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Abstract

transmission were performed on acute hippocampal slices.

potentiation compared to control mice.

of preterm birth caused by intrauterine inflammation.

Background: Recent evidence suggests that exposure to intrauterine inflammation causes acute fetal brain injury
and is linked to a spectrum of neurobehavioral disorders. In a rodent model of intrauterine inflammation induced
by lipopolysaccharide (LPS) exposure in utero, activated microglia can be detected in the hippocampus of offspring
survivors, as late as 60 days postnatal (DPN). Given that the hippocampus is important for learning and memory, these
results suggest that in utero inflammation underlies long-term cognitive deficits observed in children/survivors.

Methods: An established mouse model of LPS-induced intrauterine inflammation was used to study hippocampal
function from offspring at 44-59 DPN. Microgliosis was examined at 45 DPN. Extracellular field recordings of synaptic

Results: LPS offspring mice displayed persistent microglial activation and increased CA3-CA1 excitatory synaptic strength,
which can be explained in part by an increase in the probability of glutamate release, and reduced long-term synaptic

Conclusions: These results offer a mechanistic explanation for the cognitive and behavioral deficits observed in survivors

Keywords: Intrauterine inflammation, Hippocampus, Synaptic transmission, Long-term synaptic potentiation

Background

Pregnancy and gestation are a critical time for fetal de-
velopment. Recent evidence suggests that fetal exposure
to inflammatory cytokines can have long-lasting effects
on postnatal physiology, sometimes lasting into adult-
hood [1, 2]. During intrauterine infection/inflammation,
proinflammatory cytokines and other mediators can
cross the compromised blood—brain barrier and induce
activation of microglia and signaling through astrocytes
in the fetal brain, causing subsequent production of
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reactive oxygen species and cytokines that can lead to
glutamate-induced excitotoxicity [3-5]. In addition to
the possibility of modulation of neurodevelopment,
moderate maternal inflammation also leads to elevated
production of serotonin in the placenta, which can dis-
rupt fetal neurodevelopment of serotonin-dependent
processes in the forebrain [6].

Preterm children that are exposed to inflammation in
utero are at a greater risk for neurological, emotional,
and learning disorders [7-9]. Additionally, maternal in-
flammation has been linked with increased prevalence of
autism and experimental animal models mimicking ma-
ternal infection and inflammation result in autism-like
phenotypes [10, 11]. Similarly, elevated levels of mater-
nal cytokines, in particular tumor necrosis factor
(TNF)a, were associated with increasing odds of adult
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schizophrenia and other psychoses in their offspring
[12]. These results strongly suggest that in utero inflam-
mation and postnatal cognitive abnormalities are caus-
ally linked.

Animal models of intrauterine inflammation include
mice, rats, rabbits, and sheep [13, 14]. One well-
characterized rodent model of preterm birth that mimics
human situation of local inflammatory response in the
uterus and no overt infection in the dam is intrauterine
lipopolysaccharide (LPS) injection [13]. At high doses
(250 pg/100 pl), LPS injection results in > 95% preterm
birth and significant fetal brain injury [1, 15]. Decreasing
LPS doses (50 pg/100 pl), however, resulted in ~ 30%
preterm births, yet with detectable levels of activated
microglia as late as 60 days postnatal (DPN) [2, 16]. In
mice exposed to LPS in utero, the volume of the hippo-
campus, a structure important for learning and memory,
is reduced. Whether hippocampal functions are altered
in the survivors of preterm birth is currently unclear. In
this study, we tested whether exposure to low-dose LPS
in utero alters information transfer and storage by the
hippocampus in adult survivor mice to understand the
cellular mechanisms contributing to cognitive deficits in
survivors of preterm birth.

