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Abstract

Background: Leukocyte infiltration into the central nervous system is an important feature of multiple sclerosis (MS)
pathology. Among the infiltrating cells, monocytes comprise the largest population and are considered to play a dual
role in the course of the disease. The enzyme tissue transglutaminase (TG2), produced by monocytes, plays a central
role in monocyte adhesion/migration in animal models of MS. In the present study, we questioned whether TG2
expression is altered in monocytes from MS patients compared to healthy control (HC) subjects. Moreover, we
determined the inflammatory status of these TG2-expressing monocytes, what inflammatory factor regulates TG2
expression, and whether TG2 can functionally contribute to their adhesion/migration processes.

Methods: Primary human monocytes from MS patients and HC subjects were collected, RNA isolated and subjected
to gPCR analysis. Human THP-1 monocytes were lentivirally transduced with TG2 siRNA or control and treated with
various cytokines. Subsequently, mRNA levels of inflammatory factors, adhesion properties, and activity of RhoA were
analyzed in interleukin (IL)-4-treated monocytes.

Results: TG2 mRNA levels are significantly increased in monocytes derived from MS patients compared to HC subjects.
In addition, correlation analyses indicated that TG2-expressing cells display a more anti-inflammatory, migratory profile

in MS patients. Using THP-1 monocytes, we observed that IL-4 is a major trigger of TG2 expression in these cells.

Furthermore, knockdown of TG2 expression leads to a pro-inflammatory profile and reduced adhesion/migration

properties of IL-4-treated monocytes.

Conclusions: TG2-expressing monocytes in MS patients have a more anti-inflammatory profile. Furthermore, TG2
mediates IL-4-induced anti-inflammatory status in THP-1 monocytes, adhesion, and cytoskeletal rearrangement in
vitro. We thus propose that IL-4 upregulates TG2 expression in monocytes of MS patients, driving them into an
anti-inflammatory status.
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Background

Multiple sclerosis (MS) is a chronic neurological dis-
order affecting mostly young adults that leads to, e.g.,
sensory, motor, and cognitive deficits [1]. Pathologically,
it is characterized by inflammation, demyelination, and
axonal loss in the central nervous system (CNS) [2]. Al-
though the pathophysiology is not well understood, MS
results in leukocyte infiltration into the CNS paren-
chyma which requires passage of the blood-brain barrier
(BBB) [3]. This process is initiated by the secretion of cy-
tokines and chemokines which induce leukocyte activa-
tion by stimulating conformational changes in the
integrins, key regulators of the adhesion/migration cas-
cade. These changes, together with cytoskeleton rearrange-
ment and the secretion of matrix metalloproteinase
(MMP) capable of cleaving components of the extracellu-
lar matrix (ECM), allow the arrest and finally the migra-
tion of the cells into the CNS [4, 5]. Monocytes and
monocyte-derived macrophages constitute the major cell
type in the perivascular infiltrates characteristic of several
neuroinflammatory diseases including MS [6-9] and are
considered to play a pivotal role in MS pathology. Indeed,
depletion of monocytes and macrophages or inhibition of
monocyte recruitment to the CNS leads to a reduction of
clinical symptoms and pathology in animals suffering from
experimental autoimmune encephalomyelitis (EAE), an
animal model of MS [7, 10, 11]. Once migrated into the
CNS, the recruited monocytes/macrophages, together with
the locally activated microglia, release proteases, pro-
inflammatory cytokines, and reactive oxygen species,
contributing to myelin damage and, ultimately, axonal
damage [12, 13]. Although monocytes/macrophages are
thought to primarily have detrimental effects on MS
pathogenesis and development, other studies point to-
ward a dual role for these cells since it has been proven
that they can also contribute to the clearance of tissue
debris and promote tissue repair by secreting growth
factors and anti-inflammatory cytokines, such as nerve
growth factor (NGF) and interleukin (IL)-10 [14-16].
Furthermore, administration of anti-inflammatory-tuned
monocytes to animals suffering from severe EAE amelio-
rates their clinical disease status [17-19].

