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Abstract

and glucose tolerance in mice fed a high-fat diet.

Background: The consumption of large amounts of dietary fats can trigger an inflammatory response in the
hypothalamus and contribute to the dysfunctional control of caloric intake and energy expenditure commonly
present in obesity. The objective of this study was to identify chemokine-related transcripts that could be involved
in the early stages of diet-induced hypothalamic inflammation.

Methods: We used immunoblot, PCR array, real-time PCR, immunofluorescence staining, glucose and insulin tolerance
tests, and determination of general metabolic parameters to evaluate markers of inflammation, body mass variation,

Results: Using a real-time PCR array, we identified leukemia inhibitory factor as a chemokine/cytokine undergoing a rapid
increase in the hypothalamus of obesity-resistant and a rapid decrease in the hypothalamus of obesity-prone mice fed a high-
fat diet for 1 day. We hypothesized that the increased hypothalamic expression of leukemia inhibitory factor could contribute
to the protective phenotype of obesity-resistant mice. To test this hypothesis, we immunoneutralized hypothalamic leukemia
inhibitory factor and evaluated inflammatory and metabolic parameters. The immunoneutralization of leukemia inhibitory factor
in the hypothalamus of obesity-resistant mice resulted in increased body mass gain and increased adiposity. Body mass gain
was mostly due to increased caloric intake and reduced spontaneous physical activity. This modification in the phenotype was
accompanied by increased expression of inflammatory cytokines in the hypothalamus. In addition, the inhibition of
hypothalamic leukemia inhibitory factor was accompanied by glucose intolerance and insulin resistance.

Conclusion: Hypothalamic expression of leukemia inhibitory factor may protect mice from the development of diet-induced
obesity; the inhibition of this protein in the hypothalamus transforms obesity-resistant into obesity-prone mice.
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Background

The consumption of large portions of dietary fats is one
of the most important environmental factors leading to
obesity [1]. Experimental studies have shown that, in
addition to their caloric value, which could, per se, lead
to a positive energy balance, dietary fats can also trigger
hypothalamic inflammation and induce the damage to
key neurons involved in the control of food intake and
energy expenditure, further increasing anabolism [2-4].
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An important event during the early stages of obesity
associated hypothalamic inflammation is the recruitment
of bone marrow-derived monocytes to compose the
macrophage/microglial network that sustains chronic
inflammation [5]. Neuronal-derived CX3CL1 (fractalk-
ine) was the first chemokine shown to play a role in this
process [5]; it is rapidly induced after the introduction of a
high-fat diet (HFD), and its inhibition reduces the recruit-
ment of bone marrow-derived monocytes and attenuates
diet-induced hypothalamic inflammation [5].

As in other chronic inflammatory processes [6-8], it is
expected that in the hypothalamus, a network of chemokines
and cytokines orchestrate the installation and perpetuation of
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inflammation that occur in response to the consumption of
dietary fats. Here, we hypothesized that different landscapes of
chemokines produced in the hypothalamus in response to
dietary fats could play a role in the protection against or
predisposition to obesity. To test this hypothesis, we initially
evaluated the landscape of chemokine-related transcripts
expressed in the hypothalamus of mice fed on a HFD,
comparing obesity-prone (OP) versus obesity-resistant (OR)
mice [9]. We found that leukemia inhibitory factor (LIF) was
one of the transcripts with the greatest difference between the
two groups, with high expression in the hypothalamus of OR
and low expression in the hypothalamus of OP mice.

LIF is an interleukin-6 class cytokine that modulates
myeloid cell differentiation [10]. Studies have shown that
LIF can act upon proopiomelanocortin (POMC) neurons to
induce an anorexigenic response [11, 12]. With this infor-
mation in mind, we next hypothesized that different levels
of LIF expression in the hypothalamus of mice fed a HED
could affect the predisposition to obesity by regulating both
neurotransmitter and inflammatory protein expression. To
test this hypothesis, we inhibited hypothalamic LIF in mice
fed a HFD and, by doing so, we transformed OR into OP
mice. Thus, LIF expressed in the hypothalamus emerges as
an early determinant of obesity predisposition.

