on the PLX chow, 7 days post BMP7
injection (B (d, e, j, k)). GFAP and S100-(3 label in mice kept on control chow and PLX chow appears to be similar in the BMP7-injected retinas, 3 days
postinjection (A (d, e, j, k)). Magnification bar in (B, (c)) = 50 um, for images A, B (a-1)

BMP7 increased the proinflammatory state of the micro-
glia. Further studies are necessary to determine if all
microglia respond to BMP7 by increasing proinflamma-
tory markers or if this is a response unique to certain
populations of microglia.

In this study, we observed that microglia showed an
upregulation of inflammatory markers in response to
BMP7 treatment, indicative of activation. Furthermore,
in the PLX treated mice, the gliosis response was
subdued in comparison to control BMP7 treated retinas,
suggesting that microglia are an essential mediator of
retinal gliosis. These results support our hypothesis that
microglia are activated by BMP7, which in turn regulate
factors causing Miiller cell gliosis.

In the PLX-treated mice (both vehicle and BMP7-
injected), we also observe an increase in neurocan levels
in the retina. Miiller glia secrete MMPs that regulate
neurocan levels in the extracellular matrix. In addition,
microglia also secrete these enzymes [86, 87]. Their
upregulation has been observed in the CNS during
inflammation in various injury models. Furthermore,
microglia-derived factors such as TNF-« have also shown
to regulate MMP expression by the Miiller glia [88]. Thus,
we propose that the lack of microglia in the retina contrib-
utes to the increase in neurocan by regulating MMP levels
either directly or indirectly by regulating Miiller glia.

Comparing the mRNA and protein levels in the
control and PLX-injected retinas, we observed a difference
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in expression patterns (Fig. 7, Additional file 5: Figure S5).
Although the mRNA levels of S100 and TXNIP was
reduced in the BMP7-injected PLX mice, we did not
observe a similar change at the protein level. Non-
correlation between mRNA and protein levels has
been noted in other studies [89-92]. mRNA transla-
tion and protein stability in the cell is regulated by
multiple systems including micro RNAs (miRNAs),
mRNA localization translational repression, and pro-
tein stability [92, 93]. miRNAs have been previously
reported to be regulated in neural tissue under
conditions of stress [94—96]. Furthermore, BMPs can
regulate translation by regulating cytoplasmic polyade-
nylation element binding protein (CPEB) via the TAK
pathway [97, 98]. Further studies will be required to
determine what pathway(s) mediate this non-
correlation between the mRNA and protein levels.

Microglia release inflammatory factors prior to formation
of gliosis

We observed a decrease in expression of GFAP and S100-
B in mice kept on the PLX diet and treated with BMP7.
BMP?7 treatment also revealed decreased RNA levels of
gliosis and inflammatory markers in PLX mice when com-
pared to the mice kept on the normal diet. Previously, it
has been reported that microglia respond early to changes
in microenvironment and become activated. Bosco et al.
showed that microglia become activated early in the ret-
ina, prior to any increases in IOP in the DBA/2] mice
[25]. Similarly, early activation of microglia has also been
observed and implicated in progression of Parkinson’s dis-
ease [99]. Furthermore, in the ocular hypertension mouse
model studied in Gallego et al., the authors suggest that
upregulation of MHC-II in microglia in the controlateral
eye regulated the morphological changes of retinal astro-
cytes [73]. Thus, we propose that microglia respond to the
BMP?7 first and become activated. These activated micro-
glia upregulate factors, which in turn can trigger Miiller
cell gliosis. Consistent with this notion, our findings indi-
cate the Ifn-y and other inflammatory factors were
upregulated as early as 3 h following incubation of micro-
glial cells with BMP7 in vitro, and these levels were fur-
ther increased 6, 12, and 24 h postincubation with BMP7.
In contrast, factors associated with gliosis do not begin to
increase until 3 days in vivo, with most markers increasing
after 7 days.

Potential factors regulating microglia-mediated activation
of Miiller glia

Previous studies looking into microglia and macroglia
interactions have revealed several secreted as well as
membrane bound factors which could activate the
macroglia, such as IL-1f3, IL-18, TGF-B, and TNF-a
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[23, 100]. Morphological changes and increases in RNA
levels of inflammatory markers in the microglia following
BMP7 treatment indicate activation of the microglia. We
observed in our analysis that RNA levels of Ifn-y, 1I-6, Vegf,
and Thbsl to be greater following Miiller glia activation.
Previously, Cotinet et.al and Goureau showed that IFN-y
can trigger Miiller glia to regulate TNF-a and nitric oxide
(NO) [101, 102]. Similarly, IL-6 has been shown to induce
Miiller glia-derived progenitor cells in the injured zebra-
fish and chick retina [40, 103]. We propose that BMP7
causes activation of microglia, which leads to upregulation
of factors such as IFN-y and IL-6, which in turn trigger
Miiller cell gliosis.

