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Abstract

Background: Regulators of G-protein signaling (RGS) are major physiological modulators of G-protein-coupled receptors
(GPCR) signaling. Several GPCRs expressed in both neurons and astrocytes participate in the central control of
pain processing, and the reduced efficacy of analgesics in neuropathic pain conditions may rely on alterations
in RGS function. The expression and the regulation of RGS in astrocytes is poorly documented, and we herein
hypothesized that neuroinflammation which is commonly observed in neuropathic pain could influence RGS
expression in astrocytes.

Methods: In a validated model of neuropathic pain, the spared nerve injury (SNI), the regulation of RGS2,
RGS3, RGS4, and RGS7 messenger RNA (MRNA) was examined up to 3 weeks after the lesion. Changes in the
expression of the same RGS were also studied in cultured astrocytes exposed to defined activation protocols
or to inflammatory cytokines.

Results: We evidenced a differential regulation of these RGS in the lumbar spinal cord of animals undergoing SNI. In
particular, RGS3 appeared upregulated at early stages after the lesion whereas expression of RGS2 and RGS4 was
decreased at later stages. Decrease in RGS7 expression was already observed after 3 days and outlasted until 21 days
after the lesion. In cultured astrocytes, we observed that changes in the culture conditions distinctly influenced the
constitutive expression of these RGS. Also, brief exposures (4 to 8 h) to either interleukin-1, interleukin-6, or tumor
necrosis factor a caused rapid changes in the mRNA levels of the RGS, which however did not strictly recapitulate the
regulations observed in the spinal cord of lesioned animals. Longer exposure (48 h) to inflammatory cytokines barely
influenced RGS expression, confirming the rapid but transient regulation of these cell signaling modulators.

Conclusion: Changes in the environment of astrocytes mimicking the inflammation observed in the model of
neuropathic pain can affect RGS expression. Considering the role of astrocytes in the onset and progression of
neuropathic pain, we propose that the inflammation-mediated modulation of RGS in astrocytes constitutes an
adaptive mechanism in a context of neuroinflammation and may participate in the regulation of nociception.
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Background

Astrocytes express a variety of G-protein-coupled recep-
tors (GPCRs) that are recognized and activated by several
neurotransmitters released from nerve terminals [1]. In re-
sponse to neuronal signals, these receptors contribute to
the physiological regulation of astrocytic functions [2, 3].
GPCRs also play a role in contexts of nervous insults as
they influence both the supporting and deleterious prop-
erties of reactive astrocytes on nervous recovery [2] and
modulate the synaptic activity and plasticity [3, 4]. In
neuropathic pain, a chronic pain state subsequent to a
nervous lesion, modifications in spinal synapses and acti-
vation of astrocytes contribute to central sensitization, a
plastic adaptation that leads to the differential processing
of nociceptive signals [5]. Hence, the role of astrocytes in
the development and maintenance of central pathological
alterations is well documented [6, 7]. Activation of glial
cells and interaction between glia and neurons have
emerged as key mechanisms of neuropathic pain, charac-
terized especially by the synthesis and release of glial me-
diators such as growth factors and inflammatory cytokines
that can activate astrocytes themselves, modulate synaptic
activity, and further modulate pain sensitivity [8, 9]. Ac-
cordingly, inhibition of astrocytes proliferation and in-
flammation was shown to reduce hypersensitivity
associated behavior in animal models of neuropathic pain
(10, 11].

Spinal GPCRs are the primary molecular targets for
several endogenous modulators of the nociceptive trans-
mission. In particular, GABAergic, noradrenergic, sero-
toninergic, cannabinoid, and opioid receptors are
densely expressed in the dorsal spinal cord where they
inhibit the transmission of pain signals to supraspinal
structures [12, 13]. In contrast, other members such as
group I metabotropic glutamate receptors present a
more complex profile, promoting central sensitization
when activated in ascending nociceptive pathways or
playing an antinociceptive role when activated in de-
scending pathways [14]. Pharmacological modulators of
these receptors are considered as putative tools for clin-
ical pain relief [5, 15]. Consistent with such diversity,
neuropathic pain is thought to result from an unbalance
between pro- and antinociceptive pathways in the dorsal
spinal cord [16]. As the synaptic activity and plasticity
can be influenced upon activation of GPCRs on astro-
cytes [3, 4], regulation of their signaling could contribute
to the maintenance of long-lasting neuropathic pain.

