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Abstract

Background: Microglial cultures comprise a critically important model system for investigating inflammatory
mechanisms in almost all CNS disorders. Mild trypsinization and shaking are the two most commonly used
methods to isolate primary microglia from mixed glial cultures. In this study, we characterized and compared
microglia obtained using these two methods.

Methods: Primary rat microglia cultures were prepared from cerebral cortices of 1-2-day-old neonatal
Sprague-Dawley rats. After achieving confluency at about 14 days in vitro, microglia were isolated from
mixed glial cultures via either mild trypsinization or shaking. The purity of microglia was estimated by flow
cytometry. Quantitative real-time PCR was used to measure mRNA expression. TNFa, IL-18, IL-10, and IGF-1
in cell culture supernatant were measured using ELISA kits. Phagocytic function was assessed using
fluorescein-labeled Escherichia coli K-12 BioParticles.

Results: Mild trypsinization generated a higher yield and purity than shaking. Microglia isolated by mild
trypsinization appeared to be in a quiescent state with ramified morphology. Microglia isolated by shaking
showed a more heterogenous morphology, including cells with rounded shapes suggestive of activation.
Compared with shaking, microglia isolated by trypsinization also had lower baseline phenotype markers
(INOS, CD86, CD206, and arginase 1) and lower levels of cytokines (TNFa, IL-1(3, IL-10, and IGF-1) as well as
reduced phagocytic capability. Both methods yielded microglia that were responsive to various stimuli such
as IL-4, lipopolysaccharide (LPS), or interferon-y (IFNy). Although stimulated patterns of gene expression and
cytokine release were generally similar, there were also significant differences in terms of absolute response.
LPS treatment induced significantly higher levels of TNFa and IL-10 in microglia isolated by mild
trypsinization versus shaking. IFNy induced a lower response in TNFa in microglia obtained by mild
trypsinization versus shaking.

Conclusions: Our results suggest that isolating microglia with the shaking method may induce slight
activation even at baseline, and this may affect stimulus responses in subsequent experiments. Caution and
attention should be warranted when choosing isolation protocols for primary microglia cultures.
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Background

Microglia are resident immune cells of the brain, con-
stantly monitoring the microenvironment and respond-
ing to any kind of pathologic change. One striking
feature of microglia is their highly dynamic nature [1].
Microglia can be activated by a large number of stimuli
and change in their morphology, cytokine/chemokine
expression profiles, and function. Depending on the stimu-
lus and context, activated microglia exhibit a spectrum of
phenotypic and functional diversity, ranging from the
so-called classically activated (M1-like) to alternatively
activated (M2a, M2b, and M2c) [2-9]. M1-like micro-
glia promote the release of various proinflammatory
cytokines, thus inducing bystander tissue injury [9-15]. By
contrast, M2-like macrophages may actively promote tis-
sue remodeling and repair [9, 12-17].

Primary microglia cultures comprise a useful in vitro
tool for exploring a wide range of inflammatory mecha-
nisms in central nervous system (CNS) disease and inves-
tigating therapeutic strategies that may target microglia.
In vitro, M1-like phenotype is achieved by exposing cells
to lipopolysaccharides (LPS) and interferon-y (IFNy),
whereas interleukin (IL)-4 and IL-13 are commonly used
to induce M2-like phenotype [18]. However, there are
many ways to prepare primary microglia, and some cau-
tion may be warranted because these highly reactive cells
may respond differently under different isolation condi-
tions. In this study, we isolated microglia from rat brains
using two commonly used methods (shaking versus mild
trypsinization) and assessed and compared their morph-
ology, gene expression profiles, and cytokine release under
baseline and stimulated conditions.

Methods

Reagents

DMEM/F12, 0.25% trypsin-EDTA, and fetal bovine
serum (FBS) for cell culture were from Gibco.