Tissue transglutaminase, or transglutaminase 2 (TG2),
is a calcium-dependent protein-crosslinking enzyme
whose expression and activity can be increased by in-
flammatory mediators in various cell types, including
monocytes [20-23]. A recent study from our group
demonstrated TG2 immunoreactivity in human active
MS lesions in infiltrating cells of which some express
MHC-IIL. In addition, we observed in an animal experi-
mental MS model that TG2 is present in infiltrating
monocytes and contributes to pathology by promoting
monocyte migration into the CNS [24]. Of interest is
that TG2 has also been shown to be involved in the
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adhesion of monocytes onto ECM proteins in vitro (i.e.,
fibronectin, FN) as it serves as a [-integrin-associated
co-receptor promoting binding to fibronectin [25].

Thus, we hypothesize that in monocytes of MS pa-
tients, TG2 expression is altered due to the inflam-
matory environment. Consequently, TG2 expressed by
monocytes could contribute to adhesion and migration
processes that are essential for cells entering the CNS,
resulting in MS pathology. In the present study, we stud-
ied TG2 expression in monocytes from MS patients and
healthy control (HC) subjects and we determined the in-
flammatory status of the TG2-expressing monocytes. In
addition, using the human THP-1 monocyte cell line, we
studied the regulation of TG2 expression by inflamma-
tory mediators and its possible functional implication in
monocyte adhesion/migration processes.

Methods

Isolation of primary human monocytes

Peripheral blood mononuclear cells (PBMCs) were ob-
tained from 15 MS patients (13 relapsing-remitting and
3 primary progressive, RR-MS, and PP-MS respectively)
diagnosed according to the Poser or McDonald criteria
[26] and 10 HC subjects (Table 1). MS patients were re-
cruited from the VU University Medical Center (VUmc)
outpatient clinic while participating in different pro-
spective cohort studies. Age and sex-matched control
subjects were recruited from the Leiden University Med-
ical Center (LUMC). All participants gave informed con-
sent, and the study was approved by the Medical
Research Ethics Committees of the VUmc and LUMC,
respectively. At time of blood collection, the activity sta-
tus of the disease was not measured. Peripheral blood
was drawn by venipuncture and collected into sodium
citrate tubes (Greiner, Kremsmiinster, Austria). One part
of blood was diluted with one part of buffer consisting of
phosphate-buffered saline (PBS) + 10% v/v GPO (Sanquin,
Amsterdam, The Netherlands) + 10% v/v sodium citrate.
PBMCs were isolated by density centrifugation using
Ficoll Isopaque PLUS (GE Healthcare Biosciences,
Uppsala, Sweden). Monocytes were subsequently iso-
lated from the PBMCs by anti-CD14 magnetic beads
according to the manufacturer’s instruction (MACS;
Milteny Biotech, Bergisch Gladbach, Germany).

Cell culture and treatment
THP-1 cells (human monocytic cell line) were maintained
in complete RPMI 1640 medium (Gibco, Waltham,
Massachusetts, USA) containing 10% heat-inactivated
fetal calf serum (PAA), penicillin (50 units/ml, Gibco),
streptomycin (50 pg/ml, Gibco), and L-glutamine (2 mM,
Gibco) at 37 °C in humidified air containing 5% CO,.
Scramble control (SCR) and TG2-knockdown (TG2-KD)
THP-1 cell lines were generated by double, subsequent
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Table 1 Patient information
Subjects Number Female/male Age (years) £SD Type MS DMT
HC Total 10 4/6 40+12
1 Female 25 - -
2 Female 49 - -
3 Female 25 - -
4 Female 46 - -
5 Male 50 - -
6 Male 42 - -
7 Male 30 - -
8 Male 39 - -
Male 33 - -
10 Male 60 - -
MS Total 15 8/7 45+ 16
1 Female 73 PP-MS Untreated
12 Male 51 PP-MS Untreated
13 Male 56 PP-MS Untreated
14 Female 25 RR-MS Interferon beta-1a
15 Female 71 RR-MS Untreated
16 Female 24 RR-MS Glatiramer acetate
17 Female 49 RR-MS Glatiramer acetate
18 Male 30 RR-MS Interferon beta-1a
19 Male 48 RR-MS Natalizumab
20 Female 30 RR-MS Untreated
21 Female 32 RR-MS Untreated
22 Female 46 RR-MS Untreated
23 Male 45 RR-MS Untreated
24 Male 58 RR-MS Untreated
25 Male 32 RR-MS Untreated

