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Abstract

neuroinflammation.

Background: Hypomethylation of the cathepsin Z locus has been proposed as an epigenetic risk factor for multiple
sclerosis (MS). Cathepsin Z is a unique lysosomal cysteine cathepsin expressed primarily by antigen presenting cells.
While cathepsin Z expression has been associated with neuroinflammatory disorders, a role for cathepsin Z in
mediating neuroinflammation has not been previously established.

Methods: Experimental autoimmune encephalomyelitis (EAE) was induced in both wildtype mice and mice deficient
in cathepsin Z. The effects of cathepsin Z-deficiency on the processing and presentation of the autoantigen myelin
oligodendrocyte glycoprotein, and on the production of IL-13 and IL-18 were determined in vitro from cells derived
from wildtype and cathepsin Z-deficient mice. The effects of cathepsin Z-deficiency on CD4+ T cell activation,
migration, and infiltration to the CNS were determined in vivo. Statistical analyses of parametric data were
performed by one-way ANOVA followed by Tukey post-hoc tests, or by an unpaired Student's t test. EAE
clinical scoring was analyzed using the Mann-Whitney U test.

Results: We showed that mice deficient in cathepsin Z have reduced neuroinflammation and dramatically
lowered circulating levels of IL-13 during EAE. Deficiency in cathepsin Z did not impact either the processing
or the presentation of MOG, or MOG- specific CD4+ T cell activation and trafficking. Consistently, we found
that cathepsin Z-deficiency reduced the efficiency of antigen presenting cells to secrete IL-1{3, which in tumn
reduced the ability of mice to generate Th17 responses—critical steps in the pathogenesis of EAE and MS.

Conclusion: Together, these data support a novel role for cathepsin Z in the propagation of IL-13-driven

Introduction

Enigmatic to the pathogenesis of multiple sclerosis (MS)
are the mechanisms that link known risk factors to the
incidence and development of this immune-driven de-
myelinating disease. Since the incidence of MS is
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influenced by environmental factors and gender, but has
a low concordance rate in monozygotic twins and
underwhelming odds ratios for individual SNPs, epige-
netic changes are likely to play a major role in determi-
ning an individual’s susceptibility to MS [1]. In 2014,
Huynh et al. compared epigenomic differences between
pathology-free regions of healthy and MS-affected brains
in an attempt to identify potential epigenetic risk factors
for MS [2]. One of the most significant findings was that
the cathepsin Z (CTSZ) locus was hypomethylated in
pathology-free regions of MS patients, which resulted in
increased expression of cathepsin Z within this neural
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tissue [2]. While the underlying mechanism that results
in hypomethylation at this particular locus is unknown,
the authors proposed that the epigenetically-driven
expression of cathepsin Z in neural tissue may increase
an individual’s susceptibility to MS.

Cathepsin Z (also known as cathepsin X) was identified
in silico by its similarity to the family of cysteine-type lyso-
somal proteases, through mining the Expressed Sequence
Tags database from human brain tissue [3, 4]. Cathepsin Z
is a unique member of this 11 member-protease family, as
it is the only enzyme with strict carboxypeptidase activity,
it has a remarkably short pro-domain that contains a RGD
integrin binding domain, and the CTSZ gene is chromo-
somally separated from the other lysosomal cysteine
cathepsin genes [5—-8]. In the context of neoplasia, there is
recent in vivo evidence for a tumor-promoting role for the
carboxypeptidase as well as for the RGD function of
cathepsin Z [9]. However, to date, the specific functions of
cathepsin Z within the central nervous system (CNS)
remain obscure.