Methods

Animals

Male Swiss mice were provided by the University of
Campinas Breeding Center and the study was approved by
the Ethics Committee of the University of Campinas (Pro-
ject #: CEUA 2926-1). For all experiments, 5-week-old
mice were kept in individual cages in a silent environment
with controlled temperature using a 12 h light/12 h dark
cycle (6/18 h). Mice had free access to water and food ad
libitum. For the experiments, mice were randomly divided
into groups fed either chow or a HFD (composition of the
diets is presented in Additional file 1: Table S1). To identify
OP and OR mice, we used a previously described protocol
[9]. In short, 8-week-old male Swiss mice were fed a HFD
for 24 h, and total caloric intake was recorded. Mice on the
upper quartile of caloric intake were defined as OP, whereas
mice on the lower quartile of caloric intake were defined as
OR (Fig. 1). Thereafter, mice were fed chow for 15 days and
the inhibition of LIF was performed. On the next day, HFD
was offered for up to 15 days. Body mass and caloric intake
were determined every second day. At the end of each
experiment, mice were sacrificed by decapitation. For this,
they were anesthetized with sodium thiopental (25 mg/kg).
Tissue specimens were extracted and stored at —80 °C until
analysis.

Body composition
The body composition was assessed by dual energy X-
ray absorptiometry (DEXA, Discovery Wi QDR Series;
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Fig. 1 Schematic representation of the protocol employed to define
obese-prone and obese-resistant mice. Five-week old male Swiss
mice were fed on a high-fat diet (HFD) for 24 h. Total caloric intake
was determined and mice were divided into quartiles based on the
24-h caloric intake. Mice on the upper quartile were defined as
obese prone (OP) and mice on the lower quartile were defined as

obese resistant (OR)

Hologic Apex Software, Hologic Inc.) in mice fed a HFD
for 14 days.

PCR array

The PCR array was performed after 1 day of HED in OP
or OR mice. The kit used for the determination of gene
expression was the Chemokines and Receptors PCR
Array (PAMM-022Z, Qiagen). This is a 96-gene panel,
with 84 genes for chemokine/chemokine receptors and
the remaining for endogenous and positive controls of
the PCR reaction (Additional file 1: Table S2).

Immunoneutralization of LIF in the hypothalamus

OR mice were randomly selected for the treatment with
either an immunoneutralizing antibody against LIF or a
non-immune IgG. OP mice were always treated with the
non-immune IgG. For this, mice were anesthetized with a
mixture of ketamine (100 mg/kg) and xylazine (10 mg/kg)
and stereotaxically instrumented using a Stoelting stereo-
taxic apparatus. The OR anti-LIF group received an intra-
cerebroventricular microinjection of 1.0 pl of a solution of
an anti-LIF antibody (40 ng/pl) (sc 1336; Santa Cruz
Biotechnology, Santa Cruz, CA) in the third ventricle
close to the hypothalamus. In the same way, OR IgG or
OP IgG mice received 1.0 pl of non-immune IgG. The
coordinates were Bregma 0.0 mm; depth 4.5 mm; lateral
0.0 mm to reach the third ventricle. Thereafter, the
animals were fed an HFD ad libitum for 1 or 15 days.

GTT

The glucose tolerance test (GTT) was performed after
12 days on the HED. In the morning, mice were fasted for
4 h and the blood collection was carried out from the tail
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to determine glucose levels. A 25% glucose solution was
administrated via intraperitoneal injection, and determina-
tions occurred immediately before injection and after 15,
30, 60, 90, and 120 min. The measurements were
performed using a portable glucose meter (Optium Xceed
- Abbott®). Then, the area under the glucose curve (AUC)
was calculated.

iTT

The insulin-tolerance test (iTT) was performed after
13 days on the HFD. In the morning, mice were fasted for
4 h and the blood collection was carried out from the tail
to determine glucose levels. After 4 h of fasting, the iTT
test was performed. The blood collection was carried out
from the tail to obtain glucose levels. Insulin (1.5 IU/kg
body mass) was administrated via intraperitoneal injection
and blood glucose was measured immediately before
injection and after 5, 10, 15, 20, 25, and 30 min.

Respirometry

For acclimation, mice were placed in the respirometric
chamber 1 day prior to the beginning of the measurements.
The O, consumption, CO, production, respiratory quotient
(RQ), and spontaneous activity were determined for a
period of 24 h in the Gas Analyzer LE405 Gas Analyzer
(Panlab - Harvard Appliance, Holliston, MA, USA). The
airflow was maintained by Air Supply and Switching (Airlab
- Harvard Apparatus, Holliston, MA, USA) and gas
analyzer calibrated with known concentrations of O, and
CO, (Air Liquid, Sdo Paulo, Brazil). The calculations were
performed using the Metabolism 2.2v software.

