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Abstract

differentiation and neuronal survival.

polarization.

to new therapeutic opportunities after stroke.

Background: Following stroke, microglia can be driven to the “classically activated” pro-inflammatory (M1)
phenotype and the “alternatively activated” anti-inflammatory (M2) phenotype. Salidroside (SLDS) is known
to inhibit inflammation and to possess protective effects in neurological diseases, but to date, the exact
mechanisms involved in these processes after stroke have yet to be elucidated. The purpose of this study
was to determine the effects of SLDS on neuroprotection and microglial polarization after stroke.

Methods: Male adult C57/BL6 mice were subjected to focal transient cerebral ischemia followed by intravenous SLDS
injection. The optimal dose was determined by evaluation of cerebral infarct volume and neurological functions.
RT-PCR and immunostaining were performed to assess microglial polarization. A transwell system and a direct-contact
coculture system were used to elucidate the effects of SLDS-induced microglial polarization on oligodendrocyte

Results: SLDS significantly reduced cerebral infarction and improved neurological function after cerebral ischemia.
SLDS treatment reduced the expression of M1 microglia/macrophage markers and increased the expression of M2
microglia/macrophage markers after stroke and induced primary microglia from M1 phenotype to M2 phenotype.
Furthermore, SLDS treatment enhanced microglial phagocytosis and suppressed microglial-derived inflammatory
cytokine release. Cocultures of oligodendrocytes and SLDS-treated M1 microglia resulted in increased oligodendrocyte
differentiation. Moreover, SLDS protected neurons against oxygen glucose deprivation by promoting microglial M2

Conclusions: These data demonstrate that SLDS protects against cerebral ischemia by modulating microglial
polarization. An understanding of the mechanisms involved in SLDS-mediated microglial polarization may lead
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Background

Microglia are the resident macrophages of the brain,
with important roles in development, homeostasis, and
disease [1, 2]. Under physiologic conditions, microglia
are primarily found in the resting state (MO), but are ac-
tivated into two phenotypes, the “classically activated”
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M1 and the “alternative activated” M2 phenotypes, fol-
lowing an imbalance to normal physiological conditions
[2, 3]. M1 microglia secrete various pro-inflammatory
cytokines, such as interleukin (IL)-1(, IL-6, and tumor
necrosis factor (TNF)a, which are induced by lipopoly-
saccharide (LPS) and/or interferon-y (IFN-y) [2, 3]. Con-
versely, M2 microglia produce anti-inflammatory
cytokines, such as IL-10 and TGEp, and are induced by
IL-4 and/or IL-13 [2]. After cerebral ischemia, micro-
glia/macrophages are activated: M2 microglia/macro-
phages promote brain restorative processes, including
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neurogenesis, axonal regeneration, angiogenesis, oligo-
dendrogenesis, and remyelination; while M1 microglia/
macrophages impair neurogenesis and aggravate neuro-
logical deficits [2]. Recent evidence suggests that a shift
from the M1 phenotype to the M2 phenotype is benefi-
cial for recovery after stroke, and thus may provide novel
therapeutic approaches to aide stroke victims [2, 3].

Salidroside (SLDS) is a phenylpropanoid glycoside ex-
tracted from the root of Rhodiola rosea L and is one of
the main active ingredients of this plant. Rhodiola rosea
grows in high altitudes and cold regions and has been
used as a medicine in many European countries and
China [4, 5]. Beneficial roles of SLDS have also been re-
ported in aging [5], cancer [6], inflammation [7, 8], oxi-
dative stress [4, 7], and several central nervous system
(CNS) diseases, including Alzheimer’s disease [9] and
stroke [10, 11]. Recently, SLDS was shown to ameliorate
activation of both a microglial [12] and a macrophage
cell line [13]. However, to date, the role of SLDS in
microglial polarization remains unknown.