Several studies have examined the regulation of
GPCRs in neuropathic pain or in model of neuroinflam-
mation [12, 17, 18]. In this line, their associated signaling
partners have recently received increasing attention as
these proteins physiologically contribute to a fine-tuning
of the G-protein cascade [19, 20]. Among them, regula-
tors of G-protein signaling (RGS) are commonly viewed
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as negative modulators of GPCR signaling, principally
via their “GTPase activating protein” function [21].
However, these proteins may also facilitate GPCR activa-
tion. Thus, they could promote the membrane expres-
sion of the receptors and their interaction with other
proteins such as GPCRs themselves and effectors such
as kinases (JNK, Askl) or adenylyl cyclase, to establish
functional signaling complexes [22, 23]. Among the large
family of RGS, some members are expressed in the cen-
tral nervous system such as RGS2, RGS3, RGS4, and
RGS7 [24, 25].

Consistent with their interaction with GPCR control-
ling pain pathways, in particular opioid and cannabinoid
receptors [26, 27], RGS have been implicated in the
regulation of inflammation [28] and neuropathic pain
[29, 30]. A growing body of evidence indicates that,
along the nociceptive neuraxis, RGS influence analgesic
systems and a reduced efficacy of both endogenous pain
modulators and exogenously administered therapeutic
agents may result from alterations in RGS [26, 31, 32].
Although regulation of RGS is already documented in
brain and spinal cord samples [26, 31] or directly within
sensory neurons [29], little is known regarding their
modulation and expression in glial cells. We first ana-
lyzed spinal RGS expression after a spared nerve injury
(SNI), a model of neuropathic pain causing robust cen-
tral inflammatory response [33], and identified them as
potential targets to be modified in neuroinflammation.
Because neuropathic pain presents a wide complexity,
with different cellular and molecular actors all leading
together to pain symptoms, we further studied RGS in a
more simplified model. The essential role played by as-
trocytes in central sensitization and neuroinflammation
[7, 34], as described earlier, led us to study the regulation
of selected RGS in reactive astrocytes and in response to
inflammatory mediators.

Methods

Spared nerve injury

Female Sprague Dawley rats, 10—12 weeks old, from the
institutional animal facility, were used in strict adher-
ence to the EU directive of 22/09/2010 (2010/63/EU).
The animals were kept in groups of 2-3 animals per
standard makrolon cage with ad libitum access to food
at a regular 12:12-h light-dark cycle. The SNI was per-
formed following the model developed by Descosterd
with little modifications [35]. Sciatic nerve was exposed
on either the left or the right side under sevoflurane
anesthesia (5% then maintained at 3% in oxygen). Then,
the three peripheral nerve branches of the sciatic nerve
(i.e., tibial, common peroneal, and sural nerve branches)
were exposed through blunt dissection and freed from
the surrounding connective tissue. The animals were at
random divided into two groups for SNI and sham
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surgery, respectively. For SNI, the tibial and common
peroneal nerve branches were injured. Injury was
inflicted using a non-serrated nerve clamp, i.e., the De
Beer clamp (Honer Medizin-Technik GmbH & Co.)
exerting a force of 54 N over a period of 30 s [36]. The
sural nerve branch was left intact (spared). For the sham
surgery, skin incision was made and the sciatic nerve
branches were also freed from their connective tissue
but were not crushed. Then, the wounds were closed
using 4/0 prolene sutures, and the animals were
returned to their cage. Postoperative care did not in-
clude pain medication as this might interfere with the
primary study outcome, ie., the study of biochemical
changes occurring in a context of neuropathic pain.