Real-time PCR

Reactions were performed using the TagMan™ System
(Applied Biosystems). The gene glyceraldehyde-3-
phosphate dehydrogenase (GAPDH) was chosen as the
endogenous control for the reaction. The expression of
tumor necrosis factor alpha (TNF-a, Mm00443258_m1),
interleukin 1 beta (IL-1p, Mm00434228_m1), interleukin
6 (IL-6, MmO00446190_m1l), interleukin 10 (IL-10,
Mm01288386_m1), Cx3cll (Mm00436454_m1), Ccl20
(MmO01268754_m1), Cxcll (Mm.PT.5842076891), and
LIF (Mm.PT.58.13926050) was quantified in the hypo-
thalamus. Hypothalami were extracted 1 day after the
introduction of the HFD in anti-LIF or IgG-treated mice.
For the determination of relative transcript expression,
real-time PCR reactions were performed in duplicate as
follows: 3.0 ul TagMan Universal PCR Master Mix 2X,
0.25 pl of the primers and probe solution, 2.75 pl water,
and 4.0 ul cDNA. The values of relative gene expression
were obtained by analyzing the results using 7500
System SDS software (Applied Biosystems).
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Immunohistochemistry

Six-week-old male Swiss mice fed on chow were anes-
thetized with a mixture of ketamine (100 mg/kg) and
xylazine (10 mg/kg) perfused with saline and 4% parafor-
maldehyde. The brain was totally removed and kept in a
4% paraformaldehyde solution for 24 h, followed by 48 h
in a 30% sucrose solution for cryoprotection. Coronal
sectioning at a thickness of 20 um was performed using
a cryostat (LEICA Microsystems, CM1860, Buffalo
Grove, IL, USA). Sections were rinsed with PBS and
blocked in a solution containing 5% normal serum and
0.2% Tween in phosphate buffered saline for 1 h at room
temperature followed by incubation at 4 °C overnight
with antibodies against LIF (ab113262, rabbit polyclonal,
1:500, ABCAM, Cambridge, UK) or LIF receptor (sc659,
rabbit polyclonal, 1:200, Santa Cruz Biotechnology, Inc.)
with ionized calcium binding adaptor molecule 1 (IBA-1,
$¢28530, goat polyclonal, 1:200, Santa Cruz Biotechnol-
ogy, Inc.) or neuropeptide Y (NPY, sc133080, mouse
monoclonal, 1:200, Santa Cruz Biotechnology, Inc.) or
POMC (ab32893, goat polyclonal, 1:500, Abcam, Cam-
bridge, UK) or glial fibrillary acidic protein (GFAP,
ab4648, mouse monoclonal, 1:500, Abcam, Cambridge,
UK) or alpha-MSH (AB5087, sheep polyclonal, 1:500,
Millipore, Billerica, Massachusetts, USA) in a blocking
buffer (1% bovine serum albumin in PBS-Tween). Next,
sections were incubated for 2 h with goat anti-rabbit
Cy3 (ab6941, 1:500, ABCAM, Cambridge, UK) or don-
key anti-rabbit Alexa 546 and goat anti-mouse FITC or
donkey anti-goat FITC. Nuclear staining was obtained
using TO-PRO’-3 Iodide ((642/661) T3605, 1:1000, Life
Technologies, Carlsbad, CA, EUA) in PBS. Analysis and
documentation of the results were performed using a
Leica TCS SP5 II confocal fluorescence microscope.

Immunoblot
LIF and 7"7%phosphor-STAT3 protein expressions were
determined in total protein extract samples by immuno-
blotting using a previously described method [13].
Statistics analysis. Results are presented as the mean + stand-
ard error of the mean (SEM). For the comparison of means
between two groups, we used Student’s ¢ test for independent
samples. Linear regression test was utilized to calculate kITT
(based on the ITT test). The significance level was set at
p < 0.05. Graph Pad Prism” was used to analyze the data.