Whilst there was mounting evidence to support the as-
sociation of cathepsin Z expression with neuroinflamma-
tion [10-13], whether cathepsin Z had a specific
pathogenic role in neuroinflammatory disorders was erst-
while unknown. Here, we present experimental evidence
to support a non-redundant role for cathepsin Z in neuro-
inflammation in mice. In a model of multiple sclerosi-
s—experimental autoimmune encephalomyelitis
(EAE)—mice deficient in cathepsin Z consistently devel-
oped lower levels of neuroinflammation and displayed dis-
proportionally lower levels of circulating IL-1f. The ability
to generate IL-1P in response to NLRP3-stimulus by mac-
rophages and dendritic cells derived from cathepsin Z-
deficient mice was compromised, as was the ability of ca-
thepsin Z-deficient mice to generate Th17 responses. Col-
lectively, these data indicate that cathepsin Z promotes
the IL-1p—Th17 axis leading to more severe neuroinflam-
mation during EAE in mice and may suggest a role for ca-
thepsin Z in the development of MS, as proposed by
Huynh et al. [2].

Materials and methods

Mice and cells

C57BL/6 (wildtype [WT]) and C57BL/6-Tg(Tcra2D2,Tc
rb2D2)1Kuch/J (2D2) mice were purchased from the Jack-
son Laboratory (Bar Harbor, ME, USA). 2D2 mice express
a transgenic CD4+ T cell receptor (VP11 TCR/Va3.2
TCR) that is specific for the immunodominant MOG>*~>®
peptide in the context of I-A" [14]. Cathepsin Z-deficient
mice (Cat Z7'~) were generated as previously described
[15]. In brief, a segment of the murine cathepsin Z exon 2,
containing a portion of the active site along part of intron
3, was substituted with a ribosomal entry sequence [15].
Cathepsin Z-deficient mice were also crossed with 2D2
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mice, generating mice with cathepsin Z-deficient 2D2
CD4+ T cells. All mice used were fully backcrossed to the
C57BL/6 background, and bred and housed under identi-
cal animal husbandry conditions. All animal research was
performed in accordance with the Canadian Council for
Animal Care, and protocols were approved by the Univer-
sity of Calgary Animal Care and Use committee. All mice
were age and sex matched within experiments, and used
between the ages of 8 and 12 weeks. All mice subject to in
vivo studies were 8-10 weeks of age [16, 17]. Bone
marrow-derived macrophages (BMM®s) were derived
from bone marrow using L.929-conditioned media and ac-
tivated for 18 h with recombinant IFNy (rIFNy) (100 U/
ml, Pepro Tech), as previously described [18, 19]. Bone
marrow-derived dendritic cells (BMDCs) were derived
using media conditioned with the supernatant of Ag8.653
myeloma cells transfected with GM-CSF cDNA, as previ-
ously described [16, 20-22]. Peritoneal macrophages
(pM@s) were isolated from the peritonea of mice by injec-
tion of 8 mL of sterile PBS using a 23 g needle, followed
by removal of 5 ml of PBS/peritoneal fluid after brief
abdominal massage [23]. The murine microglia-like cell
line BV2 (C8-B4 [ATCC® CRL-2540™]) was grown in
RPMI supplemented with 5% FBS. The murine albino
neuroblastoma cell line Neuro-2a (N2A) (ATCC® CCL-
131™) was grown in DMEM/F-12 supplemented with 5%
FBS. The murine dendritic cell-like DC2.4 (CVCL_J409)
was grown in RPMI supplemented with 5% FBS, 10 mM
B-mercaptoethanol (2-ME), 20 mM L-glutamine and
100 mM HEPES [24]. All cells were cultured at 37 °C with
5-7% CO,.

Flow cytometry

Flow cytometry was performed using a FACSCalibur
flow cytometer (BD Biosciences, Franklin Lakes, NJ,
USA) and analyzed with FLOWJO software v8.6 (Tree
Star, Ashland, OR, USA) [16]. Leukocyte populations,
with a minimum of 2.5 x 10* counts, were selected using
forward scatter/side scatter (FSC/SSC). All antibodies
were purchased from BD Biosciences [16].