HC healthy controls, MS multiple sclerosis, PP-MS primary progressive MS, RR-MS relapsing-remitting MS, SD standard deviation, DMT disease-modifying therapies

lentiviral transduction (MOI 1) with either a scramble or
hTG2 specific short hairpin RNA (shRNA) (scramble: sc-
108080, hTG2: sc-37514-V, Santa Cruz, Dallas, Texas,
USA) for 24 h for each infection.

To create stable knockdown cell lines, cells were se-
lected with 2 mg/ml puromycin (Sigma-Aldrich, Saint
Louis, Missouri, USA). Subsequently, the cells were char-
acterized by western blot analysis and semi-quantitative
real-time PCR (qPCR) (see below) and used for functional
assays. Stable cell lines were maintained in complete
RPMI in presence of 2 mg/ml puromycin.

THP-1 cells were either untreated or treated with
50 ng/ml of the human recombinant IL-4, IL-10, IL-1f,
or tumor necrosis factor (TNF)-a (BioLegend, San
Diego, USA) for 24 h in culture medium. The dose of
cytokine used was based on previous studies from our
group [24, 27]. The incubation period was chosen based
on the time-dependent TG2 expression in THP-1 cells

showing that a 24-h treatment with cytokines resulted in
the most increased TG2 expression (data not shown).

RNA isolation and cDNA synthesis from primary human
monocytes

Primary human monocytes were centrifuged for 5 min at
500xg. Cells were lysed in RNAbee (Tel-Test, Friendswood,
USA) according to the manufacturer’s instructions. Lysates
were stored at — 80 °C until further processing. Total RNA
was extracted according to the manufacturer’s instructions.
The RNA concentration was determined by measuring the
absorbance at 260 nm (NanoDrop ND-100 spectopho-
tometer; Thermo Fisher scientificc Waltham, USA) and
when approved, samples were included for cDNA synthe-
sis. From 1 pg total RNA, ¢cDNA was synthesized using
Superscript III (Invitrogen, California, USA) with 250 ng
random hexamers (Promega, Wisconsin, USA) and ac-
cording to the manufacturer’s instructions.
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RNA isolation and cDNA synthesis from THP-1 cells
THP-1 cells were homogenized in Trizol reagent (Invi-
trogen) and total RNA was isolated as described by the
manufacturer. RNA concentration was determined by
measuring the absorbance at 260 nm (NanoDrop ND-
1000 spectrophotometer) and when approved, samples
were included for cDNA synthesis. Then, 1 pg of total
RNA was reverse-transcribed into cDNA using the High-
Capacity cDNA Reverse Transcription kit (Life Technolo-
gies, California, USA), using 0.5 pg oligo-dT primers and
according to the manufacturer’s instructions.

Semi-quantitative real-time PCR (qPCR)