Results

Hypothalamic LIF undergoes distinct regulation in OP and
OR mice fed a HFD

c¢DNA obtained from the hypothalamus was employed to
evaluate the expression of 84 chemokine-related transcripts
in OP and OR mice fed on a HFD for 1 day. The complete
list of transcripts evaluated in this study is shown in
Additional file 1: Table S2. As a whole, ten transcripts were
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differentially expressed (Fig. 2a). However, most of them
were regulated in the same direction in OP and OR mice.
Thus, Ccbp2, Cerl, Cer4, Cerl2, Cerl0, 1118, and Cxcrl
underwent an increase both in OP and OR, as compared to
mice fed regular chow (Fig. 2a). Only three transcripts,
Ccl20, Cxcll, and LIF, were differentially regulated in OP
and OR mice (Fig. 2a). For all those three transcripts, 1 day
of feeding with the HFD was accompanied by an increase
in OR and a reduction in OP mice, as compared to mice
fed on chow (Fig. 2a). Because of the known involvement
of LIF in the control of feeding and regulation of POMC
expression in the hypothalamus [12], we decided to further
explore the involvement of this protein in the different body
compositions, metabolic, and inflammatory phenotypes
observed in OP and OR mice fed a HED. In order to con-
firm the findings of the real-time PCR array, LIF transcript
expression was determined in the hypothalamus of control
mice fed chow and in OP and OR mice fed the HFD for
1 day. As depicted in Fig. 2b, LIF transcripts were reduced
in the hypothalamus of OP as compared to OR mice.

LIF and LIF receptor are predominantly co-expressed with
NPY and POMC in the hypothalamus of mice
Immunofluorescence staining was employed to determine
the anatomical and cellular distribution of LIF and LIF
receptor (LIFR) in the hypothalamus of mice. As shown in
Fig. 3a—d, most immunostaining of LIF and LIFR co-
localize with NPY (Fig. 3a, b) and POMC (Fig. 3¢, d). The
LIF/LIFR-POMC co-localization was further confirmed by
employing anti-alpha-MSH antibody (Additional file 1:
Figure S1). Some cells expressing GFAP (astrocytes) also
express LIF (Fig. 3e). Virtually no co-localization was
detected for LIFR and GFAP (Fig. 3f). In addition, no
localization was detected for either LIF or LIFR in cells
immunostained with IBA1 (microglia) (Fig. 3g, h).
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Inhibition of hypothalamic LIF in OR mice is accompanied
by increased diet-induced hypothalamic inflammation
Because LIF expression was rapidly induced in the hypothal-
amus of OR mice fed a HFD, we hypothesized that it could
play a protective role against the progression to diet-induced
obesity. In order to test this hypothesis, mice were submitted
to a protocol as depicted in Fig. 4a, which was designed to
successfully immunoneutralize hypothalamic LIF, as shown by
immunoblot (Fig. 4b); thereafter, a number of inflammatory
and metabolic parameters were evaluated. The immunoneu-
tralization of hypothalamic LIF resulted in an early increase in
the expression of transcripts of inflammatory proteins, TNF-a
(Fig. 4c), IL1P (Fig. 4d), Cx3cll (Fig. 4e), and Cxcll (Fig. 4f).
This was accompanied by a trend to reduction of the tran-
scripts of the anti-inflammatory proteins, IL6 (Fig. 4g), IL10
(Fig. 4h), and Ccl20 (Fig. 4i). There were no changes in the
expression of transcript encoding for NPY and POMC (data
not shown). The immunoneutralization of LIF in the
hypothalamus resulted in reduced STAT3 Tyr705 phosphoryl-
ation in the hypothalamus but not in the hippocampus [14]
(Additional file 1: Figure S2), suggesting that the method was
appropriate for a site-specific action of the antibody.

Inhibition of hypothalamic LIF transforms OR in OP mice

The immunoneutralization of hypothalamic LIF in OR mice
resulted in increased body mass gain over a period of 15 days
(Fig. 5a, b). The change in body mass was mostly due to an
increase in fat mass (Fig. 5¢, d). To explore the mechanisms
involved in the phenotypic change in OR mice, we evaluated
caloric intake, energy expenditure and spontaneous physical
activity. As shown in Fig. 5e, daily caloric intake was similar
during most of the experimental period; only on the first
day was there a significant increase in the caloric consump-
tion of OR mice treated with the anti-LIF antibody. How-
ever, during the 15-day experimental period, there was a
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n=>5;p=006vs. OP