Assessment of MOG antigen processing and presentation
MOG antigen presentation efficiency was assessed by
measuring the relative level of activation of CD4+ T cells
derived from the TCR transgenic mouse model 2D2 fol-
lowing co-culture with MOG-pulsed antigen presenting
cells (APCs), as previously described [14, 16, 25-27]. In
brief, WT and Cat Z7/~ BMM®@s and BMDCs were
exposed for 6 h to medium containing the immunodo-
minant I-A" peptide epitope MOG>*~*° (0, 1, 10, 25 pg/
ml), synthesized by the University of Calgary Peptide
Services (AB, Canada), or the full extracellular domain
of MOG (MOG'™?% 0, 1, 10, 25 pg/ml), prepared as
previously described [16]. APCs were then washed with
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T cell media (RPMI supplemented with 10% FBS and
10 mM 2-ME), and naive 2D2 or Cat Z~'~ 2D2 spleno-
cytes were added to the APCs and incubated for 16 h
[16]. The presentation efficiency of MOG>*™ by the
WT and Cat Z™/~ APCs, to the 2D2 or the Cat Z/~ 2D2
CD4+ T cells, was determined cytometrically using the
surface expression of the early activation marker, CD69.

CD4+ T cell trafficking

CD4+ T cell trafficking was assessed as previously
described [28]. In brief, WT and Cat Z~/~ CD4+ T cells
were isolated from spleens of WT and Cat Z~'~ mice
using the EasySep Mouse CD4+ T Cell Enrichment Kit
(StemCell Technologies), according to the manufac-
turer’s instructions. 3 x 10° CD4 + T cells were trans-
ferred to the upper filter of a 5 pm Transwell support
plate (Corning) pre-coated overnight with 3 pg/ml
ICAM-Fc (R&D Systems). T cells were allowed to settle
for 30 minutes before the upper filter was exposed to
the bottom chamber containing vehicle (PBS) or 1 pg/
ml CXCL9 (R&D Systems), followed by an incubation
period of 1 h at 37 °C. The absolute numbers of cells
that migrated through the Transwell filter were
enumerated with a hemocytometer.

Induction of EAE and adoptive transfer of 2D2 CD4+ T
cells

EAE was induced in WT and Cat Z~/~ mice using stan-
dard protocols, as previously described [16, 17]. In brief,
8- to 10-week-old female WT and Cat Z™'~ mice were
anesthetized using intraperitoneal (ip.) injection of
ketamine-xylazine. Following anesthetization, each
mouse was injected sub cutaneously (s.c.), in both flanks,
with a 100 pL emulsion of 50 pg MOG>*~® in complete
Freund’s adjuvant (0.5 mg/mlM. butyricum in paraffin
oil) (CFA; BD). Additionally, each mouse received an i.p.
injection of pertussis toxin (PT) (300 ng) on days 0 and
2, and the clinical score and weight was recorded daily
for the duration of the experiment. The following
clinical scoring system was used: score 0 - asymptom-
atic; 0.5 - tail weakness; 1 - limp tail; 1.5 - hind limb
limping; 2 - hind limb weakness; 2.5 - partial hind limb
paralysis; 3 - complete hind limb paralysis; 3.5 — hind
limb paralysis with forelimb weakness; 4 — forelimb par-
alysis; 4.5/5 - complete morbidity/death [16, 17]. Mice
that received saline/CFA/PT did not develop clinical
signs of EAE (data not shown). Additional cohorts of
mice were sacrificed at day 15 for CNS leukocyte
analysis and cardiac puncture for Luminex analysis of
peripheral cytokines [16]. To investigate the ability of
WT and Cat Z™'~ mice to generate Th17, Thl and Treg
CD4+ T cell responses in the absence of MOG, anesthe-
tized mice were injected s.c., in both flanks, with a
100 pL saline/CFA emulsion. These mice were sacrificed
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6 days after injection, the inguinal lymph node cells
(LNC) were removed and CD4+ T cells expressing IL-
17, IENy, and FoxP3 were counted by flow cytometry.
To examine CD4+ T cell migration to and activation
within the CNS, 2D2 and Cat Z~~ 2D2 CD4+ T cells
were activated, expanded, and adoptively transferred into
WT or Cat Z~'~ mice, as previously described [29].
Briefly, 2D2 and Cat Z'~ 2D2 splenocytes were
harvested and cultured in T cell medium (RPMI supple-
mented with 10% FBS and 10 mM 2-ME) containing
20 pg/ml MOG**7®° and 0.5 ng/ml IL-12 (R&D Systems)
for 48 h. The expanded 2D2 or Cat Z~'~ 2D2 CD4+ T
cells were injected into the peritoneal cavities of WT or
Cat Z7/~ mice (5 x 10° total cells/mouse suspended in
100 pL PBS) [16]. Adoptively transferred CD4+ T cells
were isolated 6 days later using a discontinuous Percoll
gradient, immunostained for CD4+, Va3.2+ (2D2 TCR)
and CD25, and analyzed by flow cytometry.