Methods

Mouse model of intrauterine inflammation

All animal care and treatment procedures were approved
by the Institutional Animal Care and Use Committee,
and animals were handled according to the National In-
stitutes of Health guidelines. An established model of
intrauterine inflammation was utilized for these studies
[15]. Briefly, timed pregnant CD-1 outbred mice were
obtained from Charles River Laboratories (Wilmington,
MA). Intrauterine injections of 100 pl of LPS (from
Escherichia coli, 055: B5, Sigma-Aldrich, St. Louis, MO)
at a dose of 50 pg in 100 pL of phosphate-buffered saline
(PBS) were administered on embryonic day 17 (E17) of a
19-day gestation period in four independent experi-
ments. Control dams for these experiments received the
same volume of intrauterine injection of vehicle. In total,
11 dams were injected with PBS with all litters surviving
and 43 dams were injected with LPS with 16 litters sur-
viving. For survival surgery, pregnant mice were anesthe-
tized using isoflurane, and a mini-laparotomy was then
performed in the lower abdomen for intrauterine injec-
tions. Live pups were separated by sex, and only males
were utilized for these studies. While sex could play an
important role in the long-term effects of intrauterine
inflammation [2], we concentrated on males only in the
current study to avoid possible effects of estrus cycle in
which circulating hormones could affect hippocampal
function [17] as well as potential sex difference in micro-
glia during development [18].
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Immunohistochemistry

At 45 DPN, after the animals were euthanized, 1x PBS
was perfused transcardially, followed by 4% paraformal-
dehyde (PFA). The brain from one animal from each
dam was dissected and post-fixed in PFA overnight. The
next day, specimens were washed with PBS extensively
and immersed in 30% sucrose until saturation, followed
by cryosection at 20-pm thickness. Sections were incu-
bated overnight at 4 °C with rabbit anti-Iba-1 (Wako,
Richmond, VA) to identify microglia. Donkey anti-rabbit
Dylight 568 (Abcam, Cambridge, MA) was applied as
the secondary antibody. The sections were further
counter-stained with DAPI (Roche, Indianapolis, IN) to
identify cell nuclei. Images were obtained using an Axio-
plan 2 Imaging system (Carl Zeiss, Thornwood, NY) at
the bregma level from - 1.34 to — 1.70 mm. Quantitative
analysis of Iba-1 expression cell numbers and area per-
centage within CA3-CA1l was performed using Image]
1.37V (NIH). Each cell was identified as the positive ex-
pression (red) in cytoplasm and DAPI (blue) in nucleus.
The percentage of Iba-1 expression area was calculated
by positive expression area (cell bodies and branches) di-
vided by CA3-CAl area. The average number of both
hippocampi in each hemisphere represented the section
counted. The average number of five sections repre-
sented the specimen counted.

Hippocampal slice preparation

Mice were anesthetized with isoflurane and rapidly de-
capitated. The brain was removed, and 300-pm slices
from the middle of the hippocampus were cut using a
vibrating microtome (VT1000S; Leica Instrument, Leitz)
as the brain was immersed in an ice-cold sucrose
substituted artificial CSF (aCSF) of the following com-
position (in mM): 119 NaCl, 26 NaHCO3, 2.5 KCI, 1
NaH,PO,, 1 MgCl,, 2 CaCl,, and 25 dextrose (oxygen-
ated with a carbogen mixture of 95% O, and 5% CO,).
Slices were held in oxygenated aCSF at 35 °C for 30 min
and then at room temperature (22-24 °C) for at least
1 h before recording.