For qPCR, the Power SYBR Green Master Mix (Life
Technologies) was used. Primers were purchased from
Eurogentec (Liége, Belgium) and qPCR was performed
in MicroAmp Optical 96-well Reaction Plates (Applied
Biosystems, California, USA) on a StepOnePlus Real-
Time PCR system (Applied Biosystems). The reaction
mixture (20 pl) was composed of 1x Power SYBR Green
buffer (Applied Biosystems), 3.75 pmol of each primer
(Table 2), and 100 ng cDNA. The thermal cycling condi-
tions were an initial 10 min at 95 °C followed by 40 cy-
cles of 15 s at 95 °C and 1 min at 60 °C. The specificity
of the reaction was checked by melt curve analysis of
the individual qPCR reaction. The relative expression
level of the target genes was determined by the Lin-
RegPCR software (http://www.hfrc.nl, downloads, appli-
cations, lin reg PCR, version 2017 ) using the following
calculation NO=Nq/ECq (NO =target quantity, Nq=
fluorescence threshold value, E=mean PCR efficiency
per amplicon, Cq = threshold cycle) [28], after which the
value was normalized relative to the geometric mean of
the mRNA levels of glyceraldehyde-3-phosphate-de-
hydrogenase (GAPDH) and polymerase (RNA) II poly-
peptide F (POLR2F). We chose GAPDH and POLR2F as
reference genes based on the results of the GeNorm

Table 2 Primer sequences
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software analysis (version 3.5) in which the stability of
six different human housekeeping genes (GAPDH,
MRIP, POLR2F, HPRT1, PGK1, SDHA) was assessed in
our primary human monocytes. Regarding the THP-1
cells, the value was normalized relative to the mRNA
levels of GAPDH as previously described [29].

Western blotting (WB)

To determine TG2 protein expression, cells were ho-
mogenized in ice-cold RIPA buffer containing 150 mM
NaCl, 20 mM Tris-HCI (pH 7.4), 1% NP-40, 1% sodium
deoxycholate, 1 mM EDTA, 0.1% sodium dodecyl sul-
fate (SDS), 15 pM Pepstatin A, 100 uM phenylmethyl-
sulfonyl fluoride (PMSEF), 0.3 uM aprotinin, and 15 pM
leupeptin. Cell lysates were cleared by centrifugation
(14.000 rpm for 10 min at 4 °C). Protein concentration
of the supernatant was determined by the bicincho-
ninic acid (BCA) method according to the instructions
of the manufacturer (Pierce Biotechnology, Waltham,
Massachusetts, USA).

Fifty micrograms of protein were denaturated by add-
ing Laemmli buffer (0.012% bromophenol blue, 5% gly-
cerol, 1.6% SDS, 125 mM Tris HCI pH 6.8) and 50 mM
dithiothreitol (DTT). After boiling, the mixture was
loaded on a 10% SDS-polyacrylamide gel and trans-
ferred onto a nitrocellulose membrane (Li-cor Biosci-
ences, Lincoln, Nebraska, USA). Membranes were
incubated overnight with the following primary anti-
bodies: mouse anti-B-actin (1:10,000; Abcam, Cambridge,
UK) and mouse anti-TG2 (Ab3, 1:2000; Thermo Scientific,
Waltham, Massachusetts, USA) diluted in Li-cor buffer.
For subsequent antigen detection, the membranes were
incubated for 1 h at room temperature (RT) with corre-
sponding IgG’s labeled with IRDye 800CW or IRDye
680LT (1:10,000; Li-cor buffer) and subsequently scanned
to detect fluorescence emission at 800 or 680 nm, respect-
ively, using an Odyssey infrared imaging system (Li-Cor

Gene Forward Reverse

TG2 5'AGAGGAGCGGCAGGAGTATG 3’ 5'AGGATCCCATCTTCAAACTGC 3

GAPDH 5TCAAGGGCATCCTGGGCTAC 3 5'CGTCAAAGGTGGAGGAGTGG 3’

POLR2F 5'GAACTCAAGGCCCGAAAG 3 5TGATGATGAGCTCGTCCAC 3’

IL-18 5TACAGCTGGAGAGTGTAGATC 3’ 5'CAAATTCCAGCTTGTTATIG 3

TNF-a 5'CCCAGGCAGTCAGATCATCTTC 3 5'CTCTCAGCTCCACGCCATTG 3

IL-1ra 5TCATCCGCTCAGACAGTGGC 3 5'AGCTTCCATCGCTGTGCAGA 3"