Primary antibody against Iba-1 and Alexa Fluor 555-
conjugated secondary antibody were from Abcam and
Molecular Probe, respectively. The antibodies of CD11b,
CD45, and CD68 for flow cytometry detection were pur-
chased from BD, eBioscience, and Bio-Rad, respectively,
and were diluted according to the manufacturer’s in-
structions. Recombinant rat IL-4 was from Amsbio. LPS
was from Sigma-Aldrich. Recombinant rat IFNy was
from R&D. The stock solutions of IL-4, LPS, and IFNy
were prepared using sterile ddH,O, and ddH,O was
used as control.

Primary rat microglia culture

A PubMed search was conducted using the terms “micro-
glia AND (rat OR mouse) AND primary AND culture
NOT review [publication type]” from 2006 to 2016. This
search resulted in 392 articles. One hundred twenty-five
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articles were excluded (81 did not use microglial culture,
25 microglia used cell lines, 19 were not available for full-
text access), resulting in 267 articles that used primary
cultures of rodent microglia. This quick survey of the lit-
erature suggested that two most commonly used methods
to purify microglia involved shaking and mild trypsiniza-
tion (204 used shaking and 26 of them used mild trypsini-
zation) (Fig. 1). Based on this initial analysis, we compared
microglia obtained with shaking versus trypsinization.
Primary rat microglia cultures were prepared from cere-
bral cortices of 1-2-day-old neonatal Sprague-Dawley rats.
After removing the meninges, the cortical tissues were
digested with 0.25% trypsin-EDTA for 30 min at 37 °C,
followed by mechanical triturating in DMEM/F12 with
10% fetal bovine serum. The mixed cortical cells were
passed through a 70-um nylon mesh cell strainer and
plated on non-coated plastic dishes or plates in DMEM/
F12 with 10% FBS, and the medium was completely re-
placed every 3—4 days. After achieving confluency at about
14 days in vitro, the microglia were isolated from mixed
glial cultures via either mild trypsinization (enzyme, E) or
shaking (S). The mild trypsinization was performed ac-
cording to previously described methods [19, 20]. Incuba-
tion of mixed glial cultures with a trypsin solution (0.25%
trypsin-EDTA diluted 1:4 in DMEM/F12) for 15-25 min
resulted in the detachment of an intact layer of cells in
one piece. Microglial cells remained attached to the bot-
tom of the well. For the shaking method [21, 22], conflu-
ent mixed glial cultures were placed on an orbital shaker
at 220 rpm for 1 h. The supernatant containing the
detached microglial cells was collected and re-seeded for
1 h to allow microglial attachment. After 1 h, the nonad-
herent cells were removed. Microglia isolated from both
methods were allowed to rest overnight prior to treat-
ments. To compare the yield, we plated the cells from one
brain of neonatal pups into one 6-well plate. Yield was cal-
culated as cell numbers per field (six random fields of
%200 magnification per culture, n =5 cultures). The cells
were fixed in 4% paraformaldehyde for 30 min, blocked
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Fig. 1 The proportion of various methods that are used for primary
rodent microglial culture by searching PubMed using the term
“microglia AND (rat OR mouse) AND primary AND culture NOT
review [publication type]”
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with 5% normal horse serum for 1 h, and incubated with
primary antibody against Iba-1 (1:100) at 4 °C overnight.
After washing, the cells were incubated with Alexa Fluor
555-conjugated secondary antibodies (1:200) for 1 h at
room temperature. Negative controls were incubated
without primary antibodies, and no immunoreactivity was
observed in these controls.

Flow cytometry

The purity of microglia obtained from mild trypsiniza-
tion or shaking was estimated by flow cytometry. The
cells were collected and labeled with fluorochrome-
conjugated monoclonal antibodies recognizing antigens
(CD11b, CD45, and CD68) at 4 °C for 15 min. After
labeling, the cells were washed twice in PBS and resus-
pended at a final volume of 400 pl. Flow cytometry was
performed on a BD LSDII, and data were analyzed using
FlowJo software.