Electrophysiology

All recordings were made at room temperature. Hippo-
campal slices were visualized using a fixed-stage, upright
microscope (Axio Examiner or Leica DMLFS) equipped
with infrared differential interference contrast optics.
The recording chamber was continuously perfused with
oxygenated aCSF flowing at a rate of 1-2 ml/min. Re-
cording electrodes were pulled from borosilicate pipettes
(Sutter Instruments) and had tip resistances of 2—
3.5 MQ when filled with aCSF for extracellular field
recordings. Glass stimulating electrodes of approximate
resistance of 1 MQ were filled with aCSF, connected to
a Digitimer constant current stimulus isolation unit
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(AutoMate Scientific, Berkeley, CA), and placed in the
middle of the CAl stratum radiatum to stimulate the
CA3 axon collaterals. The CA3 axons were severed to
eliminate recurrent excitation within the CA3 subfield.
The stimulating and recording electrodes were placed in
the middle portion of the CAl stratum radiatum (ap-
proximately equal distance from stratum pyramidal and
stratum lacunosum moleculare). Stimulus duration was
0.1-0.2 ms allowing for clear separation of fiber volley
(FV) from the preceding stimulus artifact. Long-term
potentiation (LTP) of CA3—CA1 excitatory synapses was
induced by stimulating CA3 axons with 3 sets of 100
stimuli delivered at 50 Hz.

Recordings were obtained using a Multiclamp 700B
amplifier (Molecular Devices) or GeneClamp 500 ampli-
fier (Axon Instruments). Signals were filtered at 3 kHz,
digitized using a Digidata 1440A interface (Molecular
Devices) at 10 kHz, and transferred to a computer using
pClampl0 software (Molecular Devices) or an ITC-16
(Instrutech Corp., NY) and a computer using Patchmas-
ter (Heka Instruments).

All experiments were performed in the presence of
picrotoxin (100 uM) and CGP55845 (2 uM; both from
Tocris Bioscience) to suppress inhibitory synaptic
transmission.

Data and statistical analyses

Voltage traces were analyzed using custom macros writ-
ten in Igor Pro (WaveMetrics). Statistical analysis was
done using R version 3.3.2 and the geepack package [19].
To account for correlation among hippocampal slices
taken from the same animal, we constructed simple GEE
models of field excitatory postsynaptic potential (fEPSP)
input—output (I/O) relationship, FV—stimulus intensity,
paired pulse ratio, and long-term synaptic plasticity with
exchangeable correlation structures and, to accommo-
date the small number of mice relative to the number of
slices, a jackknife variance estimator, with intrauterine
exposure to LPS as the explanatory variable. We com-
pared Iba-1 expression cell numbers and area percentage
using Student’s ¢ test with unequal variance.

Availability of data and materials

All data generated or analyzed during this study are in-
cluded in this published article. Custom macros written
in Igor Pro (WaveMetrics) are available on request (JM).

Results

Immunohistochemical evaluation

Mice were exposed to LPS in utero at E17 via intrauter-
ine injection of 50 pg LPS in normal saline. Microgliosis
was examined in brain cryosections on 45 DPN by im-
munohistochemistry using antibodies to Iba-1 (micro-
glia) and DAPI (cell nuclei) (Fig. 1a). In CA3-CAl of
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the hippocampus, Iba-1 expression cell number was sig-
nificantly higher in intrauterine LPS-exposed pups com-
pared to control (115.5 + 36.1, n = 6 versus 76.1 * 1.6,
n = 5 p = 0.044, Fig. 1b). The percentage of Iba-
lexpression area was also significantly higher among
intrauterine LPS-exposed pups (8.695 + 2.831, n = 6 ver-
sus 3.002 + 0.750 n = 5, p = 0.003, Fig. 1c). LPS-treated
microglia demonstrated a round shape with fewer
branches (amoeboid), indicating the activation of
microglia.