Spinal cord leukocyte profiling

Infiltrating and resident leukocytes of the spinal cord
were isolated 15 days post EAE induction using a dis-
continuous Percoll gradient, as previously described [16,
30]. These cells were immunostained in the following
combinations: macrophages (CD11b+/CD45+ high), B
cells (B220+/CD45+), CD8+ T cells (CD8+/CD3+), CD4
+ T cells (CD4+/CD3+) and Th17 cells (IL-17+/CD4
+/CD3+), and analyzed by flow cytometry.

Histology

The thoracolumbar spinal cord of each WT and Cat Z
~/~ mouse, sacrificed at day 15 after EAE induction, was
removed in toto and fixed in 10% neutral buffered
formalin. Transverse sections of the lumbosacral spinal
cord from the lumbar intumescence were paraffin em-
bedded, sectioned at 3 pm and stained with hematoxylin
and eosin (HE) and Luxol fast blue (LFB) (Prairie
Diagnostic Services, Saskatoon, SK, Canada).

Fluorometric assessment of phagolysosomal proteolysis

Proteolytic efficiencies of phagolysosomes in live
phagocytes were measured, as previously described
(18, 19]. In brief, WT and Cat Z'~ BMDC and
BMM@s were allowed to phagocytose 3 um silica
beads that were covalently coupled to human IgG
(Sigma) and to the fluorogenic protease substrate DQ
Green BODIPY albumin (DQ-albumin; Invitrogen)
bearing the reference fluor (Alexa Fluor 594 succini-
midyl ester; Invitrogen). The proteolytic efficiencies of
the resulting phagolysosomes were determined by
measuring the green fluorescence liberated from
hydrolysis of the particle-bound DQ-albumin, relative
to that of the reference fluor, over a one-hour period.
Measurements were performed at 37 °C in microplate
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format using an Envision multilabel plate reader (Per-
kinElmer Life Sciences).

qPCR

Quantitative PCR (qPCR) was used to quantify key
mRNA transcripts in spinal cord tissue over the
course of EAE, as well as in WT and Cat Z~'~ APCs
in response to LPS [16]. In brief, WT lumbar spinal
cords, spleens, neurons or APCs (including pM®s,
DC24 s, BV2s, BMM®@s and BMDCs treated with
LPS for 3 h) were snap-frozen in liquid nitrogen, total
RNA was extracted using the RNeasy lipid tissue mini
kit (Qiagen), and cDNA was synthesized using iScript
Reverse Transcriptase Supermix for RT-qPCR (BioRad).
qPCR was performed as previously described [19]. All
primers were prepared at 300 nM, had a single melt curve,
had efficiencies between 90-100%, and were designed or
verified using Primer 3 (National Center for Biotechnology
Information). 18S (F: 5'- AGTCGGCATCGTTTATGGTC-
35 R: 5'-CGCGGTTCTATTTTGTTGGT-3") was used as
an internal control, and did not vary across treatments; IL-
1B (E 5'-CAACCAACAAGTGATATTCTCCATG-3'; R,
5'-GATCCACACTCTCCAGCTGCA-3") and Cat Z (E, 5'-
CCTGTCCGGGAGGGAGAA -3’5 R, 5- TGGTTGA-
TAACGGCCTGGTC -3") [31] were amplified using the
following PCR conditions (in a BioRad iQ5 thermocycler):
95 °C for 5 min; 40 cycles of 95 °C for 30s and 55 °C (58 °C
for 18S and IL-1P) for 30s. All mRNA levels were presented
relative to 18S and the WT control samples.