Fig. 2 Hypothalamic transcripts differentially expressed between obesity-prone and obesity-resistant mice. a The cDNA obtained from hypothalamic RNA
was employed in a real-time PCR array to determine the relative transcript expression in mice fed chow or obesity-prone (OP) and obesity-resistant (OR)
mice fed on a high-fat diet (HFD) for 1 day; only the transcripts undergoing significant difference from control are presented; the results are presented as
transcript expression relative to chow; the identity of the transcripts is presented in Additional file 1: Table S2. b The relative expression of LIF transcript was
determined by real-time PCR in hypothalamic samples from control (CTL) mice, fed on chow, or OP and OR mice fed on HFD for 1 day.Inan=3;inb
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Fig. 3 The anatomical and cellular distribution of LIF and LIF receptor in the hypothalamus of mice. Hypothalamic frozen sections (5.0 um thick) were
prepared from 5-week-old mice fed on chow. Immunofluorescence staining was performed using antibodies against LIF (a, ¢, e, g), LIF receptor (LIFR) (b,
d, f, h), NPY (a, b), POMC (c, d), GFAP (e, f), and IBAT (g, h). Nuclei was labeled using DAPI. In some panels, a high magnification image depicts details of
cells (arrows). Color code and magnifications are presented in the panels. Figures are representative of three independent experiments
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Fig. 4 Impact of inhibiting hypothalamic LIF on inflammatory markers. a Schematic representation of the protocol employed to immunoneutralize
hypothalamic LIF. b The expression of LIF protein was evaluated by immunoblot in the hypothalamus of obesity-resistant (OR) mice treated with
non-immune IgG or anti-LIF antibody for 15 days. Real-time PCR was employed to determine the relative expression of transcripts encoding for TNF-a
(0), IL-1B (d), CX3CL1 (fractalkine) (e), cxcll (f) IL-6 (g), and IL-10 (h) ccl20 (i) in the hypothalamus of obesity-prone (OP) mice treated with non-immune
IgG or OR mice treated either with non-immune IgG or anti-LIF antibody. In b-g, n = 5; *p < 0.05 vs. OP IgG and §p < 0.05 vs. OR IgG

significant increase in cumulative caloric intake in OR mice
treated with the anti-LIF antibody (Fig. 5f), which resulted
in caloric intake similar to OP mice. The immunoneutraliza-
tion of hypothalamic LIF promoted no changes in O, con-
sumption, CO, production, or the respiratory quotient
(Fig. 6a—f). However, OR mice treated with the anti-LIF
antibody presented significantly reduced spontaneous phys-
ical activity during both the light and dark cycles (Fig. 6g).

Inhibition of hypothalamic LIF induces glucose
intolerance in OR mice

We have previously shown that, in contrast to OP mice,
glucose tolerance is preserved in OR mice fed an HFD
[9]. Here, we evaluated glucose tolerance in OR mice
treated with the anti-LIF antibody in the hypothalamus.
As shown in Fig. 7a, the immunoneutralization of hypo-
thalamic LIF resulted in higher blood glucose levels
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Fig. 5 Body mass, body composition, and caloric intake in mice treated with anti-LIF antibody. Mice were treated according to the protocol presented in
Fig. 3a, and parameters were determined throughout the experimental period. a Body mass and b body mass variation. ¢ Relative fat mass and d relative
fat-free mass, as determined by body densitometry at the end of the experimental period. e Daily energy intake and f cumulative energy intake during the
experimental period. In all experiments n = 5; *p < 0.05 vs. OP IgG and §p < 0.05 vs. OR IgG. OP IgG, obesity-prone mice treated with non-immune IgG; OR
IgG, obesity-resistant mice treated with non-immune IgG; OR anti-LIF, obesity-resistant mice treated with anti-LIF antibody

during a glucose tolerance test, leading to an increased
area under the glucose curve (Fig. 7b). At least in part,
the deterioration in glucose tolerance in OR mice
treated with the anti-LIF antibody was due to the devel-
opment of insulin resistance, as determined by an
insulin-tolerance test (Fig. 7c) and the determination of
the constant for glucose decay during the insulin toler-
ance test (kKITT) (Fig. 7d).

Increased caloric intake explains most of the phenotypic
change in OR mice treated with the anti-LIF antibody

In order to test the hypothesis that the OP-like pheno-
type developed by OR mice treated with the anti-LIF
antibody was due to increased caloric intake (as shown
in Fig. 5f), we performed an experiment in which OR
mice treated with the anti-LIF antibody were fed a simi-
lar caloric amount consumed spontaneously by OR mice
treated with IgG. As shown in Fig. 8a, pair feeding was
sufficient to normalize body mass gain. This was accom-
panied by the restoration of glucose tolerance (Fig. 8b, c)
and also by the restoration of insulin activity (Fig. 8d, e).