Exposure to LPS in utero causes an increase in excitatory
synaptic strength in adult offspring

Acute brain slices were prepared from adult male survi-
vors of LPS exposure and extracellular fEPSPs were
measured for CA3-CAl synapses. Increasing stimulus
intensities resulted in increases in the fiber volley (FV)
and fEPSP amplitudes. As FVs reflect activation of the
CA3 axons (presynaptic effect), the initial slope of the
fEPSPs reflects activation of the a-amino-3-hydroxy-5-
methyl-4-isoxazolepropionic acid (AMPA) receptors
(postsynaptic effect); the fEPSP slopes (shaded bar) were
plotted against the FV amplitudes (dashed line) to yield
a fEPSP input—output (I/O) relation (Fig. 2a). The fEPSP
I/O relations constructed from individual experiments
were fit with linear functions, and they reflect presynap-
tic action potential (AP) generation and the postsynaptic
membrane response due to presynaptic AP-induced glu-
tamate release (Fig. 2d). Therefore, we used the slope of
the fEPSP I/O relationship as an indicator of synaptic
strength (Fig. 2c). Mice that were exposed to LPS in
utero displayed a robust increase in synaptic strength
(estimated using a GEE model) compared to controls
(LPS 0.76 (95% CI 0.58 to 0.94), n = 20, from 7 mice, 5
litters; control 0.24 (95% CI 0.15, 0.34), n = 15, from 5
mice, 5 litters; p < 0.001). These results demonstrate that
intrauterine inflammation resulted in increased synaptic
strength at hippocampal CA3-CA1 synapse.

These extracellular recordings also allowed for an
examination of the CA3 presynaptic excitability as de-
scribed by plotting the peak of the FV against the stimu-
lus intensity (Fig. 1le). The FV-stimulus intensity
relations showed no significant difference between LPS
and control mice (Fig. 2f; LPS 0.016 (95% CI 0.008,
0.023), n = 20; control 0.018 (95% CI 0.016, 0.019),
n = 15, p = 0.543). These results suggest that intrinsic
excitability of the CA3 axon collaterals was not affected
by intrauterine LPS exposure.

Probability of glutamate release is affected in mice
exposed to intrauterine LPS

The increase in fEPSP I/O observed could reflect either
pre- and/or post-synaptic changes. To determine whether
presynaptic effects on glutamate release contribute to the
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Fig. 1 LPS exposure in utero generated long-term changes in glial appearance in the hippocampus on 45 DPN. a Micrograph showing increased
microgliosis (red) in the hippocampus of LPS-exposed mouse. Insets on the right show enlarged image of CA1 and CA3 area. b Scatterplot of microglia
cell number in the hippocampus from PBS (n = 5)- and LPS (n = 6)-exposed mice. Asterisks indicate p < 0.05. ¢ Scatterplot of Iba-1 expression area in
the hippocampus from PBS (n = 5)- and LPS (n = 6-exposed mice. Asterisks indicate p < 0.01
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increased synaptic strength in LPS-exposed mice, extracel-
lular paired-pulse measurements were made by giving two
stimuli in close succession (50 ms) and measuring the
slope of the average of 10 fEPSPs for the first and second
responses (Fig. 3). The stimulus intensity used for these
measurements was set to approximately 50% of the max-
imum evoked first response. LPS-exposed mice showed
reduced levels of facilitation of the second pulse compared
to control mice, as demonstrated by a reduction in the
paired pulse ratio or PPR (LPS 1.27 (95% CI 1.19, 1.34),
n = 17; control 1.54 (95% CI 1.44, 1.64), n = 9; p < 0.001;
Fig. 3c). These results suggest greater release of glutamate
induced by the first stimulus, hence a reduction in the
amount of glutamate release by the second stimulus.

Therefore, the increased synaptic strength observed in
LPS-exposed mice is in part mediated by a change in the
probability of glutamate release.