IL-18 and IL-18 generation by APCs

APC generation of IL-1( and IL-18 in response to activa-
tion of the NLRP3 inflammasome in vitro were quantified
by Mouse IL-1p ELISA and Mouse IL-18 Platinum ELISA
(eBioscience) [32]. In brief, WT and Cat Z~'~ BMM@s,
and BMDCs were pre-incubated with 200 ng/ml of ultra-
pure LPS from Salmonella minnesota R595 (List biological
laboratories) for 3 h. Following a single wash with warm
PBS, BMDCs were incubated with adenosine triphosphate
(ATP 5 mM) for 1 h (Sigma-Aldrich); and BMM®@s with
monosodium urate crystals (MSU, 300 ng/ml prepared as
in [33]) for 6 h in appropriate media. Supernatants were
collected and protein concentrations were measured by
ELISA according to the manufacturer’s instructions.

Statistical analysis

Statistical analyses were performed by one-way ANOVA
with a Tukey post hoc test, or an unpaired Student’s ¢
test, as specified (p <0.05). If a Bartlett’s test for equal
variance failed, then the data underwent a natural log
transformation before reanalysis. Analyses of EAE clin-
ical scoring were performed using the non-parametric
Mann—Whitney U test [16]. Analyses were completed
using GraphPad Prism software (La Jolla, CA, USA).
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Results

Cathepsin Z does not significantly impact proteolytic
efficiencies within phagolysosomes of macrophages

The lysosomal cysteine protease, cathepsin Z, has been re-
ported to be highly expressed in antigen presenting cells
(APCs) [12, 13, 34]. This was confirmed in peritoneal and
bone marrow-derived macrophages (pM®, BMMO®), im-
mortalized and bone marrow-derived dendritic cells
(DC2.4, BMDC) and immortalized microglia (BV2) (Fig. 1a).
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Fig. 1 Cathepsin Z is highly expressed in APCs but does not significantly
contribute to phagolysosomal proteolysis. a Cathepsin Z mRNA levels in
BV2 (C57BL/6 brain microglia cell line), DC24 (dendritic cell line), BMDC
(bone marrow derived dendritic cells), pMJs (peritoneal macrophages),
BMM@ (bone marrow derived macrophages), N2A (murine albino
neuroblastoma cell line) and Cat 27~ BMDCs (n = 3). b-e The total
proteolytic activity (rate of substrate-liberated fluorescence from the
particle-bound fluorogenic substrate DQ-albumin) following phagocytosis
of fluorometric experimental particles in WT and Cat Z ™ (b-¢) BMMJ
(n=9) and (d-e) BMDC (n = 5). b, d Representative real-time traces of
phagosomal proteolysis. ¢, @ Averaged rates of proteolysis (determined by
calculation of the slope of the linear portion of the real-time trace

[as described by y = mx + ¢, where y = relative fluorescence, m = slope,
and x = time] were calculated between (c) 20 min and 60 min or (e)

20 min and 40 min after particle internalization. Data presented as mean
+/— SEM; (c, e) no significant differences (unpaired Student's t-test,

p > 0.05) from the WT control were observed
.
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Although the functions of cathepsin Z are ill-defined, it is
well accepted that the primary function of many lysosomal
cysteine cathepsins—such as cathepsin B, L and S—is to fa-
cilitate protein turnover by hydrolyzing self and foreign
proteins in the cellular endolysosomal network. This system
is particularly well developed in phagocytic APCs such as
macrophages and dendritic cells, where proteolytic cleavage
by these enzymes within phagosomes and endosomes is
also necessary for the processing of T cell antigens [35-37].
In order to determine the relative contribution of cathepsin
Z to endolysosomal proteolysis, the hydrolysis of phagocy-
tosed protein was measured in WT and Cat Z~'~ BMM®@s
and BMDCs. Unlike specific deficiencies in other lysosomal
cysteine cathepsins (such as cathepsin S), BMM®@s and
BMDCs derived from mice deficient in cathepsin Z
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displayed comparable efficiencies of phagosomal proteolysis
(Fig. 1b—e).