Discussion

Diet-induced hypothalamic inflammation plays an import-
ant role in the development of obesity in a number of ex-
perimental models [15, 16]. The mechanistic link between
hypothalamic inflammation and obesity is illustrated by the

fact that several approaches that target inflammatory path-
ways in the hypothalamus of obese rodents result in the
attenuation of the obese phenotype and invariably in the
improvement of distinct aspects of the obesity-associated
phenotypes, such as insulin resistance, diabetes, and hyper-
tension [2, 3, 17-21]. Due to anatomical constraints, only a
few studies have evaluated the hypothalamus of obese
humans [18, 22, 23]. Magnetic resonance imaging is
capable of detecting both functional and structural abnor-
malities in the hypothalamus of obese subjects, which could
be, at least in part, reverted following body mass reduction
[22, 23]. Unfortunately, for most people, medical attention
occurs in the late phases of obesity, and both human and
experimental studies have shown that neuronal loss and
gliosis are present at this stage, suggesting that complete
restoration of hypothalamic physiology in the control of
body mass may be a difficult task [16, 18, 22, 23]. Neverthe-
less, understanding the mechanisms involved in the early
damage to the hypothalamus in obesity may provide new
strategies to prevent the development of this threatening
condition. With this concept in mind, we decided to
evaluate the very early inflammatory events occurring in
the hypothalamus of mice fed an HFD.

In a previous study [9], we have shown that outbred
mice fed a HFD present a normal distribution of body
mass gain. Mice gaining weight in the upper quartile are
OP and present a high predisposition for the development
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of glucose intolerance, whereas mice in the lower quartile
are OR. This provides an interesting experimental model
that reproduces the human predisposition to obesity. In
the first part of the study, we asked if, after 1 day on
an HFD, OP and OR mice would present different
expression of transcripts encoding for proteins related
to chemokines. In fact, out of 84 transcripts evaluated, ten

(12%) presented some sort of modulation in response to
the diet. However, in most cases, the variation in expres-
sion was similar in OP and OR mice. Only three
transcripts, encoding for Ccl20, Cxcll and LIF, were differ-
entially regulated in OP and OR mice. For these three
transcripts, the expression was increased in OR and
reduced in OP mice.
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Ccl20 encodes for the CCL20 protein, also known as
liver activation-regulated chemokine (LARC) [24]. Its ex-
pression can be induced by microbial factors, LPS, TNF-a,
and IFN-y and has been reported to occur in several
tissues and cell types, predominating in lymphocytes,
lymphoid tissues, and liver [25, 26]. No previous study has
reported the expression of Ccl20 in the hypothalamus;
however, one study has shown than circulating CCL20 is
reduced in mice chronically fed an HFD, suggesting that it
is somehow affected by dietary factors [27].

Cxcll encodes for the CXCL1 protein, also known as
neutrophil-activating protein 3 (NAP3) and melanoma
growth stimulating activity alpha (MSGAa) [28]. It is
expressed by epithelial cells, neutrophils, and macro-
phages and has neutrophil chemoattractant activity [29].
In the central nervous system, it has been shown to
inhibit the migration of oligodendrocyte precursors [30].
A number of studies have reported the expression and
involvement of CXCL1 in distinct processes regulated by
the hypothalamus [31, 32]; however, only one study
showed that the systemic expression of CXCL1 is
increased in response to dietary fats [27].

Out of the three transcripts of interest for the main
purpose of this study, LIF was undisputedly the one with
richest data published regarding its potential involve-
ment in the hypothalamic control of caloric intake and
energy expenditure. Studies published during the early
1990s reported that LIF can be produced by cancer cells
and induce cachexia [33, 34]. The initial suspicion was
that it acted mostly in peripheral tissues, such as the
adipose tissue, to induce the wastage syndrome in cancer
[34, 35]. During the late 1990s, other lines of investiga-
tion led to the demonstration of the involvement of LIF
in the regulation of POMC. It was shown that, in corti-
cotrophs, LIF could regulate POMC through a mechan-
ism dependent on STAT1 and STAT3 signaling [36].
However, the earliest studies were mostly focused on the
impact of LIF on the POMC-dependent regulation of
pituitary function [37-39]. Only in 1999 was it proposed
that the involvement of LIF in the regulation of hypo-
thalamic neurotransmitters could mediate its cachexia-
inducing effects [40]. Moreover, some studies have shown
that LIF can also modulate NPY, another important hypo-
thalamic neurotransmitter involved in the regulation of
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caloric intake and energy expenditure [41, 42]. Thereafter,
a number of studies explored the hypothalamic actions of
LIF in cachexia [11, 41, 43, 44].