Real-time PCR

Quantitative real-time PCR was used to measure mRNA
expression. Cultured microglia were treated with IL-4
(20 ng/ml), LPS (50 ng/ml), or IFNy (20 ng/ml) for 8 h.
Total RNAs were extracted using miRNeasy kit (Qiagen)
from primary cultured microglia with or without treat-
ment. One hundred nanograms of total RNAs were re-
verse transcribed into ¢DNA using M-MLV reverse
transcriptase (Invitrogen). Quantitative expression of
inducible nitric oxide synthase (iNOS), CD86, CD206,
arginase 1, CX3C chemokine receptor 1 (CX3CR1), toll-
like receptor 2 (TLR2), and C-C chemokine receptor 2
(CCR2) were measured using gene-specific TagMan
Gene Expression Assays (ABI 7500HT, Applied Biosys-
tems). Relative baseline gene levels were calculated by
subtracting Ct value of f2-microglobulin (B2M) from Ct
value of detected genes. Changes in gene expression
(fold change) after various treatments were determined
using the 274" method with normalization to B2M. All
real-time PCRs were performed in triplicates. All experi-
ments were repeated three to six times independently.
Activated microglia include a spectrum of various
states. The representative genes we selected, includ-
ing iNOS, CD86, CD206, arginase 1, CX3CR1, TLR2,
and CCR2, are closely relevant to different activating
states of microglia. To compare the “average finger-
print” of cultured microglia, quantitative data were
analyzed using two-way ANOVA (p <0.05 for signifi-
cance, SPSS 21).

ELISA

Cultured microglia were treated with IL-4 (20 ng/ml),
LPS (50 ng/ml), or IFNy (20 ng/ml) for 24 h. Tumor ne-
crosis factor o (TNFa) (eBioscience), IL-1p (R&D), IL-10
(eBioscience), and insulin-like growth factor-1 (IGF-1)
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(R&D) in cell culture supernatant were measured using
ELISA Kkits, according to the manufacturer’s instructions.

Microglia phagocytic function assays

To assess phagocytosis, microglial cells cultured in 6-
well plates were digested using 0.25% trypsin-EDTA and
re-seeded to a 96-well plate at a concentration of 3.0 x
10* cells/well. Then, the cells were incubated with
fluorescein-labeled Escherichia coli K-12 BioParticles
(Invitrogen) for 2 h at 37 °C. The cells were rinsed with
0.25 mg/ml trypan blue to quench extracellular fluores-
cence. Intracellular fluorescence was read using a fluor-
escence microplate reader setup with excitation at
480 nm and emission at 520 nm. The experiments were
performed with five replicates per condition and re-
peated four times.

Statistical analysis

Data were expressed as mean = SE. Three to six sep-
arate experiments were performed. Data of real-time
PCR were analyzed using two-way ANOVA. Data of
ELISA that measures the cytokine release after various
treatments were analyzed using one-way ANOVA. Other
data were analyzed using ¢ test between two isolation
methods. Statistical significance was set at p < 0.05.

Results

Morphology, yield, and purity

Phase contrast microscopy revealed distinct morphology
of microglia isolated using two different methods.
Microglia isolated using mild trypsinization showed uni-
form ramified morphology with short processes and
small cell body (Fig. 2a). The morphology of microglia
isolated using shaking was more heterogeneous. Most of
them showed enlarged round cell body with reduced
processes (Fig. 2b). Cells from both methods were
Iba-1 positive (Fig. 2¢, d). The yield of microglia cul-
tures was higher by using mild trypsinization (76.18 +
13.08 cells/field) than by using shaking (54.27 +9.19
cells/field) (p=0.015, ¢ test) (Fig. 2e).