Mice deficient in cathepsin Z show attenuated
neuroinflammation during EAE

In concordance with a previous microarray study [38],
cathepsin Z mRNA was found to be significantly
upregulated in neural tissue during murine EAE
following induction with myelin oligodendrocyte
glycoprotein peptide (MOG>>~>°) using qPCR (Fig. 2a).
To determine whether cathepsin Z plays an active
role in the pathogenesis of EAE or is merely an indi-
cator of neuroinflammation, several parameters of
neuroinflammation were compared between C57BL/6
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Fig. 2 Cathepsin Z expression is increased in the CNS during EAE, and mice deficient in cathepsin Z exhibit attenuated signs of neuroinflammation
and demyelination during EAE. a Cathepsin Z mRNA levels in the spinal cord tissue of WT mice 15 days after induction of EAE or mock (n=6). b
Clinical disease course of WT and Cat Z~ mice after active induction of EAE (n = 20-21). ¢ Representative micrographs of transverse sections of
lumbar spinal cord from WT and Cat 77" mice at 15 days after induction of EAE. Sections are stained with hematoxylin and eosin (HE) for
inflammation, or Luxol fast blue (LFB) for demyelination. Grey and black scale bars indicate 500 and 100 um respectively. d The total number of
infiltrating macrophages (MO), B cells, CD8+ T cells (CD8+), CD4+ T cells (CD4+), and Th17 cells (IL-17+/CD4+) isolated from lumbar spinal cord tissue
15 days post EAE induction as analyzed by flow cytometry (n =8-12). Data presented as mean +/— SEM; significant differences (unpaired Student's ¢
test; clinical data, Mann-Whitney U test; p < 0.05) from the WT control are denoted by asterisks
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(WT) and congenic cathepsin Z-deficient (Cat Z7'7)
mice following the induction of EAE. Consistent with
a potential role for cathepsin Z in neuroinflammation,
Cat Z7'~ mice displayed significantly attenuated pro-
gression of the clinical signs of EAE compared to that
of WT mice (Fig. 2b, Additional file 1: Figure S1). At
15 days post induction (EAE peak), spinal cord tissue
in Cat Z”'~ mice showed reduced demyelination and
neuroinflammation by histopathology, as well as
diminished infiltration of macrophages and lympho-
cytes, as determined by flow cytometry (Fig. 2¢, d).

Cathepsin Z deficiency does not impact either the
processing and presentation of the autoantigen MOG

or CD4+ T cell activation and trafficking

To determine whether cathepsin Z-deficiency impacts
EAE through perturbation of the processing and/or
presentation of the autoantigen MOG, APCs derived
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from WT and Cat Z~'~ mice were incubated with pre-
processed MOG peptide (MOG*™°) or unprocessed
MOG protein (MOG'™'%) and co-cultured with
MOG*~*_specific CD4+ T cells. Both BMM®@s and
BMDCs from Cat Z~/~ mice were able to activate and
mature in response to proinflammatory stimuli and
could efficiently activate MOG?*~**-specific CD4+ T
cells in an antigen-specific fashion (as determined by ex-
pression of the early T cell activation marker, CD69)
(Fig. 3a—d). Consistent with an insignificant role for
cathepsin Z in phagosomal proteolysis, these data dem-
onstrate that cathepsin Z does not impact the processing
or presentation of the autoantigen MOG, suggesting that
its role in the pathogenesis of murine EAE is mediated
through a mechanism not previously attributed to lyso-
somal cysteine cathepsins [39]. To investigate a potential
role of cathepsin Z in T cell functions germane to EAE,
Cat Z”/~ CD4+ T cells were evaluated for their ability to
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activate, chemotax and respond to MOG. It was found
that CD4+ T cells isolated from WT and Cat Z~/~ mice
were equally able to activate in a MOG>>~**-specific fash-
ion (Fig. 3e). Similarly, the absence of cathepsin Z did not
affect the ability of CD4+ T cells to chemotax in response
to CXCL9 (Fig. 4a). Consistent with these findings, adop-
tively transferred WT and Cat Z7~ MOG>***-specific
CD4+ T cells traversed the blood-brain-barrier and
responded to the presence of endogenous MOG within
the CNS in comparable fashions (Fig. 4b, c).