The goal of this study was to gain new insight into the
medicinal value of SLDS after stroke. The optimal dose
of SLDS following middle cerebral artery occlusion
(MCAO) in mice was found and the ability of SLDS to
regulate microglial polarization was explored both in
vivo and in vitro. In addition, the effects of SLDS on pri-
mary microglia-mediated inflammation, phagocytosis,
oligodendrocyte differentiation, and neuronal death were
also investigated. These data provide evidence that SLDS
induces neuroprotection by modulating the conversion
of M1 microglia to M2 microglia.

Methods
Animal model and drug administration
All animal experiments were approved by the Institu-
tional Animal Care and Use Committee of Capital Med-
ical University and in accordance with the principles
outlined in the National Institutes of Health Guide for
the Care and Use of Laboratory Animals. Transient focal
ischemia was induced in male C57/BL6 mice weighing
21-23 g using the intraluminal vascular occlusion
method as previously described [14]. Mice underwent
MCAO for 1 h and then were reperfused. The mice were
randomly assigned to sham-operated, vehicle, and SLDS
groups with different doses. Regional cerebral blood flow
was measured using laser Doppler flowmetry (PeriFlux
System 5000, Perimed, Stockholm, Sweden). Rectal
temperature was maintained at 37.0 °C during and after
surgery via a temperature-regulated heating pad. SLDS
(43866, Sigma, St. Louis, MO, USA) was dissolved in
phosphate buffer saline (PBS) for use in animals. Two
experimental procedures were initiated:

Experiment 1: To select the optimal dose, SLDS, at
2.5, 5, 10, and 20 mg/kg/day (or PBS) was administered
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daily via the caudal vein after cerebral ischemia. The first
dose of SLDS was given immediately after reperfusion
and mice were sacrificed 3 days after MCAO.

Experiment 2: To detect the role of SLDS in microglial
polarization after stroke, SLDS was administered once a
day for 5 days via the caudal vein. The first dose of SLDS
was injected immediately after reperfusion.

Infarct volume and brain loss analysis

Infarct volume was determined wusing 2, 3, 5-
triphenyltetrazolium chloride (TTC) as previously de-
scribed [15]. Hematoxylin and eosin (H & E) staining was
performed to detect brain loss. The brain loss was mea-
sured by subtracting the nonlesioned area of the ipsilateral
hemisphere from that of the contralateral hemisphere. The
volume of tissue loss was calculated from the lesioned areas
in six sections.

Neurological functional test

To evaluate neurological functional deficits, neurological
severity scores were performed at 3 days after MCAO as
previously described, by investigators who were blinded
to the experimental group assignments [16—18]. The
modified neurological severity score is a composite of
motor and sensory test. Motor tests were assessed by
raising the animal by the tail (normal: 0; flexion of fore-
limb: 1; flexion of hindlimb: 1; head moved > 10° to ver-
tical axis within 30 s: 1; maximum: 3) and placing the
animal on the floor (normal: 0; inability to walk straight:
1; circling toward the paretic side: 2; falling to the
paretic side: 3). Sensory tests included tactile response
(normal: 0; slowed reaction: 1; no reaction: 2) and pro-
prioceptive response (normal: 0; slowed reaction: 1; no
reaction: 2). Tactile response was evaluated by touching
the palmar area of forepaw with a sharp needle and pro-
prioceptive response was assessed by pressing a cotton
swab against the side of the neck. The overall neuro-
score was determined by an investigator blinded to the
treatment of the animals.

Rotarod test

A rotarod test was performed with the Rotamex 5 appar-
atus (Columbus Instruments, Columbus, OH, USA) as
previously described [19]. Briefly, mice were placed on
an accelerating rotating rod at an accelerating speed (ac-
celeration from 4 to 40 rpm within 5 min) until the
mouse fell onto the platform below, or until the 5 min
had elapsed. Each animal underwent three trials daily
with an inter-trial interval of 20 min.