Besides morphology, the size of microglial cells ob-
tained from the two methods was also different. Mea-
sured by flow cytometry with forward scatter (FSC),
the average size of microglia isolated using shaking
was 1.17-fold larger than those obtained using mild
trypsinization (p = 0.030, ¢ test) (Fig. 2f-h). The purity
of cultured microglia was determined by flow cytom-
etry with CD11b and CD45 staining. The proportion
of CD11b-positive cells (Fig. 2i-k) and CD45-positive
cells (Fig. 21-n) were significantly higher in the mild
trypsinization group (93.68 + 2.54% and 94.92 + 3.64%)
compared to the shaking group (82.9+7.61% and
88.08 +3.32%) (p=0.028 for CDI11b, p=0.024 for
CD45, t test).
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Fig. 2 Morphology, yield, and purity of primary cultured microglia obtained using mild trypsinization (£) or shaking (S). a, b Morphology of

primary microglia isolated using mild trypsinization (a) or shaking (b). Scale bar =50 um. ¢, d Iba-1 immunostaining of primary microglia isolated
using mild trypsinization (c) or shaking (d). Scale bar =50 um. e The yield of microglia cultures. n = 5. f-h Size of primary microglia isolated using
mild trypsinization (f) or shaking (g). n=5. i-n Purity of primary microglia isolated using mild trypsinization (i, I) or shaking (j, m) was determined
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Baseline gene expression, cytokine production, and
phagocytic function
Because the morphology of microglia appeared to be dif-
ferent in the two preparation methods, we next asked
whether these cells might also demonstrate different phe-
notypes. A representative panel of genes was examined to
assess various activation states—iNOS, CD86, CD206, ar-
ginase 1, CX3CR1, TLR2, and CCR2. Baseline expression
of these selected genes were significantly different in
microglia obtained by shaking versus mild trypsinization
(p =0.003, 0.000, and 0.036 for methods, genes, and meth-
ods*genes, respectively, two-way ANOVA) (Fig. 3a).
Microglia are known to influence adjacent cells via the
release of extracellular signals. Therefore, we used ELISA
to assess key cytokines (TNFa, IL-1p, and IL-10) and the
major microglial growth factor IGF-1 (Fig. 3b). Baseline
levels of IL-1p (p =0.122, ¢ test) and IGF-1 (»p=0.032, ¢
test) were about 2-fold higher in conditioned media from
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cultured microglia isolated by shaking compared with
mild trypsinization. Even larger differences were observed
for IL-10 (9-fold, p =0.048, ¢ test) and TNFa (24-fold,
p =0.020, ¢ test), again with significantly higher levels
from microglia isolated using shaking than using mild
trypsinization.

In general, these differences in gene expression and
cytokine release suggested that microglia isolated with
shaking may be “more activated” compared with those
obtained via mild trypsinization. CD68 is considered to
be a general marker of activated microglia. Flow cytome-
try showed that the percentage of CD68-positive cells
was slightly higher in microglia isolated using shaking
(39.14 + 6.94%) than using mild trypsinization (31.58
+7.80%), but there was no significant difference be-
tween the two methods (p =0.185, ¢ test) (Fig. 3c—e).
However, an in vitro assay demonstrated that pha-
gocytic capacity was significantly enhanced by about
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Fig. 3 Baseline levels of gene expression, cytokine release, and phagocytosis of primary cultured microglia isolated using mild trypsinization () or
shaking (S). a Baseline levels of gene expression. n=3-6. b Baseline levels of TNFa, IL-13, IL-10, and IGF-1 in microglial-conditioned media. n = 4.
c—e Flow cytometry showed CD68-positive cells of primary microglia isolated using mild trypsinization (c) or shaking (d). n = 5. f~h Phagocytosis
of primary microglia isolated using mild trypsinization (f) or shaking (g). n=4. *p < 0.05
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2.5-fold in microglia by shaking versus mild trypsini-
zation (p =0.018, ¢ test) (Fig. 3f-h).