Long-term synaptic potentiation is impaired in mice
exposed to LPS in utero

The hippocampus is required for memory formation,
and long-term potentiation of the CA3—CA1 excitatory
synapses is thought to be the cellular correlate that me-
diates hippocampus-dependent memory formation [20—
22]. LTP at these synapses involves a rapid increase in
synaptic strength that is largely attributed to increased
post-synaptic AMPA receptor insertion [23—-25]. The de-
gree of LTP-induced at these synapses was compared
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Fig. 2 Exposure to LPS in utero causes a long-term increase in synaptic strength. a, b Representative fEPSPs evoked by increasing stimulation intensities
from hippocampal slices obtained from adult control mice (a) and mice exposed to LPS in utero (b). Each trace is the average of five consecutively
recorded voltage traces. Gray bars highlight the regions where fEPSP initial slopes were measured. Dashed line illustrates the point where the FV peak was
measured. The stimulus artifact preceding the FV was blanked out. d fEPSP slope versus FV relation from a single representative experiment. fEPSP initial
slope versus FV relations were fit with linear functions without constraints. The slope derived from the fits (s™") reflects the input-output relation of synaptic
transmission (fEPSP 1/0). ¢ Scatterplot of fEPSP 1/O determined in d from individual experiments for control- and LPS-exposed mice. Asterisks indicate

p < 0001. e FV versus stimulus strength (Stim) relationship for a single representative experiment representing the FV input-output relationship (FV 1/O).
The FV I/0 was fit with a quadratic function to calculate the slope of the FV I/O at threshold (FV I/O slope). f Scatterplot of FV I/O slope determined in e
for individual experiments demonstrate that CA3 intrinsic excitability and axonal density were not significantly different
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Fig. 3 LPS exposure in utero causes reduced PPR. a, b Representative fEPSPs evoked by paired stimulation separated by 50 ms (top trace) from
hippocampal slices obtained from adult control mice (a) and mice exposed to LPS in utero (d). Each trace is the average of 10 consecutively
recorded voltage traces. b, e Overlay of the first (black) and second (dash line) fEPSPs. Gray bars highlight the regions where fEPSP initial slopes
were measured. ¢ Scatterplot of PPR determined by measuring the slope of the average of 10 individual trials. Asterisks indicate p < 0.001
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between LPS-exposed and control mice. Extracellular
fEPSPs were measured at CA3—CA1 synapses using the
same protocol as for I/O function (Fig. 2), with the ini-
tial stimulus intensity set to give 25-50% of the maximal
field response. After achieving 5 min of stable baseline
responses, a high-frequency train of stimuli (3 sets of
100 pulses at 50 Hz; Fig. 4a) was administered to induce
LTP. The degree of LTP was measured 25—-30 min after
delivery of the high-frequency train. LPS-exposed mice
showed reduced levels of LTP compared to control mice
(LPS 138.3 (95% CI 123.7, 152.9), n = 12; controls 182.0
(95% CI 165.6, 198.3), n = 6; p < 0.001; Fig. 4. These re-
sults suggest inappropriate information storage/coding
following LPS exposure.

Discussion

Children born preterm due to exposure to intrauterine in-
fection or inflammation are at greater risk for developing
acute fetal brain injury as well as adverse neurological out-
comes including cognitive, motor, and behavioral disabil-
ities such as autism [13, 26—-28]. Using a murine model of
inflammation and perinatal brain injury, we demonstrated
that offspring of pregnant mice exposed to LPS displayed
increased synaptic strength, due in part to an increase in
the probability of glutamate release from the presynaptic
CA3 axon terminals, as evidenced by the reduced PPR ra-
tio. LPS-exposed mice also had lower levels of LTP com-
pared to control mice. This finding could be due to
disrupted AMPA receptor trafficking in CA1 pyramidal
neurons—a similar cellular change observed in ischemia-
induced impairment of LTP [29]. Synaptic dysfunctions
and impaired synaptic plasticity at the hippocampal
synapses are commonly observed in animal models of dis-
ease or toxic substance exposure that exhibit cognitive
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deficits, including fragile X syndrome [30], Alzheimer’s
disease [31], accelerated aging [32], and perinatal/acute
exposure to lead and polychlorinated biphenyls [33] or
marijuana [34]. Thus, the novel findings from the present
studies showing changes in hippocampal synaptic trans-
mission and plasticity offer a plausible explanation for the
cognitive and behavioral deficits observed in survivors of
preterm birth.