Despite the extensive work performed in the evalu-
ation of LIF in cachexia and the regulation of the pituit-
ary function, no previous study has evaluated the role of
hypothalamic LIF in obesity. Here, we hypothesized that
the distinct early regulation of hypothalamic LIF in OP
and OR mice could explain at least in part the differ-
ences in the phenotypes. To test this hypothesis, we
inhibited hypothalamic LIF and evaluated a number of
metabolic and inflammatory parameters.

The inhibition of hypothalamic LIF in OR mice was
sufficient to promote a complete shift on their pheno-
type transforming the OR in OP mice. As a rule, changes
in adiposity and body mass are usually due to modifica-
tion in caloric intake, energy expenditure, or spontan-
eous physical activity, or yet, a combination of some of
these parameters [45]. In the LIF-inhibited mice, there
were changes in cumulative caloric intake and in the
physical activity. However, when we performed pair-

feeding experiments, there was an almost complete res-
toration of the original OR phenotype, suggesting that
most of the phenotype change promoted by the hypo-
thalamic inhibition of LIF was due to cumulative caloric
intake. Because of that, it could be expected that inhib-
ition of LIF might result in changes in the expression of
hypothalamic neurotransmitters involved in the regula-
tion of feeding. However, there were no changes in the
expression of POMC and NPY, two of the most import-
ant neurotransmitters expressed by first order neurons
of the arcuate nucleus. We propose at least two scenar-
ios that could explain this apparent dissociation between
neuropeptide transcript regulation and the resulting
phenotype: (i) the post-transcriptional processing of
POMC could be resulting in increased production of an-
orexigenic a-MSH instead of orexigenic b-endorphin; (ii)
neurotransmitter regulation could be taking place not in
first order neurons but in neurons that are downstream
of the main energy homeostasis neurocircuits.

Another remarkable outcome of the inhibition of hypo-
thalamic LIF was the generation of glucose intolerance.
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Both the GTT and the ITT revealed a worsening of body
glucose handling, which suggests that OR mice under
hypothalamic LIF inhibition develop systemic insulin
resistance. In the pair-feeding experiment, both GTT and
ITT were restored to normality, so we believe that
changes in body mass could be the main factor respon-
sible for the abnormality in glucose tolerance [45]. How-
ever, studies have shown that defective activity of
hypothalamic neurons, both in obesity and aging, can
worsen glucose tolerance due to changes in neural output
to the liver [19, 21]. Although we did not test this hypoth-
esis in the present work, this is a possibility that cannot be
discarded.

Conclusion

Hypothalamic LIF has emerged as an inflammatory
protein that undergoes rapid modulation in response to
the consumption of large amounts of dietary fats. Its
regulation occurs in opposite directions in mice that are
OP and OR, suggesting that it may play a role in these
different phenotypes. When hypothalamic LIF is inhib-
ited in OR mice, there is a complete shift of the pheno-
type, transforming OR into OP mice. Hypothalamic LIF
may be an important target to prevent the development
of diet-induced obesity.

Additional file

Additional file 1: Figure S1. The anatomical and cellular distribution of
LIF and LIF receptor in the hypothalamus of mice. Hypothalamic 5.0 pm
frozen sections were prepared from 5-week old mice fed on chow.
Immunofluorescence staining was performed using antibodies against LIF
(A), LIF receptor (LIFR) (B), alpha-MSH (aMSH) (A, B). The high magnification
images depict details of cells (arrows). Nuclei was labeled using DAPI. Color
code and magnifications are presented in the panels. Figures are
representative of three independent experiments. Figure S2. The
impact of LIF immunoneutralization on STAT3 phosphorylation in the
hippocampus and hypothalamus. The expression of phosphor-STAT3
(pSTAT3) protein was evaluated by immunoblot in the hippocampus
(A) and hypothalamus (B) of obesity-resistant mice treated with
non-immune IgG or anti-LIF antibody for 15 days. N = 3-4; *p < 0.05
vs. IgG. Table S1. Composition of the diets. Table S2. Transcripts
evaluated with the real-time PCR array. (PDF 18097 kb)
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