RT-PCR

Total RNA was extracted from microglia or brain tissues
using Trizol (Qiagen, Hilden, Germany) according to the
manufacturer’s protocol, after which RNA was reverse
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transcribed into cDNA using Superscript III First-Strand
Synthesis SuperMix (Invitrogen, Carlsbad, CA, USA).
The resulting ¢cDNA was used for PCR using SYBR
GREEN FAST mastermix (Qiagen) in triplicate. The ex-
pression of CD16 and CD206 were detected by RT-PCR
using the primers: CD16, Forward: 5'-TCAAATCACT

TTCTGCCTGCT-3/, Reverse: 5-CTATTGCT
CTCCTCATCCCAT-3"; CD206, Forward: 5'-AGTG
ATGGTTCTCCTGTTTCC-3’, Reverse: 5'-GGTG

TAGGCTCGGGTAGTAGT3'. All other primers for
RT-PCR were used as previously described [14, 20-23].
Data collection was performed on the RT-PCR System
(Bio-Rad, Hercules, CA, USA). GAPDH was used as an
internal control. The relative quantitation value for each
gene was performed using the comparative cycle thresh-
old method [24].

Immunofluorescence staining

Immunofluorescence staining was performed on free-
floating sections (25 pm) for tissues or glass coverslips
for cell cultures in 24-well plates. Primary microglia,
neurons, and oligodendrocytes grown in 24-well plates
were fixed with 4% paraformaldehyde. Slides or glass
coverslips were washed in PBS and immersed in monkey
serum (Jackson Immuno Research Laboratories Inc.,
West Grove, PA, USA) for 30 min. Primary antibodies
included the following: rabbit anti-MAP2 (sc-20172,
Santa Cruz Biotechnology, Santa Cruz, CA, USA), rat
anti-CD16/32 (553142, BD, Franklin Lakes, NJ, USA),
goat anti-CD206 (AF2535, R & D Systems, Minneapolis,
USA), rabbit anti-inducible nitric oxide synthase (iNOS,
ab15323, Abcam, San Francisco, CA, USA), goat anti-
Argl (sc-18351, Santa Cruz Biotechnology), rabbit anti-
Ibal (019-19741, Wako, Osaka, Japan), mouse anti-NG2
(MAB5384, Millipore, Billerica, MA, USA), and rabbit
anti-MBP (ab40390, Abcam). The nuclei of cells were
stained with DAPI (4'6-diamidino-2-phenylindole;
Invitrogen) before taking images. Sections or cells were
observed under a fluorescence microscope (Carl Zeiss,
Jena, Germany) or confocal microscopy (Leica, Wetzlar,
Germany).

Primary culture of microglia, oligodendrocytes, and
neurons

Primary rat-enriched microglia were isolated from the
whole brains of 1-day-old pups and cultured as previ-
ously described [25]. Microglia were shaken off, col-
lected, and reseeded 10 days after initial seeding.
Microglia were incubated in DMEM/F12 (Gibco, Life
Technologies, Gaithersburg, MD, USA) with 10% fetal
bovine serum (Gibco, Life Technologies), and 100 U/ml
penicillin/streptomycin (Life Technologies). After micro-
glial collection, oligodendrocytes were shaken off over-
night, collected, and incubated in basal chemically
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defined medium as previously described [26]. NG2 and
MBP double immunostaining was performed to identify
the stages of oligodendrocyte maturity. All cells were
maintained at 37 °C and 5% CO,. The M1 phenotype
was induced using a combination of LPS (L4391,
100 ng/ml, Sigma) and rat IFN-y (20 ng/ml, Peprotech,
Rocky Hill, NJ, USA) and the M2 phenotype was in-
duced using a combination of rat IL-4 (20 ng/ml, Pepro-
tech) and rat IL-13 (20 ng/ml, Peprotech). Microglia
were collected 48 h after initial seeding for mRNA
analysis.

Primary cortical neurons were isolated from the brains
of E18 rat embryos and incubated in neurobasal medium
(Life Technologies) supplemented with 2% B27 (Life
Technologies), 2 mM glutamine (Life Technologies) and
100 U/ml penicillin/streptomycin (Life Technologies).
The medium was changed every 3 days by replacing two
thirds of the medium. Ten days after initial seeding, the
purity of neurons was assessed by MAP2 immunostain-
ing (requirement of >95% purity). At least three inde-
pendent replicates were performed for all experiments.