The cellular and molecular mechanisms of inflammation-
induced fetal brain injury are not fully understood but are
likely to involve proinflammatory chemokine and cytokine
signaling. During intrauterine inflammation, infectious path-
ogens likely activate toll-like receptors (TLR) on the surface
of cells in the decidua and placental membranes, resulting
in the production of proinflammatory cytokines that can
cross the compromised blood—brain barrier into the fetal
brain where they activate microglia, the primary defense
mechanism in the brain [4, 5]. This process then initiates a
cascade of events that leads to increase in proinflammatory
cytokines IL-1, IL-6, and TNFa that remain elevated after
birth [35-37]. Evidence from adult inflammation models
shows that microglia are activated and produce the proin-
flammatory cytokine TNFa that signals through astrocytes
to irreversibly alter synaptic transmission and impair cogni-
tion [38-40]. The precise mechanism by which TNFa
causes increased synaptic transmission has been studied ex-
tensively and may include both pre- and post-synaptic ef-
fects that involve retrograde signaling of prostaglandins and
nitric oxide [41-43] and synaptic scaling [40]. Importantly,
activation of microglia and release of TNFa and the subse-
quent signaling through astrocytes is the key event leading
to behavioral comorbidities as a result of chronic inflamma-
tion. Indeed, chronic administration of the microglial/
macrophage activation inhibitor minocycline to the inflamed
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Fig. 4 LPS exposure in utero reduces LTP formation. a Time course (mean + SEM) of the normalized fEPSP response (slope) before (— 5-0") and after

LTP induction (0-30"). Gray line and inset above demonstrate a 50-Hz stimulation train and typical response elicited by LTP stimulation protocol

(3 X 100 pulses at 50 Hz). b Representative average of 10 fEPSPs from a single experiment before (baseline, black) and after LTP induction (LTP, dash).
Gray bars highlight the regions where fEPSP initial slopes were measured. ¢ Scatterplot depicting the reduced levels of LTP observed in mice exposed
to LPS in utero. Asterisks indicate p < 0.001
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animal both lowered the level of TNFa in the hippocampus
and completely abolished the effect of peripheral inflamma-
tion which induced changes in synaptic transmission and
synaptic plasticity [44].

Interestingly, peripheral inflammation is a feature of
many adult neurodegenerative diseases and is often asso-
ciated with marked behavioral changes, including mood
disorders, fatigue, cognitive and memory dysfunction, and
sleep disturbances. Moreover, the inflammation is capable
of aggravating other neurological and neuropsychiatric
conditions, including seizure disorders, major depression,
Alzheimer’s disease, multiple sclerosis, Parkinson’s disease,
and autism [45]. The changes in synaptic transmission in
adult inflammation models are similar to those observed
here with prenatal inflammation. It is likely that the per-
sistent activation of microglia 45 DPN in survivors of
LPS-treated mice in utero contributes to these changes.
Whether they are mediated by TNFa signaling is yet to be
determined.

This study not only demonstrates the effects of inflam-
mation on brain function but also reveals a unique long-
lasting component of the effect of inflammation into
adulthood when experienced during a critical period of
development. In addition to having implications for
neurological effects from peripheral inflammation, these
findings extend our understanding of the cognitive defi-
cits in those born preterm as well as other disorders
such as autism and schizophrenia.

Conclusion

Using a murine model of inflammation and perinatal
brain injury, we demonstrated that offspring of pregnant
mice exposed to LPS displayed altered hippocampal
excitatory synaptic function. Synaptic transmission at
CA3-CAl synapses was increased due in part to an in-
crease in the probability of glutamate release from the
presynaptic CA3 axon terminals. Importantly, LPS-
exposed mice also had lower levels of LTP compared to
control mice. These novel findings offer a plausible
explanation for the cognitive and behavioral deficits ob-
served in survivors of preterm birth caused by intrauter-
ine inflammation.
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