Comparative response to stimulation

Next, we tested the response of microglia isolated by
these two methods to three typical stimuli that were
commonly used to activate microglia into different phe-
notypes, i.e., IL-4, LPS, and IFNy. After treatment with
IL-4 (Fig. 4a) or LPS (Fig. 4b) for 8 h, the pattern of gene
expression response (iNOS, CD86, CD206, arginase 1,
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CX3CR1, TLR2, and CCR2) appeared to be generally
similar (for IL-4 treatment, p = 0.881, 0.000, and 0.408
for methods, genes, and methods*genes, respectively;
for LPS treatment, p=0.962, 0.000, and 0.430 for
methods, genes, and methods*genes, respectively, two-
way ANOVA). For example, both IL-4 and LPS treatment
decreased CX3CR1 expression. IL-4 treatment upregu-
lated the expression of M2-like phenotype marker CD206,
whereas LPS treatment upregulated the expression of M1-
like phenotype marker iNOS and downregulated CD206.
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[ iNOS
CD86
CD206
[ Arginase
ES CX3CR1
TLR2

Il CCR2

[ iNOS

E3 CD86

B4 CD206
[ Arginase1
E=2 CX3CR1
TLR2

Il CCR2

[ iNOS

=] CD86
CD206
[ Arginase
ES CX3CR1
TLR2

Il CCR2




Lin et al. Journal of Neuroinflammation (2017) 14:101

The responses to 8-h IFNy treatments were slightly
more variable but once again, overall patterns were
similar (p =0.333, 0.023, and 0.916 for methods, genes,
and methods*genes, respectively, two-way ANOVA). [FNy
increased the expression level of iNOS and decreased the
level of CD206 in microglia from both shaking and trypsi-
nization groups (Fig. 4c). Consistent with these gene
expression findings, morphological changes also appeared
to be mostly the same in both groups after various treat-
ments for 24 h (20 ng/ml of IL-4, 50 ng/ml of LPS, or
20 ng/ml of IFNy) (Fig. 5a—h).

For further comparisons, the conditioned media after
24 h treatment with the IL-4, LPS, or IFNy stimuli were
collected to measure the levels of secreted cytokines and
growth factors. Consistent with the baseline data described
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above, pre-stimulation levels of TNFa, IL-1f, IL-10, and
IGF-1 were significantly higher in conditioned media of
microglia isolated using shaking compared with trypsiniza-
tion. Stimulation with IL-4, LPS, or IFNy induced distinct
responses (Fig. 5i—-1, one-way ANOVA). LPS significantly af-
fected TNFa, IL-1p, and IL-10. IL-4 significantly increased
the production of IGF-1, but it had no effect on IL-10,
TNFa, and IL-1p. IENy had little effects. The direction of
the response (increase or decrease) was mostly similar in
microglia isolated with both methods (Fig. 5i-1). For ex-
ample, in microglia isolated from either mild trypsinization
or shaking, IL-4 treatment increased IGF-1 release, and
LPS treatment increased the generation of TNFa and IL-
1B. However, there were some key differences in the extent
of response in some cases. To assess differences of the
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Fig. 5 Morphological change (a—h) and cytokines release (i-l) of primary cultured microglia isolated using mild trypsinization (£) or shaking (S)

after treatment with 20 ng/ml of IL-4, 50 ng/ml of LPS, or 20 ng/ml of IFNy for 24 h. n=4. Scale bar =50 pm. m-o Reanalysis of data of cytokines
release from primary cultured microglia isolated using mild trypsinization (£) or shaking () after treatment with 20 ng/ml of IL-4 (m), 50 ng/ml of
LPS (n), or 20 ng/ml of IFNy (o) for 24 h. Data were presented as fold changes compared with control. *p < 0.05; **p < 0.01
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extent of response, we recalculated the data as fold change
versus control in Fig. 5m—o. Compared with the baseline
release, LPS treatment induced significantly higher levels of
TNFa and IL-10 in microglia obtained by mild trypsiniza-
tion than by shaking (Fig. 5n). For IFNy stimulation, TNF«
release was significantly elevated in microglia isolated using
shaking, but not in microglia isolated using mild trypsiniza-
tion (Fig. 50).