Lactate dehydrogenase (LDH) assay

LDH release was measured using Pierce LDH cytotox-
icity kit (Thermo Scientific, Pittsburgh, PA, USA) at
24 h after treatment. Absorbance was read at 450 pum
using a Varioskan Flash Reader (Thermo Scientific,
Waltham, MA, USA).

Phagocytosis assay

Microglia were plated in 24-well (3 x 10° cells/well) or 96-
well (8 x 10* cells/well) D-lysine (Sigma) coated plates and
incubated with different treatments for 48 h. Nile red
fluorescent microspheres (Invitrogen) were then added to
the cultures for 3 h at a concentration of 0.02% solids.
Microsphere counts were performed at 3 h after the
addition of the fluorescent microspheres as previously de-
scribed [14]. Cultures were stained with AlexaFluor488
phalloidin (Invitrogen) and absorbance was read using a
Varioskan Flash Reader (Thermo Scientific).

Assay for pro-inflammatory factors in culture media
Supernatants were collected from microglia with the vari-
ous treatments stated above at 48 h after treatment.
Concentrations of IL-1p, IL-2, IL-6, IL-8, and TNFa were
measured with a commercial enzyme-linked immuno-
sorbent assay (ELISA) kit (Neobioscience, Shanghai,
China) according to the manufacturer’s instructions.
Absorbance was read at 450 pm using a Varioskan Flash
Reader (Thermo Scientific).

Neuron-microglia cocultures
The following two coculture systems were employed: (1) a
transwell contact-independent neuron-microglial system
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and (2) a direct-contact neuron-microglial system; both of
which were performed as previously described [14]. To as-
sess neuronal survival in the transwell contact-
independent system, neurons were seeded in six-well
plates at a density of 8 x 10° per well. Ten days after initial
seeding of neurons, activated microglia (4 x 10°/well) were
added into inserts directly above the neuronal cultures
(both cultures shared the same medium). To assess neur-
onal survival in the direct-contact system, neurons cul-
tured for 10 days in 96-well plates (8 x 10*/well) were
subjected to either normal conditions or oxygen glucose
deprivation (OGD) for 1 h. Primary microglia (4 x 10%/
well) were then seeded and cultured together with neu-
rons in the presence of different agent combinations in
defined culture medium (minimum essential medium
containing 10% fetal bovine serum and 10% horse serum).
For immunostaining, neurons cultured for 10 days at a
density of 2 x 10> per well in 24-well plates were directly
cocultured with primary microglia (1 x 10°/well).

Microglia-oligodendrocyte cocultures

Using the transwell coculture system, microglia (1 x 10°/
well) seeded in inserts were activated by different agent
combinations for 48 h, after which the inserts were gently
washed twice and added directly above oligodendrocytes
(2 x 10°/well) cultured in 24-well plates. After 3 days of
coculture, microglial inserts were replaced by new 48 h-
activated microglial inserts.

Quantitative MAP2 ELISA

Neurons cultured in six-well plates in the transwell system
were collected at 48 h after treatment and lysed. A MAP2
ELISA kit was used (Cusabio, Wuhan, China) to detect
the expression of MAP2 as previously described [14].

Statistics

GraphPad Prism 7.03 software (GraphPad Software Inc.,
La Jolla, CA, USA) was used for statistical analyses. All
data were presented as mean + standard error of mean
(SEM). The Shapiro-Wilk normality test was used to
confirm the values derived from a Gaussian distribution.
Statistical power was calculated using Gpower 3. As-
sumptions of equal variance were tested with Brown-
Forsythe tests. Significant differences were assessed by
Student’s ¢ test for two-group comparison and one-way
analysis of variance (ANOVA) followed by Tukey’s test
or two-way ANOVA followed by Sidak’s test for multiple
comparisons. Statistical significance was set at P < 0.05.