TGF-B1 5'CTTTCCTGCTTCTCATGGCC 3 5'CCGTGGAGCTGAAGCAATAG 3

B1 integrin 5TGTGGAGGAAATGGTGTTTGC 3 5TCTGTCCGTTGCTGGCTTCA 3

3 integrin 5'CAATGCCACCTGCCTCAACA 3 5'GAGTCTTCATAGTACTGGAATC 3"
g

MMP-2 5'AAGGCCAAGTGGTCCGTGTG 3 5'GTGCAGCTGTTGTACTCCTTGC 3’

TG2 Transglutaminase 2, GAPDH glyceraldehyde-3-phosphate-dehydrogenase, POLR2F polymerase (RNA) Il polypeptide F, IL-18 interleukin-1f3, TNF-a tumor necrosis
factor-q, IL-1ra interleukin-1 receptor antagonist, TGF- transforming growth factor-B1, MMP-2 matrix metalloproteinase s2
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Biosciences). The signal intensity was measured using the
Odyssey Sa Infrared scanning software (version 1.1, Li-
Cor Biosciences).

Adhesion assay

SCR or TG2-KD THP-1 monocytes were treated with
50 ng/ml IL-4. After 24 h treatment, cells were centri-
fuged and resuspended in adhesion medium (RPMI 1640
medium + 0.5% bovine serum albumin +25 mM HEPES).
5 x 10* of the treated cells were then added to a 96-well
plate coated with 2 pg/cm” bovine FN (Sigma-Aldrich).
Cells were allowed to adhere to the FN layer at 37° on an
orbital shaker (Vibramax 100, Heidolph, Germany) at
300 rpm. After 1 h, the non-adherent cells were removed
and the adherent cells were labeled with 0.5 pM calcein
(Invitrogen) in the adhesion medium for 10 min at 37°.
Then, excess of calcein was removed and cells were
washed four times with PBS and lysed in 0.1 M NaOH.
The fluorescence (emission 485 nm; extinction 520 nm)
was then measured using a spectrophotometer (Fluos-
tar Galaxy Microplate Reader, BMG Lab Technologies,
Germany) and using FluoStar Software (BMG Lab
Technologies).

RhoA GTPase activity assay

To determine the effect of TG2 on cytoskeletal
reorganization, we measured RhoA GTPase activity. 2 x
10° SCR or TG2-KD THP-1 monocytes were treated
with 50 ng/ml IL-4 for 24 h. Thereafter, cells were lysed
with lysis buffer (50 mM Tris, pH 7.6, 150 mM NaCl,
1% Triton X-100, 20 mM MgCl2, 5 pg/ml Pepstatin A,
100 uM PMSE, 5 pg/ml aprotinin, and 5 pg/ml leupep-
tin). Of the cleared lysates, 30 pg was stored to deter-
mine the total amount of RhoA (total cell lysate).
Remaining protein lysates were incubated with 60 pg
bacterially produced GST-RBD (Rho Binding Domain of
Rhotekin) bound to glutathione-agarose beads (Cytoskel-
eton, USA) for 30 min at 4°. Beads were washed four
times with lysis buffer containing 50 mM Tris, pH 7.6,
150 mM NacCl, 1% Triton X-100, 10 mM MgCl,. Bound
proteins were eluted in 30 pl SDS Laemmli buffer and
analyzed in parallel with the total cell lysate on a 12.5%
SDS PAGE. The active form of RhoA and total RhoA
were detected with a mouse monoclonal antibody
(1:250, Santa Cruz Biotechnology) and were visualized as
described under western blotting.