Our findings indicated an important role for microglia
in Miiller cell gliosis in the murine retina. However, the
mechanism and potential factors that play a role in
microglia and Miiller glia interactions are not known.
Future studies will aim to identify the potential role of
IFN-y and IL-6, upregulated by BMP7 in the retina, in
microglia function, and gliosis.

Conclusions

Our findings indicate that retinal microglia are essential
in regulating retinal gliosis. The expression of down-
stream BMP signaling components in the retinal
microglia, as well as the decrease in retinal gliosis in
PLX5622-treated mice demonstrate that BMP7 can
regulate gliosis indirectly by activating the retinal micro-
glia. Additionally, we show that regulation of retinal
gliosis by microglia could be mediated by IFN-y or IL-6.
Further studies will help evaluate the role of these
factors in this response.

Additional files

Additional file 1: Figure S1. PU.1 localizes with retinal microglia.
Co-label of PU.1 antibody with antibody against GFP that cross-reacts
with YFP in a retinal section from P30 mice which have YFP tag on
vascular endothelial cadherin (VE-YFP), a marker expressed in endothelial
cells (A-D). No co-label of PU.T was observed with VE-YFP. PU.T was also
co-labeled with microglia marker IBA1 to show localization was restricted to
microglial cells (E-H). Hoechst merged with the images of green and red
channels are shown in D and H. Magnification bar in E =50 um, for images
A-H. (TIF 857 kb)

Additional file 2: Figure S2. Expression of BMP signaling molecules in
microglia in vehicle and BMP7-injected retinas. Retinal sections from
P30 mouse injected with vehicle or BMP7 24 h postinjection were
double-labeled with antibodies that labels microglia cytoplasm (IBA1) and
phospho SMAD 1/5/9 (pSMAD; A-F) or phospho TAK1 (pTAKT; G-L). Thin
plane confocal microscopy images with y,z (strips to right of the panel) and
x,z planes (strips at the bottom of the panels) shown in C, F, | and L.
pSMAD-labeled cells were primarily found in the GCL in the vehicle-treated
retina, with some co-localization with the cytoplasmic microglial marker IBA1
(A-Q). The BMP7-injected retina had an increase in pSMAD expression in the
INL as well as substantial co-localization with IBA1 (D-F). Vehicle-injected retina
showed pTAKT expression in the GCL with little to no IBAT co-localization
(G-), while the BMP7-injected retinas showed increased levels of pTAKT levels
in the INL, as well as significant co-localization with IBA1 (J-L). Magnification
bar in A= 50 um, for images A-L. (TIF 688 kb)
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Additional file 3: Figure S3. Negative control of immunofluorescence
labels. Retinal sections from P30 mouse labeled with rabbit immunoglobulin
G (Rbt IgG; A-C, D, F), mouse 1gG (Mse IgG; E, F), and sheep IgG (G, H) to
determine background fluorescence. Images of sections labeled with the
nuclear stain, Hoechst merged with the images of green and red channels
are shown in C and F. Panels A-C represent sections, which were labeled
with 1gG following the procedure used for tyramide amplification when
using two antibodies for the same species. Images in D-F represent sections
co-labeled with rabbit and mouse IgG. Images A-C are negative controls for
Fig. 1 and Additional file 1: Figure S1. Images D-F are negative controls for
sections labeled with GFAP, S100-3, Calbindin, Brn3a, Chx10, Sox9, and IBA1.
Images G and H are negative control sections for NCAN-labeled slides.
Magnification bar in A =50 um, for images A-H. (TIF 465 kb)

Additional file 4: Figure S4. IF label of retinas for GFAP, S-100-(3, and
NCAN in P30 uninjected and 3 and 7 days vehicle-injected retinas. Retinal
sections from uninjected P30 mouse, vehicle-injected P30 mouse, obtained
3 and 7 days postinjection, labeled for GFAP (A, D, G), S100-3 (B, E, H), and
NCAN (C, F, I). Label for all three markers appears to be similar in the
uninjected and the vehicle-injected retinas. Magnification bar in A =50 um,
for images A-I. (TIF 5611 kb)

Additional file 5: Figure S5. Protein levels in PLX-treated mice. Protein
isolated from control and PLX-treated mice injected with vehicle or BMP7
changes in protein levels of gliosis markers GFAP, S100-3, and TXNIP, with
B-Tubulin used as a loading control. GFAP showed elevated levels in the
BMP7-injected control mice, while PLX mice had GFAP levels similar to the
vehicle injection. S100-3 was elevated in the 3 and 7 days BMP7-injected
PLX mice as well as in the 7 days BMP7-injected control mice, compared to
the respective vehicle controls. TXNIP levels did not change in the control
and PLX mice injected with vehicle or BMP7 3 days postinjection. Seven
days postinjection, TXNIP levels did increase in the control BMP-injected
mice, while no such change was observed in the PLX mice. No statistical
significance was observed in the densitometric analysis (B) of blots from

(A). (TIF 472 kb)
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