Results

SLDS treatment reduces infarct volume and protects
neurological function after MCAO

SLDS was administered as shown in Fig. 1a, b, while the
schematic structure of SLDS is shown in Fig. 1c. Infarct
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volume was significantly attenuated at 72 h after cerebral
ischemia with SLDS treatment at incremental doses of
2.5, 5, 10, and 20 mg/kg, respectively (P < 0.05, P < 0.05,
P <0.01, and P<0.01, respectively; Fig. 1d, e). A similar
concomitant significant improvement in neurological
scores was noted at doses of 2.5, 5, 10, and 20 mg/kg, re-
spectively (P<0.05, P<0.05, P<0.01 and P<0.01, re-
spectively; Fig. 1f). Maximal beneficial effects were
observed at a dose of 10 mg/kg and as such, this dose
was used in all subsequent experiments to explore the
role of SLDS in microglial polarization after MCAO.
SLDS treatment decreased the brain loss at 14 days after
MCAO (P <0.05; Fig. 1g, h) and improved functional re-
covery at days 3, 5, 9, 11, and 14 after MCAO compared
with controls (all P < 0.05; Fig. 1i). To assess general fit-
ness and motor coordination, the rotarod test was per-
formed every 2 days from days 3 to 11 after MCAO.
The latency to fall off the rotarod was much longer in
the SLDS-treated group compared with the vehicle
group (P <0.001; Fig. 1j).

SLDS promotes M2 macrophage/microglial polarization
after MCAO

To confirm whether SLDS affects macrophage/micro-
glial polarization, RT-PCR was used to detect mRNA
expression levels of M1 phenotype makers (CDI16,
CD32, iNOS, and CD11b) and M2 phenotype markers
(CD206, Argl, TGFB, and YM1/2). In comparison
with the vehicle groups, mice treated with SLDS
showed lower expression of M1 markers (Fig. 2a) and
higher expression of M2 markers (Fig. 2b) in the cor-
tex and striatum at 14 days after MCAO. The num-
bers of the Ibal® microglia were significantly lower in
both the cortex (P<0.01) and striatum (P<0.01) of
SLDS-treated groups compared with vehicle groups
(Fig. 3a—e), which suggested that SLDS alleviated
microglial activation following stroke. Consistent with
RT-PCR results, SLDS treatment significantly de-
creased the numbers of Ibal*CD16/32" M1 microglia/
macrophages (P<0.001 in cortex and striatum, re-
spectively; Fig. 3a—f) and significantly increased the
number of Ibal*CD206" M2 microglia/macrophages
in the cortex (P<0.05) and striatum (P <0.05;
Fig. 3c—g) at 14 days after MCAO. These results
showed that SLDS treatment promoted M2 macro-
phage/microglial polarization after stroke.

SLDS induces a phenotypic change in microglia from the
M1 to M2 phenotype in vitro

SLDS, at increasing concentrations, was added into pri-
mary microglial and neuronal cultures, and the LDH
assay was used to detect subsequent cytotoxicity. SLDS
treatment at a concentration of 800 uM significantly el-
evated LDH release in primary microglia compared
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with controls (P<0.05; Fig. 4a), while treatments of
400 pM and under did not elicit significant changes in
LDH release in either microglia or neurons (Fig. 4a, b).
To assess whether SLDS could decrease cerebral ische-
mia injury in vitro, the LDH assay was performed in
primary cortical neurons subjected to an initial 1 h
OGD exposure and a subsequent 4- and 24-h reperfu-
sion. As shown in Fig. 4c, d, SLDS (50 and 100 pM) de-
creased LDH release 4 h after OGD (both P <0.05;
Fig 4c), but there were no significant differences be-
tween the control group and SLDS groups at increasing
concentrations at 24 h after OGD (Fig. 4d).

Furthermore, SLDS treatment (50 uM) of micro-
glial/neuronal cocultures for 24 h resulted in signifi-
cantly reduced LDH release when neuronal cultures
were initially exposed to OGD for 1 h (P<0.05
Fig. 4e). Based on the above results, SLDS treatment
at a concentration of 50 uM was used in all subse-
quent in vitro experiments to explore the role of
SLDS in microglial polarization.