Statistical analysis

In the HC or MS patient-derived monocytes, the sample
size varied between gene expression measurements due
to availability of mRNA or cDNA or based on unreliable
qPCR outcome (e.g., extreme values). Normal distribu-
tion of the data was tested using the Shapiro-Wilk pro-
cedure. When data from MS patients and HC were not
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normally distributed, either the logarithmic (for IL-1p
and TNF-a) or the cubic root transformed parameter
(for 33 Integrin) was used in order to normalize the vari-
ables. Subsequently, normally distributed data were ana-
lyzed by independent Student ¢ test. Correlation analysis
was assessed using Pearson correlation analysis. The
data obtained with the THP-1 cells all met the criteria of
normal distribution. Subsequently, one-way analysis of
variance (ANOVA) followed by Bonferroni post hoc test
was performed for multiple comparisons while for two
group analysis, an independent Student ¢ test was per-
formed. Results were considered to be statistically signifi-
cant if p<0.05. All statistical analyses were performed
using SPSS software, version 20.0 (IBM Corp, NY, USA).

Results

TG2 mRNA levels were increased in MS patient-derived
monocytes compared to HC subject-derived monocytes
At first, we established that there was no significant dif-
ference in TG2 expression between untreated and drug-
treated MS patients (see Additional file 1). Therefore,
considering the relative low number of MS patients, all
MS patient samples were further assessed as one group.
When comparing TG2 mRNA levels between HC subjects
and MS patients, there was a significant increase in TG2
expression in MS patient-derived monocytes compared to
HC subject-derived monocytes (p < 0.001) (Fig. 1).

MS patient-derived monocytes showed a decrease in IL-
18 mRNA and an increase in 3 integrin mRNA levels
compared to HC subject-derived monocytes
Subsequently, we aimed to study the inflammatory
phenotype of MS patient/HC subject-derived monocytes.
We measured the expression of several pro- and anti-
inflammatory mediators. Interestingly, MS patient-
derived monocytes displayed a significant decrease in
pro-inflammatory IL-1B expression compared to HC
subject-derived monocytes (p =0.003) (Fig. 2a), whereas
pro-inflammatory TNF-a and anti-inflammatory IL-1 re-
ceptor antagonist (IL-1ra) and transforming growth factor
(TGF)-f1 mRNA levels were not significantly different
(Fig. 2b—d). In addition, we examined whether the expres-
sion of two relevant members of the { integrin family, p1
and [33, were also affected in monocytes derived from MS
patients versus HC subjects. While B1 integrin mRNA
levels were not significantly different between the two
groups (Fig. 3a), we observed a significant increase in B3 in-
tegrin mRNA levels in MS patient-derived monocytes com-
pared to HC subject-derived monocytes (p = 0.01) (Fig. 3b).

TG2 mRNA levels correlated with those of inflammatory
mediators in MS patient-derived monocytes

Next, to determine the phenotype of TG2-expressing
monocytes derived from MS patients and HC subjects,
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Fig. 1 TG2 expression in MS patient/HC subject-derived monocytes.
gPCR analysis was performed to detect TG2 (HC N=8/MS N =15)
mRNA levels in primary human monocytes isolated from MS patients
and HC subjects. Data are shown in box-and-whiskers plots in which
the median is represented by a horizontal line within the box and
the lower and upper whiskers represent the 5 and 95 percentiles.
**¥p < 0.001. MS multiple sclerosis, HC healthy controls

we correlated TG2 mRNA levels with mRNA levels of
pro- and anti-inflammatory mediators. In MS patient-
derived monocytes (Fig. 4 black line), no significant cor-
relation was observed between TG2 mRNA levels and
either IL-1f mRNA levels (r=0.376, p =0.168) or TNFa
mRNA levels (r=0.391, p = 0.186) (Fig. 4a, b). However,
TG2 mRNA levels correlated positively with the anti-
inflammatory mediators IL-1ra (r=0.605, p =0.02) and
TGF-B1 (r=0.532, p=0.05) (Fig. 4c, d). None of these
correlations was observed in HC subject-derived mono-
cytes (Fig. 4a—d, gray line).