Algesimetry

In order to assess mechanical hypersensitivity, the
mechanical paw withdrawal threshold (PWT) was
determined using the von Frey hair filament test, ac-
cording to the up-down method [37]. After habitu-
ation, the animals were placed in transparent plastic
chambers, positioned on an elevated wire mesh.
Acclimatization was allowed for a period of about
20 min after which the von Frey test was performed.
Herein, a set of eight calibrated von Frey hair fila-
ments (Stoelting) was used: 0.4, 0.7, 1.2, 2.0, 3.6, 5.5,
8.5, 15.1 g. Only the sural nerve territory at the glab-
rous plantar hind paw surface was stimulated
throughout the experiment as this territory remains
innervated in injured animals, thus allowing for the
assessment of stimulus-response behaviors. Filaments
were applied perpendicular to the plantar hind paw
surface and maintained in a slightly buckled position
for a maximum duration of 8 s, starting with the 2-g
filament. The choice for the following filament was
based on the response to the previous filament appli-
cation, being the closest-lower filament in case of a
positive withdrawal response (“x”) or the closest-
higher filament in case of a negative withdrawal re-
sponse (“0”). A positive withdrawal response was de-
fined by a brisk paw withdrawal sometimes associated
with aversive behavior, such as keeping the stimulated
paw elevated, shaking, and/or licking of the paw.
After a sequence of six filament application starting
either with “o-x” or with “x,” the 50% PWT was cal-
culated as described previously [37]. In case of merely
positive or merely negative responses to any filament, cut-
off values were assigned (0.4 and 15.1 g, respectively).

Animal dissection

A total of 36 rats were used for tissue analysis. Eighteen
of them underwent a SNI surgery while the others re-
ceived sham surgery. In each group, four or five animals
were sacrificed at 3, 5, 7, 14, and 21 days after the
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surgery. The spinal cord was extracted by flushing into
the spine with phosphate-buffered saline (PBS). Then,
the lumbar spinal cord segment was dissected, and the
ipsilateral dorsal quadrant was used for further experi-
ments. Tissue samples were frozen at —80 °C to be used
for further experiments.

Astrocyte cultures

At postnatal day 2, the rats were sacrificed and the cor-
tex was isolated by dissection. The hippocampus and
meninges were removed, and the cortical gray matter
was dissociated in PBS-glucose 0.2%. Astrocytes were
then separated from other cells through a Percoll 30%
gradient (GE Healthcare). The cells were finally washed
in PBS-glucose and seeded in a gelatin-coated 175-cm?
flask. Astrocytes were left to proliferate at 37 °C in a hu-
midified atmosphere containing 5% CO, in Dulbecco’s
modified Eagle’s medium (glutaMAX, Thermofisher Sci-
entific) supplemented with 10% fetal bovine serum (FBS)
(Thermofisher Scientific), 50 mg/mL penicillin—strepto-
mycin (Thermofisher Scientific), and 50 mg/mL fungi-
zone (Thermofisher Scientific) for 2 weeks. Medium was
renewed after 1 week. At day 15, trypsinization was per-
formed and cells were transferred in multi-well plates
for 2 days in medium supplemented with 10% of FBS. At
day 17, serum concentration was decreased to 3% FBS,
and when indicated, the medium was supplemented with
N®,2’-O-dibutyryladenosine 3',5’-cyclic monophosphate
(dBcAMP) (Sigma-Aldrich) or the growth factor cocktail
G5 (ThermoFisher Scientific). For some experiments,
the inflammatory cytokines interleukin-1 beta (IL-1p)
(Bio-Rad Laboratories), interleukin-6 (IL-6) (Bio-Rad
Laboratories), and tumor necrosis factor o (TNF«x)
(Bio-Rad Laboratories) were added to the medium dur-
ing the last 4, 8, 24, or 48 h of culture at a final concen-
tration of 2, 10, or 50 ng/mL. For all the experiments,
the cells were harvested at day 24 and used for further
analyses.

Immunocytochemistry

Astrocytes were seeded in a 24-well plate. After 7 days
of maturation in FBS 3%-medium supplemented or not
with dBcAMP or the G5 supplement, the cells were
washed three times in PBS. Then, they were fixed with
paraformaldehyde 4% in PBS for 30 min on ice. After
further washing, the cells were permeabilized with Tri-
ton X-100 1% (Pharmacia) in PBS. Blocking was made
with bovine serum albumin 1% in PBS, and the cells
were incubated with mouse monoclonal anti-glial fibril-
lary acidic protein (GFAP) antibody coupled to Cy3 (1/
500, Sigma-Aldrich), overnight at 4 °C. Finally, the cells
were exposed to 4',6-diamidino-2-phenylindole (DAPI)
at 0.2 pg/mL (Sigma-Aldrich) in PBS to stain the nuclei.
Fluoprep (bioMérieux SA) was used as mounting
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medium, and the cells were analyzed using an Evos FL
Digital Inverted Microscope (Westburg).