Mice deficient in cathepsin Z are unable to efficiently
generate IL-1f during EAE and in response to
inflammasome activation, and show deficiencies

in Th17 polarization

Although it is expected that circulating levels of proin-
flammatory cytokines would correspond to a decrease in
neuroinflammation during EAE, it was noted that Cat Z
~/~ mice had dramatically lower IL-1p but comparable
levels of other circulating proinflammatory cytokines
during EAE (Fig. 5a). Since IL-1p has been shown to be
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critically important in the development of autoreactive
Th17 cells implicated in the pathogenesis of MS and
EAE [40-46], we set out to determine whether mice
deficient in cathepsin Z could efficiently generate a Th17
response. When cathepsin Z-deficient mice were chal-
lenged with CFA in the absence of antigen, the draining
lymph nodes contained equivalent proportions of Thl
and FoxP3+ CD4+ T cells, but proportionately reduced
numbers of Th17 cells (Fig. 5b). Direct examination of a
role for cathepsin Z in IL-1p production by APCs
revealed significant reductions in secreted IL-1p and IL-
18 following the induction of the NLRP3 inflammasome,
despite equivalent expression of IL-1p mRNA in re-
sponse to LPS (Fig. 5¢—h). These data are consistent
with a non-redundant role for cathepsin Z in the pro-
cessing of IL-1B, and the IL-1B-dependent Thl7 re-
sponse accountable for enhanced neuroinflammation
during EAE [40-47].

Discussion
This study provides the first experimental evidence that
cathepsin Z positively contributes to neuroinflammation
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isolated from the spleens of WT and Cat Z7~ mice and given 1 h to migrate through an ICAM coated Transwell plate in response to CXCL9 (n=4).
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and expanded ex vivo using IL-12 and MOG>>~>° for 48 h before adoptive transfer into WT and Cat 77~ recipient mice; alternatively, (c) to examine the
capacity of Cat 27/~ CD4+ T cells to infiltrate the CNS of WT mice, WT and Cat Z/~ MOG>>**-specific 2D2 CD4+ T cells were isolated, expanded and
adoptively transferred into WT recipients. b-c Six days following adoptive transfer, the 2D2 CD4+ T cells were isolated from the CNS using a
discontinuous Percoll gradient, identified by flow cytometry (CD4+, Va3.2+) and evaluated for the expression of the activation marker CD25 (n =4).
Data presented as mean+/— SEM; no significant differences (unpaired Student's t test, p > 0.05) from the WT control were observed
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and the pathogenesis of EAE in a non-redundant fashion.
Although phagocytic APCs express cathepsin Z at high
levels, we established that cathepsin Z’s role in EAE is not
mediated through antigen processing and presentation.
Consistently, we showed that the enzyme’s contribution to
overall proteolysis within phagolysosomes of APCs is

minimal to absent—demonstrating that general protein
turnover is not a primary function of this carboxypepti-
dase. Interestingly, we showed that cathepsin Z-deficiency
leads to reduced serum IL-1B and Thl7 polarization
during EAE, and lowered IL-1p production by APCs in
response to NLRP3-activating stimulus.
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Over the past decade, several pieces of evidence have
emerged that implicate cathepsin Z in neuroinflammation.
Cathepsin Z has been shown to be disproportionately
expressed and secreted by both microglia and astrocytes
in response to neuronal damage and inflammatory stimu-
lus, both in culture and in vivo [10-13]. It was reported
that dendritic cells in the aging brains of mice had in-
creased expression of cathepsin Z that correlated with
known markers of neuroinflammation [48]. Furthermore,
a comprehensive comparative gene expression analysis of
mouse models of MS (EAE), Alzheimer’s disease and
stroke, found that cathepsin Z is one of eighteen genes
whose expression is increased in all three models of neu-
roinflammation [38]. Whilst the expression and release of
cathepsin Z has been shown to be associated with neuro-
inflammation, and more recently, epigenetic dysregulation
of cathepsin Z with multiple sclerosis, this study provides
the first experimental evidence that cathepsin Z positively
contributes to neuroinflammation. Moreover, unlike typ-
ical lysosomal cysteine cathepsins, we show that cathepsin
Z’s role in EAE is non-redundant, and is not mediated
through antigen processing and presentation, but likely
through perturbation of the IL-1—Th17 pathway.