Discussion
Microglia serve as critical sensors, effectors, and regula-
tors for CNS homeostasis during development and in
health and disease [23-25]. Even in healthy brain, mi-
croglia are not functionally silent cells. They are highly ac-
tive, extending and retracting motile processes through
which they survey their microenvironment and interact
dynamically with surrounding cells [24, 26—28]. Accumu-
lating knowledge now suggest that microglia have mul-
tifactorial effects far beyond their traditional roles in
immunity [29]. Microglia remove apoptotic neurons, both
during CNS development and in adult brains [30-34].
Microglia modulate neurogenesis and promote wiring
during embryogenesis and adulthood [35-38]. Microglia
take part in synaptic pruning and remodeling in the brain
[39-42]. Any insult to the CNS, including infection,
trauma, or metabolic dysfunction, causes microglial acti-
vation. Upon activation, microglia undergo morphological
and functional changes [2, 43]. Microglia can produce
numerous mediators including cytokines (both proinflam-
matory and anti-inflammatory), chemokines, growth fac-
tors, and neurotrophins. Microglia can also be phagocytic
and generate reactive oxygen and nitrogen species. There-
fore, investigations into microglial mechanisms are critic-
ally important for a wide spectrum of neuroscience.
Primary cultures comprise a vital in vitro tool for
studying microglia. A number of protocols were avail-
able for culturing primary microglial cells from neonatal
rodent brains. Historically, rodent microglia are isolated
using the shaking method [21, 22]. In 2003, another
method was introduced that involved mild trypsinization
[19]. Although some new methods have been demon-
strated to achieve high-yield isolation of microglial cells
from postnatal and adult brains [44, 45], shaking remains
the most commonly used approach to date (see Fig. 1).
Because microglia are highly sensitive and reactive cells, it
is possible that different preparation protocols may result
in slightly different phenotypes of microglial cells, which
in turn can potentially influence experimental outcomes.
Therefore, the purpose of the present study was to directly
compare key features of microglia isolated using these two
methods. Compared to the shaking method, mild trypsini-
zation method to separate microglia from mixed glial
cultures generated a higher yield as well as purity. More
important is that the shaking method appeared slightly
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activate microglial cells even under normal condition.
Microglial activation is not univalent or bivalent. The
concept of classically activated (M1-like) to alternatively
activated (M2-like) is derived from the studies of macro-
phages. Microglia differ from macrophages that reside in
other tissues based on their cell-specific gene expression
signatures, distinct ontogeny, and differential functions
[23, 46—48]. Depending on the stimulus and context, acti-
vated microglia exhibit a wide spectrum of phenotypic
and functional diversity, not only M1- or M2-like. The
so-called M1- or M2-like markers are also not always
absolutely limited to one microglial phenotype. Micro-
glia isolated by shaking showed “ameboid” morphology.
Compared with mild trypsinization, the baseline expression
of microglial activation markers (iNOS, CD86, CD206, and
arginase 1) and the baseline release of cytokines (TNFa, IL-
1B, IL-10, and IGF-1) were significantly higher in microglia
isolated by shaking. Microglia isolated using shaking also
showed enhanced phagocytosis when compared with the
microglia isolated using mild trypsinization. These findings
further confirm that primary cultured microglia are ex-
tremely sensitive to stimuli, and responses are sometimes
dependent on isolation protocols. Hence, caution may be
required in choosing methods and interpreting data. For
studies that focus on baseline microglial physiology, it may
be better to select methods that minimize inadvertent
activation. Caveats must also be acknowledged when inves-
tigating pathways by probing with a recombinant protein,
especially if the purity is lower and the level of endotoxin in
the recombinant protein is higher.