Additionally, mRNA levels of CD16 and iNOS were
markedly downregulated in M1 microglia treated with
SLDS (P<0.05, P<0.001, respectively; Fig. 4f). In
contrast, mRNA levels of CD206 and Argl were

markedly upregulated in microglia after SLDS treat-
ment (both P<0.01; Fig. 4f). Consistent with RT-PCR
results, the immunofluorescence assay showed that
the expression of iINOS was lower and the expression
of Arg-1 was higher in SLDS-treated M1 microglia
(Fig. 4g).

SLDS inhibits the secretion of pro-inflammatory factors
and increases phagocytosis of M1 microglia

To investigate the effect of SLDS on microglial-
mediated inflammatory factor secretion, the levels of
pro-inflammatory factors were measured by ELISA.
The data showed that SLDS reduced the secretion of the
pro-inflammatory cytokines, IL-1B, IL-2, IL-6, IL-8, and
TNFa, in M1 microglia (P<0.001, P<0.001, P<0.05,
P <0.001, P<0.001, respectively; Fig. 5a). Additionally,
M1 microglia treated with SLDS showed a significantly
stronger phagocytotic function compared with those not
treated with SLDS (P < 0.001; Fig. 5b, ¢).

M1 microglia treated with SLDS promote oligodendrocyte
differentiation

To determine whether microglia treated with SLDS drive
oligodendrocyte differentiation, primary microglia were
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marker. Data are expressed as mean + SEM. *P < 0.05, **P < 0.01, ***P < 0.001, by one-way ANOVA and Tukey's test

pre-treated with different combinations of medications in
a transwell contact-independent system, and then cocul-
tured with oligodendrocytes (Fig. 5d). As shown in Fig. 5e,
expression of NG2, a marker of oligodendrocyte progeni-
tor cells, was significantly lower in oligodendrocytes
cocultured with SLDS-treated M1 microglia compared
with oligodendrocytes cocultured with untreated M1
microglia (P<0.05 Fig. 5e). In contrast, expression of
MBP, a marker for mature oligodendrocytes, was signifi-
cantly higher in oligodendrocytes cocultured with SLDS-
treated M1 microglia compared with oligodendrocytes
cocultured with untreated M1 microglia (P < 0.01; Fig. 5e).
Immunostaining results (Fig. 5f) were consistent with RT-
PCR data and suggest that SLDS promotes oligodendro-
cyte differentiation.

M1 microglia treated with SLDS promote neuronal
survival

To gain insight into the effects of SLDS-mediated modi-
fication of microglial polarization on neuronal survival,
microglia were treated with either SLDS or induction
factors (or combination of both), or control, and cocul-
tured with neurons exposed to OGD conditions in a
transwell system (Fig. 6a) or in a direct microglial-
neuronal contact system (Fig. 6b). As shown in Fig. 6a,
in the transwell system, SLDS treatment-enhanced
MAP2 expression in neurons exposed to OGD conditions
and cocultured with MO or M1 microglia compared with
vehicle-treated M1 microglia (P <0.01, P <0.05, respect-
ively; Fig. 6a). After OGD exposure, SLDS-treated neurons
cultured directly with either MO microglia or cultured
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ANOVA and Tukey's test

alone expressed higher levels of MAP2 compared with
neurons not exposed to OGD conditions (P <0.05, P<
0.01, respectively; Fig. 6b). Results from the direct
microglial-neuronal contact cultures indicated that SLDS
significantly enhanced MAP2 expression under both nor-
mal and OGD conditions in the presence of M1 microglia
(P<0.01, P<0.001, respectively; Fig. 6b), and immuno-
staining of MAP2 (Fig. 6¢c) confirmed ELISA results.
These results suggest that SLDS modulates microglial
polarization to enhance neuronal survival.

Discussion

SLDS is known to protect against stroke and other
neurological diseases [5, 9, 10, 27], the effect of SLDS on
microglial polarization status after stroke has not previ-
ously been investigated. To our knowledge, this is the
first study to describe a beneficial effect of SLDS on
microglial polarization after stroke.