TG2 expression was upregulated in IL-4-treated monocytes
and sustained an anti-inflammatory phenotype

To determine which inflammatory stimulus modulates
TG2 expression in monocytes, as might occur during
MS, THP-1 monocytes were either untreated or treated
with two pro-inflammatory stimuli, i.e., IL-1p or TNF-«
or with two anti-inflammatory stimuli, i.e., IL-4 or IL-10.
The qPCR analysis revealed that TG2 mRNA levels were
highly upregulated by IL-4 treatment (Fig. 5a). WB ana-
lysis confirmed the upregulation of TG2 protein in IL-4-
treated monocytes (Fig. 5b). Subsequently, we studied
the relevance of TG2 in determining the phenotype of
IL-4-treated monocytes, by using TG2-KD or SCR THP-
1 cells. First, we showed that in TG2-KD cells, TG2
mRNA (Fig. 6a) and protein levels (Fig. 6b) were signifi-
cantly decreased after IL-4 treatment compared to IL-4-
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treated SCR cells. In addition, IL-4-treated TG2-KD cells
expressed significantly more of the pro-inflammatory cy-
tokines IL-1p and TNFa (Fig. 6¢, d, respectively). More-
over, we observed a significant reduction in the mRNA
level of the anti-inflammatory cytokine IL-1ra (Fig. 6e)
in IL-4-treated TG2-KD monocytes.

Effect of TG2-KD on adhesion and on cytoskeleton re-
arrangement in IL-4-treated THP-1 cells

To identify relevant functional aspects of TG2 in IL-4-
treated THP-1 monocytes, we studied adhesion proper-
ties. We observed that knockdown of TG2 expression
resulted in less cell adhesion onto FN in response to IL-
4 (Fig. 7a). As P integrins can act in concert with TG2 to
promote cell adhesion, it was of interest to observe that
[L-4-treated TG2-KD cells expressed significantly less 1
integrin (Fig. 7b). In addition, we observed a reduction
of almost 50% of active RhoA GTPase, indicative of re-
duced cytoskeletal rearrangement, in IL-4-treated TG2-
KD monocytes compared to SCR monocytes (Fig. 7c).
Furthermore, IL-4-treated TG2-KD monocytes expressed
significantly less MMP-2 (Fig. 7d), a protein known to be
involved in the cleavage of ECM proteins and therefore
permissive for cell migration [30, 31].

Discussion

Alteration in TG2 expression and/or cross-linking acti-
vity has been extensively implicated in the pathogenesis
of various human diseases, including neurodegenerative
disorders [32], coeliac disease [33], and cancer [34].
Thus, based on our previous observations in rat and
mouse models for MS, we here questioned whether
monocyte-derived TG2 expression was altered in MS pa-
tients. Although a limited number of patients was in-
cluded in the present study, we are the first to show that
TG2 mRNA levels are significantly enhanced in mono-
cytes derived from MS patients compared to HC sub-
jects. The presence of low levels of TG2 in human
monocytes is known for many years. Moreover, inflam-
matory factors have been shown to enhance TG2 levels
in these cells [35-38]. Thus far, few studies have been
performed to determine a physiological or pathological
expression of TG2 in monocytes/macrophages in vivo.
One of which is in a mouse model of atherosclerosis,
showing increased TG2 immunoreactivity in infiltrated
macrophages in the lesions, limiting lesion size [39].

As inflammation can alter TG2 expression, we charac-
terized the inflammatory status of MS patient-derived
monocytes and revealed that these cells expressed sig-
nificantly lower mRNA levels of IL-1B. Interestingly,
expression levels of either TNF-a or anti-inflammatory
IL-1ra and TGF-P1 were unaffected.
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Although, we cannot exclude the presence of separate
cell populations with each specific pro- or anti-
inflammatory phenotype, our data suggest that MS
patient-derived monocytes have a mixed inflammatory
phenotype, which is in agreement with the intermediate
activation status displayed by monocyte-derived macro-
phages in active demyelinating MS lesions [40].

Noteworthy, elevated B3 integrin mRNA levels in MS
patients indicate an increase migratory capacity of the
cells [41, 42]. On the contrary, mRNA expression levels
of the adhesion molecule B1 integrin were not affected.