In our study, we documented the changes of gene
expression (iNOS, CD86, CD206, arginase 1, CX3CR1,
TLR2, and CCR2) and cytokine release (TNFa, IL-1,
IL-10, and IGF-1) in microglia obtained from these two
methods in response to various typical stimuli that may
induce M1-like (LPS or IFNy) or M2-like (IL-4) pheno-
types. The microglia obtained by either mild trypsiniza-
tion or shaking were fully functional and generally
responded to different treatments as expected. However,
the extent of responses appeared to be different under
some conditions. Even though both methods were feas-
ible for evaluating functional responses of microglia in
vitro, opposite conclusions may arise if the extent of re-
sponse was critical for a particular study. For example,
to evaluate the beneficial or harmful effects of activated
microglia, the levels of TNFa released from activated
microglia may be a key. Different concentrations of
TNFa offer distinct receptor selectivity [49]. Higher
levels of TNFa may induce neuronal death and in-
crease glutamate release, but lower levels of TNFa
may not [50, 51]. In this scenario, the different re-
sponses of TNFa to LPS or IL-4 stimulation in micro-
glia isolated by shaking or trypsinization may affect
results and conclusions.
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There are a few caveats. First, the purity of cultured
cells is one of the critical factors that would influence
the experimental results. Unfortunately, it is almost im-
possible to obtain 100% pure cells in any primary cul-
ture. In our primary microglial cultures, other types of
brain cells, including neurons, astrocytes, and oligoden-
drocytes, might exist. However, the differences in purity
might not be a major contributor to the differential
inflammatory responses or baseline immune mediator
expression in this study because the genes and cytokines
we measured are mainly expressed by microglia, rather
than neurons, astrocytes, or oligodendrocytes. Actually,
one potential advantage of using mild trypsinization to
culture microglia may be because this method provides
about 95% pure microglial cells. Nevertheless, if these
cultures were further passaged, other cells may still
persist and the proportion of various cell types might be
changed. This is an important caveat. Second, the speed
and duration of shaking might be important to influence
the characteristics of microglia isolated by shaking.
Shaking speed and duration to isolate microglia from
mixed cultures are variable in the literatures. In the
present study, we used shaking speed and duration that
were typically used in our lab. Compared with the litera-
ture, 220 rpm is a commonly used speed [52, 53]. Third,
since microglia are very sensitive to even tiny stimula-
tions, it is possible that the phenotype of microglia
would be switched if the microglia were allowed to recu-
perate for a longer time after being isolated from the
mixed cultures, such as 48 h instead of overnight. Future
studies to assess various time points after the shaking
method would be beneficial. Fourth, although we showed
that the yield was higher using the mild trypsinization
method than the shaking method in the present study, we
acknowledge that we do not know what causes the differ-
ence of the yield in the two methods. We plated cells from
one neonatal brain into one 6-well plate to make sure that
the initial culture conditions are same in both methods.
Before taking the photos to compare the yield, we cultured
the microglial cells for another 24 h after isolating them
from the mixed cultures using either shaking or mild
trypsinization. However, potential differences in microglial
mechanisms of response to enzyme versus mechanical
manipulations remain to be elucidated.

Recently, other studies have also raised the possibility
that the shaking method might inadvertently activate
microglia, and immunomagnetic microbead methods
have been proposed as an alternative way for in vitro
isolation [52, 54, 55]. Here, we showed that the mild
trypsinization method resulted in similar purity as the
magnetic microbead method. The purity of mild trypsi-
nization method used in the present study is about 95%.
The purity of magnetic microbead method is about 95—
97% according to the literature [52, 54, 55]. Compared
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with magnetic sorting, mild trypsinization might also be
cheaper (no need for extra reagents and equipment) and
simpler (no extra procedures).

Conclusions

In summary, mild trypsinization may be a reliable
method to isolate microglia from mixed glial cultures
with increased yield and purity, and microglial purified
by mild trypsinization may be closer to their “resting”
state. The immune state of microglia was influenced by
the method of purification, and the culture method
should be carefully considered in in vitro research.
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