RNA extraction and qPCR

Total RNA was extracted, isolated, and purified with the
E.ZN.A® Total RNA Kit I (Omega Bio-tek, VWR) and
reverse transcribed with the iScript cDNA synthesis kit
(Bio-Rad Laboratories). qPCR amplifications were car-
ried out using the Bio-Rad CFX Connect™ real-time PCR
detection system (Bio-Rad Laboratories), in a total vol-
ume of 20 pL containing 10 ng of cDNA template, iTaq
Universal SYBR Green Supermix (Bio-Rad Laboratories),
and final concentration of 0.5 uM of each primer. Quan-
titative analysis was performed using delta-delta Ct
method, normalized to a housekeeping gene (glyceralde-
hyde 3-phosphate dehydrogenase (GAPDH)) expression.
Melting curve was performed to assess the amplification
of a single product, which was then confirmed by a sin-
gle band migration at the expected size with agarose gel
electrophoresis (not shown). The sequences of primers
used in this study are indicated in Table 1.

Statistical analyses

Data are expressed as the mean + SEM and the Graph-
Pad Prism 5 software was used to perform all statistical
analyses using either a one-way or two-way ANOVA
followed by a Dunnett’s or Bonferroni’s multiple com-
parison or a Student’s ¢ test. In all statistical analyses, a
value of p < 0.05 was defined as significant.

Results

Temporal expression of RGS in a model of neuropathic
pain

Putative changes in RGS expression associated with
neuropathic pain were examined in the lumbar spinal
cord of adult rats subjected to surgical SNI and com-
pared to non-lesioned (sham) animals. SNI resulted in

Table 1 Primer sequences used in gPCR (5->3)

Primer Sequence Expected size of the

amplicon (bp)
GTCTCCTGTGACTTCAACAG 76

GAPDH forward

GAPDH reverse AGTTGTCATTGAGAGCAATGC

RGS2 forward TGCCCAAAATATCCAAGAGG 205
RGS2 reverse CGGGAGACAGAATGGAATGT

RGS3 forward GTATCTTCGGGCTCATGGAA 192
RGS3 reverse TTACTTGTCCCCTCCGTCAC

RGS4 forward TTCATCTCTGTGCAGGCAAC 192
RGS4 reverse GGAAGGATTGGTCAGGTCAA

RGS7 forward TCGTCACATGAGAGCTGGAC 158
RGS7 reverse GACAGTGTCCCTTGGCAAAT
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tactile allodynia in the ipsilateral paw persisting for at
least 3 weeks after the lesion as assessed by the von Frey
filament test (Fig. 1a). No signs in hypersensitivity were
observed in the contralateral paw (Fig. 1b). Selected RGS
known to be expressed in the CNS [24, 25] were then
measured by qPCR in the ipsilateral dorsal quadrant of
the lumbar spinal cord of lesioned animals and normal-
ized to the level measured in sham animals, both
expressed as relative to GAPDH messenger RNA
(mRNA). The nerve lesion was associated with a modest
and not significant reduction in RGS2 mRNA until day
21 where it was significantly decreased (Fig. 1c). RGS3
was transiently upregulated, reaching up to 150% of con-
trols, 3 and 5 days after the lesion and returning to a
basal level at later stages (Fig. 1d). RGS4 gene expression
tended to progressively decrease, with a significant re-
duction of 40% by 7 days after surgery and returned to
basal level overtime (Fig. le). Finally, RGS7 was also
substantially downregulated, as early as 3 days after le-
sion, an effect that persisted at all the time points stud-
ied (Fig. 1f).