In addition, our observation that TG2 does not corre-
late either with IL-1p or TNF-a expression but correlated
positively with the expression of two anti-inflammatory
markers, i.e., IL-1ra and TGF-B1 in MS monocytes, sug-
gests that MS patient-derived monocytes expressing
higher levels of TG2 have a more anti-inflammatory
profile. We thus questioned what factor(s) could en-
hance monocyte-derived TG2, whose expression is
known to be modulated by several inflammatory stimuli
[27, 43, 44], due to the presence of various inflamma-
tory factor-related response elements in the promotor
region [45]. As inflammation occurs during MS pa-
thogenesis, we determined the effect of inflammatory
mediators on TG2 expression. In THP-1 cell, known to
be responsive to inflammatory stimuli [46, 47], pre-
dominantly IL-4 induced TG2 mRNA and protein
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Fig. 6 Knockdown of TG2 expression drives IL-4-activated THP-1 monocytes into a pro-inflammatory phenotype. Lentiviral particles were used to
efficiently knockdown TG2 expression in THP-1 monocytes as confirmed both by a gPCR or b WB. To study the phenotype of TG2-KD cells, mRNA
expression levels of ¢ IL-13, d TNF-g, and e IL-1ra were measured by gPCR in SCR or TG2-KD THP-1 monocytes activated for 24 h with IL-4
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**p <0.01, **p <0.001. SCR scramble control, TG2-KD TG2 knockdown

upregulation. These data suggest that the increased of TG2 drives an anti-inflammatory phenotype of
TG2 mRNA expression levels observed in MS patient- monocytes. In agreement with this observation, TG2
derived monocytes could, directly or indirectly, be me- was recently established as an anti-inflammatory
diated by circulating or autocrine IL-4, whose presence  marker of IL-4-treated human and mouse macro-
was described to be enhanced both in serum and in  phages [52].

mononuclear cells of MS patients compared to HC Furthermore, it is known that IL-4 affects adhesive/mi-
subjects [48—51]. Subsequently, we found that knock-  gratory properties of several cell types [53, 54]. Our find-
down of TG2 resulted in a pro-inflammatory pheno- ings regarding the attenuated adhesion, cytoskeleton
type of IL-4-treated THP-1 monocytes as indicated by  rearrangement, and MMP-2 expression of IL-4-treated
the increased mRNA levels of IL-1f and TNF-a and TG2-KD monocytes are the first to point out that these
by the reduced mRNA levels of the anti-inflammatory  IL-4-mediated processes in human monocytes are, at
cytokine IL-1ra. These data suggest that the presence least partly, regulated through TG2.
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Fig. 7 Effect of TG2 knockdown on the adhesion/migration and cytoskeleton rearrangement in IL-4-activated THP-1 monocytes. SCR or TG2-KD
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Conclusion

In this study, we established that TG2 mRNA levels are
increased in monocytes derived from MS patients and
correlates with anti-inflammatory cytokine expression,
proposing a more anti-inflammatory status of the TG2-
expressing monocytes in MS. Furthermore, IL-4 is an
important regulator of TG2 expression in THP1 mono-
cytes and TG2 mediates IL-4-induced anti-inflammatory
status of these cells as well as adhesion and cytoskeletal
rearrangement in vitro. We thus propose that IL-4 upre-
gulates TG2 expression in monocytes of MS patients,
driving them into an anti-inflammatory status. This
leads to the speculation that TG2 can mediate the en-
hanced adhesion of anti-inflammatory-tuned monocytes
to the CNS endothelium of MS patients.

Additional file

Additional file 1: TG2 expression in untreated and drug-treated MS
patients. gPCR analysis was performed to detect TG2 in primary human
monocytes isolated from untreated (N =10) and drug-treated (N =5) MS
patients. Data are shown in box-and-whisker plots in which the median
is represented by the horizontal line within the box, and the lower and
upper whiskers represent the 5 and 95 percentiles. (TIFF 1769 kb)
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