Cell quantification revealed that there was a delayed
peak at 14 days for CD16"/Ibal* M1 cells and at 7 days
for CD206"/Ibal® M2 cells after stroke in mice [28].
Therefore, brain samples at 14 days after ischemia were
chosen to define the role of SLDS in microglial
polarization in the present work. Our data suggested
that SLDS treatment caused a reduction in M1 macro-
phage/microglia polarization and an increase in M2
macrophage/microglia polarization in both the cortex
and striatum of MCAQO mice compared to controls. In
addition, results from in vitro experiments were in
agreement with the above results. Taken together, the
findings of this study indicate a role for SLDS in driving
M2 polarization. Consistent with our in vivo findings, a
previous study reported that SLDS inhibited activation
of BV2, a murine microglia cell line [12]. In addition, an-
other study indicated that M1 microglia exhibited re-
duced phagocytosis and produced pro-inflammatory
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cytokines, while M2 microglia increased phagocytosis
and secreted anti-inflammatory mediators and neuro-
trophic factors [14, 29]. As has been documented, in-
flammation is considered to be a vital determinant of
outcome following cerebral ischemia injury, which de-
pends partly upon pro-inflammatory factors [29, 30].
Classically, three pro-inflammatory cytokines, IL-1p, IL-
6, and TNFa are associated with the inflammatory re-
sponse following ischemic stroke [31]. Previous studies
indicated that SLDS exhibited anti-inflammatory activ-
ities in stroke and other diseases [11, 32, 33]. Here, we
confirmed that SLDS inhibits secretion of the pro-
inflammatory cytokines in M1 microglia. In addition,
M1 microglia treated with SLDS showed increased
phagocytosis, similar to levels found in both M0 and M2

microglia, and thus may facilitate brain recovery after
stroke.

A previous study showed that SLDS modulated NF-kB
and MAPK signaling in LPS-induced BV2 microglial
cells [12]. The current results, combined with the fact
there are many similarities in microglial differentiation
and polarization between humans and rodents [34],
point to a potential role for SLDS in the treatment of
human patients following stroke, although further clin-
ical research would be needed to confirm SLDS as a
treatment option for stroke patients.

Oligodendrocytes and neurons are highly susceptible
to ischemic injury, and damage to these cells leads to
myelin loss, axonal injury, and neuronal death. Substan-
tial evidence shows that M2 macrophage/microglia drive
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oligodendrocyte differentiation during central nervous
system remyelination, which may promote neurologic
recovery [35]. It has been shown that SLDS attenuates
arthritis-induced and beta amyloid-induced cognitive
deficits [7, 36]. Indeed, our data showed that M1 micro-
glia treated with SLDS promoted oligodendrocyte differ-
entiation via a shift from the M1 to the M2 phenotype,
which suggest that SLDS may promote remyelination
following neurologic diseases. Previous studies showed
that SLDS protected neurons by inhibiting autophagy
[37], apoptosis [38] and oxidative stress [39]; which is in
agreement with our results whereby SLDS treatment im-
proved the survival of OGD-conditioned neurons cul-
tured with or without microglia.

Our study has several limitations. First, the effects of
SLDS on oligodendrocyte differentiation via microglial
polarization were limited to normal conditions, rather
than in OGD conditions. Moreover, it was not deter-
mined whether SLDS-mediated microglial polarization
reduced ischemia-induced loss of oligodendrocytes. Sec-
ond, we did not confirm whether SLDS promoted white
matter integrity and long-term functional recovery of
white matter after MCAO. Third, the underlying pro-
tective mechanism influencing the regulation of
microglial polarization induced by SLDS was not ex-
plored. The mechanisms of microglial polarization have
been investigated extensively [2], but there are no stud-
ies defining the role of SLDS on M1/M2 polarization,
and its role remains controversial [40]. Further investiga-
tion is needed in order to elucidate all of the aforemen-
tioned points.

Conclusions

This study indicates that SLDS modulates microglial
polarization and this may contribute to SLDS-induced
neuroprotection after MCAO. In addition, SLDS may
serve as a promising therapeutic agent to mitigate in-
flammation and promote functional recovery for stroke
and other neurological diseases.
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