Regulation of RGS in activated astrocytes

Astrocytes are known to adapt their phenotype to changes
in their environment, in particular during nervous insults.
These morphological and biochemical changes can be
modeled in vitro by exposing cultured astrocytes to de-
fined culture conditions. Accordingly, astrocytes main-
tained in distinct culture conditions adopted different cell
morphologies and spatial organization (Fig. 2a—f). Im-
munocytochemical detection of GFAP in cultured astro-
cytes revealed that cells grown in standard conditions
(FBS 3%) adopted a typical protoplasmic morphology
(Fig. 2b) while cells exposed to a defined growth factor
cocktail (G5 supplement) or to dBcCAMP (150 mM) for
1 week showed a predominant stellate morphology
(Fig. 2d, f). Furthermore, cultures matured in the presence
of dBcAMP were organized in clusters (Fig. 2e) while cells
grown in the presence of the G5 supplement formed a
dense cellular network (Fig. 2¢).

The impact of these two culture conditions was exam-
ined on the expression of selected RGS by qPCR, and as-
trocytes maintained in the culture medium containing
3% of FBS were used as control. As shown in Fig. 2g, i,
the cells maintained in the presence of the G5 supple-
ment showed a 50% lower expression of both RGS2 and
RGS4 as compared to the control. Similarly, RGS3 ex-
pression was repressed by 25% (Fig. 2h). In contrast,
RGS7 was considerably upregulated in these conditions
(up to 250% of the control) (Fig. 2j). The exposure to
dBcAMP also profoundly affected RGS expression, but
in a distinct pattern as compared to the G5 supple-
mented condition. Thus, the cells exposed to dBcAMP
showed a 1.5- to 2-fold upregulation of RGS2, 4 and 7
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compared to standard conditions (Fig. 2g, i, j). At vari-
ance, RGS3 was found to be repressed more than 2-fold
as compared to standard conditions (Fig. 2h).

Modification of RGS expression after exposure to
inflammatory cytokines

Considering the documented inflammatory response
that develops in the dorsal spinal cord of rodents under-
going peripheral nerve lesion [13, 33], we have specific-
ally studied the impact of selected inflammatory
cytokines on the expression of RGS in astrocyte cultures.
As shown in Figs. 3 and 4, RGS2 and RGS3 mRNA were
substantially decreased after exposure of astrocytes to ei-
ther IL-1B, TNF«, or IL-6. A significant reduction in
RGS2 expression was only observed after exposure to
high concentration (50 ng/mL) of IL-1p and TNFa
(Fig. 2a, b) or after longer exposure (24 h) to the three
cytokines (Fig. 2d-f). Conversely, RGS3 underwent a
rapid downregulation after 4 h exposure to TNF«a and
IL-1P (Fig. 4a, b) at almost all the concentrations tested
whereas IL-6 did not significantly influence RGS3 ex-
pression in astrocytes. After longer exposure (24 and
48 h) to any of the three cytokines tested, no changes in

RGS3 expression were observed. At variance with RGS2
and RGS3, the RGS4 expression was upregulated in as-
trocytes after exposure to an inflammatory environment
(Fig. 5a—c). This was essentially validated after 8 h ex-
posure to high concentrations of IL-1p (50 ng/mL) and
IL-6 (10 and 50 ng/mL) and low concentrations of TNFa
(2 and 10 ng/mL). Surprisingly, TNFa at the highest
concentration did not evoke any modification of RGS4
expression as compared to the control (Fig. 5b). After
24- and 48-h exposure to inflammatory cytokines, RGS4
expression does not differ from control conditions. Fi-
nally, in the conditions tested, IL-1p and IL-6 exposure
were without impact on RGS7 expression in astrocytes
(Fig. 6a, ). In contrast, after 4 h of exposure to low con-
centration of TNFq, an increase in RGS7 mRNA expres-
sion was observed (Fig. 6b), which was however not
maintained after 8 h. After 24 h of exposure, the level of
expression was similar to the control conditions. For all
the RGS, significant effects were generally dose-
dependent and the longest exposure (48 h) to any in-
flammatory cytokines did not evoke any change, com-
pared to control conditions. Noteworthy, RGS4 was the
only RGS to be significantly affected by IL-6 exposure.
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Discussion

The present study shows that selected RGS expressed in
cultured astrocytes are subjected to differential regulation
in response to change in their chemical environment as
well as in response to inflammatory stimuli. We herein
also highlight a rapid regulation of these RGS in the spinal
cord of animal undergoing SNI, a model of neuropathic
pain in which neuroinflammation and sustained astroglio-
sis are documented [6, 38, 39]. Together with previous re-
ports independently supporting the role of astrocytes and
RGS in the modulation of neuropathic pain, we propose
that the inflammation-driven modulation of RGS in astro-
cytes may participate in the pathological mechanisms that
take place in neuroinflammatory contexts such as neuro-
pathic pain.