Beyond the CNS, cathepsin Z has been associated with
inflammatory conditions in other tissues. Levels of
cathepsin Z (and procathepsin Z) have been shown to be
significantly increased in the plasma and serum of
patients who had suffered multiple traumas—which
correlated with severity—and have been proposed to be
used as a clinical marker for systemic inflammation [49].
Cathepsin Z has been shown to be upregulated in human
gastric mucosa that is chronically infected with Helicobac-
ter pylori, and to contribute to chronic inflammation and
the development of gastric metaplasia in a mouse model
of Helicobacter-induced gastritis [50, 51]. These studies
suggest a broader role for cathepsin Z in inflammation,
potentially mediated through a common pathway
involving the generation of IL-1p.

While this study identifies a mechanistic role for
cathepsin Z in neuroinflammation and MS, several key
questions remain unanswered. How does cathepsin Z, a
strict carboxypeptidase, promote IL-1} generation, and
where does cathepsin Z physically act in this pathway?
In 2008, Hornung et al. reported that phagosomal
destabilization and cytosolic activity of cathepsin B (or
L) act to trigger inflammasome assembly in response to
silica and alum, mainly based on the use of cysteine ca-
thepsin inhibitors [52]. Subsequently, others have shown
that APCs deficient in cathepsin B or L show unaltered
levels of IL-1p following inflammasome activation in
response to a variety of crystalline and soluble stimuli
[33, 47], and that the involvement of these “typical” lyso-
somal cysteine cathepsins in inflammasome activation or
efficiency is likely redundant. The non-redundant role of
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cathepsin Z in IL-1p generation suggests that this cyst-
eine protease acts to promote IL-1f generation through
a mechanism distinct from that used by cathepsin B and
L within the cytosol. Alternatively, it is possible that se-
creted cathepsin Z (or pro-cathepsin Z) acts to enhance
IL-1PB generation through extracellular pathways, as has
been demonstrated for cathepsin C [53]. However, since
cathepsin Z is a strict carboxypeptidase and cathepsin Z-
deficient APCs show reduced IL-1f release in in vitro
conditions, it is unlikely that cathepsin Z directly pro-
cesses extracellular IL-1f in a caspase 1l-independent
fashion. Another intriguing possibility is that procathep-
sin Z, or the cleaved proregion of cathepsin Z, enhances
or triggers the assembly of the NLRP3 inflammasome
through the activation of integrins on the surface of
APCs in an autocrine or paracrine fashion through its
evolutionarily-conserved RGD integrin binding domain
[9]. Indeed, the surface protein Td92 of the periodonto-
pathogen Treponema denticola, as well as the RGD-
containing cysteine proteinase 5 of Entamoeba histoly-
tica, have been shown to enhance inflammasome-
mediated IL-1p generation through RGD-dependent
activation of the a5p1 integrin on macrophages [54—56].

Although further insight into how cathepsin Z en-
hances IL-1p generation during neuroinflammation and
what leads to the hypomethylation of the CTSZ locus in
the human brain is warranted, the data generated in this
study directly implicate cathepsin Z in the promotion of
IL-1B-driven neuroinflammation. Moreover, these find-
ings provide experimental evidence to support the pro-
posal that epigenetic dysregulation of cathepsin Z within
the human brain may increase an individual’s suscepti-
bility to MS [2].

Additional file

Additional file 1: Figure S1. Mice deficient in cathepsin Z exhibit
clinical signs of EAE compared to WT siblings. Although the Cat Z”~ mice
used in this study were fully backcrossed to C57BL/6 (WT), to definitively
rule out any anomalies resulting from background genetics or environment,
EAE was induced with 50 ug MOG> in CFA and 300 ng Pertussis Toxin (day
0and 2) and scored on a standard 5 point scale. (n = 6-9). Data presented as
mean+/- SEM; significant differences (Mann-Whitney U test, p < 0.05) from the

WT control are denoted by asterisks (¥). (PNG 140 kb)
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