Over the last two decades, many groups have re-
ported on the putative role of RGS in neuropathic
pain [26, 29, 40]. Several studies have examined the
influence of manipulating either the expression or the
activity of RGS using transgenic models or pharmaco-
logical inhibitors, respectively. Thereby, the functional
interaction between RGS and receptors driving anal-
gesic responses such as cannabinoid receptors [26]
and opioid receptors [27] has been highlighted by evi-
dencing increased analgesia after manipulation of
RGS. Other groups showed that in RGS knockout-
mice, pain relief mediated by opiates [27, 41] and

antidepressants [31, 40] was modified, in particular
after SNI. These observations support a role for RGS
in the regulation of responses to both endogenous
neurotransmitters and exogenous analgesics, especially
in a context of neuropathic pain. Besides, there is ac-
cumulating evidence that the development of chronic
pain in a variety of animal models is correlated with
an alteration in the expression of RGS. Thus, after
spinal cord injury, RGS7 expression was induced in
spinal neurons and activated microglia [42]. In a
model of partial sciatic nerve ligation, neuropathic
pain was associated with an upregulation of RGS4 in
the spinal cord [26], corroborating previous observa-
tions by Garnier et al. [43]. Other studies have re-
ported on a downregulation of RGS3 and RGS4 in
primary sensory neurons after transection of the sciatic
nerve [29]. Taken together, this indicates that in different
models sharing neuropathic pain features, RGS modula-
tion can adopt distinct profiles, supporting the concept
that diverse factors, among which neuroinflammation,
can influence RGS expression. However, due to the lack
of specific tools to detect RGS proteins and their rela-
tively low endogenous expression [44], little is known
so far about the cell-specific regulation of RGS in a
neuropathic pain context and a large majority of these
studies, including the present one, only examined the
mRNA expression.
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Herein, we used a model of standardized SNI that of-
fers the advantage to elicit robust and substantial behav-
ioral and molecular changes that closely mimic many
features of clinical neuropathic pain [45]. We have ex-
amined the putative alterations in the expression of four
RGS, selected on the basis of their nervous localization
[24, 25] and the established interaction with GPCRs par-
ticipating in pain processes, as described earlier. After
validation of the SNI procedure by confirming mechan-
ical allodynia in the ipsilateral paw, the animals were
sacrificed at different time points, up to 3 weeks after
the surgery to analyze the modifications of RGS during
the early and late stages of the neuropathic model. Our
data evidence a differential regulation of RGS with a
downregulation of RGS2, RGS4, and RGS7 and an up-
regulation of RGS3, suggesting a differential control of
their expression in this pathological context. As some of
these RGS were proven to interact both with antinoci-
ceptive receptors [26, 27] and receptors that could play a
pronociceptive role such as metabotropic glutamate re-
ceptor 5 [46], a complex modulation of these RGS could
affect spinal GPCR function and either support or pre-
vent the pain sensitization process. We herein also ob-
served that RGS show distinct regulation profiles until
3 weeks after the lesion. Thus, RGS3 was only affected
at early stages of the disease (3 and 5 days), suggesting a
short-term role for this RGS. Other RGS, such as RGS2
and RGS4, were significantly modified at later time
points, respectively 21 and 7 days. The transient regula-
tions observed for RGS2, RGS3, and RGS4, either early
or lately, could be explained by the fact that neuropathic
pain is a dynamic process where changes occur in the
spinal cord over days or weeks after the lesion in terms
of cell infiltration and release of mediators [47-50].
Thereby, from 7 days after the lesion, combination of
events that influence the expression of RGS3 may result
in an expression level comparable to sham animals,
whereas it is sufficient to elicit a change in RGS4 and
later in RGS2 expression. Finally, RGS7 was modified at
every time point studied, suggesting that this RGS could
be concerned during both the initiation and mainten-
ance phases of neuropathic process. While further obser-
vations with spatial and signaling-specific investigations
of RGS modifications are needed, this identifies RGS as
potential targets to interfere with neuropathic pain at
different stages of the disease.

Several studies have highlighted the role of reactive
glial cells in neuropathic pain but the expression of RGS
in these cells remains so far poorly investigated [51, 52].
The expression of RGS in astrocytes and their regulation
was herein examined in primary cultures exposed to se-
lected conditions in which cells adopt typical character-
istics of reactive astrocytes [53-56]. Thus, prolonged
exposure of astrocytes to either dBCAMP or a defined
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supplement of growth factors (G5 supplement) induced
their differentiation into phenotypes with distinct prolif-
eration rates, morphologies, and cellular organizations.
Moreover, we herein show that the choice of specific
culture protocols, which differently maturate astrocytes,
can influence the expression of RGS and thereby poten-
tially impact on GPCR activity. This also confirms that
individual astrocytic RGS undergo specific regulation in
response to changes in their environment. Considering
the selectivity of these proteins towards GPCRs [57, 58],
an increase or decrease in RGS expression could silence
or reinforce associated signals.

The development of neuropathic pain after SNI is as-
sociated with the release of inflammatory cytokines in
the dorsal spinal cord that directly impact on astrocyte
functions [13, 33]. Therefore, we herein modeled such
pathological context by exposing cultured astrocytes to
IL-1B, TNFa, or IL-6, given the essential role of these
three cytokines in the development and maintenance of
neuropathic pain [52, 59]. The regulation profiles dif-
fered in terms of kinetic as some RGS were modified at
unique time points (RGS4 and RGS7) whereas others
underwent more sustained modifications (RGS2 and
RGS3). However, for all the RGS tested, prolonged ex-
posure to inflammatory cytokines (48 h) did not influ-
ence significantly RGS expression, confirming that RGS
are quickly regulated genes. It is noteworthy that the
regulation of RGS in astrocytes exposed to these cyto-
kines did not recapitulate the changes observed in the
spinal cord of the animal undergoing SNI. This obvi-
ously reflects the complexity of the in vivo models where
cells are exposed to a large set of mediators, including
inflammatory cytokines, growth factors, and transmitters
[5, 7] that could differentially regulate RGS expression in
both neurons and glial cells. Consistent with this idea,
we have observed that differential activation of astro-
cytes distinctly affected RGS expression. The modifica-
tions here observed probably result from different cell-
specific regulation and may be controlled by diverse sig-
naling pathways. Exposing cells in culture to selected cy-
tokines constitutes a first step in clarifying the complex
regulation that could operate in vivo. A next step should
include a detailed study on individual cell types present
in the spinal cord. With this research, we evidenced
that RGS expression in astrocytes is influenced by
changes in their environment, as tested in vitro by dif-
ferent activation media and cytokines, which are com-
parable to perturbations observed in a neuropathic pain
context.

Conclusions

Astrocytes express several receptors that sense the pres-
ence of neurotransmitters and neuromodulators [3, 60]
and can further influence synaptic activity, particularly
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by the release of gliotransmitters [4]. Changes in the ex-
pression or activity of these receptors and their signaling
partners inevitably affect the astrocyte responsiveness
and synaptic plasticity. RGS proteins can modulate both
the intensity of cell signaling as well as the coupling spe-
cificity of GPCRs [23]. Therefore, in the context of
peripheral nerve lesions that trigger central neuroinflam-
mation and astrocyte activation, their dynamic regula-
tion could influence synaptic activity and participate in
central sensitization [5]. Such regulation could be impli-
cated in the genesis and the maintenance of neuropathic
pain as changes in signal transduction, including noci-
ceptive signals, can further lead to pain chronification
[13, 61]. Considering the heterogeneity of processes sup-
porting the development of neuropathic pain, many of
which remain not fully elucidated and differ according
to the lesion model [45, 62], a better understanding of
the underlying molecular mechanisms should contribute
to a better control of the disease. In this purpose, while
little is known regarding their role and regulation in glial
cells, our study identifies RGS as putative candidates
for the modulation of astrocytic response in a context
of neuroinflammation, a key feature of neuropathic
conditions.
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