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Abstract

Background: Gulf War illness (GWI) is an archetypal, medically unexplained, chronic condition characterised by persistent
sickness behaviour and neuroimmune and neuroinflammatory components. An estimated 25–32% of the over 900,000
veterans of the 1991 Gulf War fulfil the requirements of a GWI diagnosis. It has been hypothesised that the high physical
and psychological stress of combat may have increased vulnerability to irreversible acetylcholinesterase (AChE) inhibitors
leading to a priming of the neuroimmune system. A number of studies have linked high levels of psychophysiological
stress and toxicant exposures to epigenetic modifications that regulate gene expression. Recent research in a
mouse model of GWI has shown that pre-exposure with the stress hormone corticosterone (CORT) causes an
increase in expression of specific chemokines and cytokines in response to diisopropyl fluorophosphate (DFP), a
sarin surrogate and irreversible AChE inhibitor.

Methods: C57BL/6J mice were exposed to CORT for 4 days, and exposed to DFP on day 5, before sacrifice 6 h later.
The transcriptome was examined using RNA-seq, and the epigenome was examined using reduced representation
bisulfite sequencing and H3K27ac ChIP-seq.

Results: We show transcriptional, histone modification (H3K27ac) and DNA methylation changes in genes related to
the immune and neuronal system, potentially relevant to neuroinflammatory and cognitive symptoms of GWI. Further
evidence suggests altered proportions of myelinating oligodendrocytes in the frontal cortex, perhaps connected to
white matter deficits seen in GWI sufferers.

Conclusions: Our findings may reflect the early changes which occurred in GWI veterans, and we observe alterations
in several pathways altered in GWI sufferers. These close links to changes seen in veterans with GWI indicates that this
model reflects the environmental exposures related to GWI and may provide a model for biomarker development and
testing future treatments.
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Background
A coalition of 34 countries deployed approximately 956,600
troops during the 1990–1991 Gulf War [1], with the
majority, ~ 700,000, from the USA. An estimated 25–32%
of these veterans fulfil the requirements of a Gulf War ill-
ness (GWI) diagnosis [2]. GWI is an archetypal, medically
unexplained, chronic condition characterised by persistent
sickness behaviour, with neuroimmune and neuroinflam-
matory components.
Symptoms of GWI include fatigue, musculoskeletal

pain, cognitive dysfunction, chemical sensitivities, loss of
memory and sleep disruption, which can be charac-
terised as ‘sickness behaviour’ [3, 4]. ‘Sickness behaviour’
is normally a result of inflammatory response to illness
or injury, which usually resolves itself over time after the
initial insult is removed. Symptoms were reported within
6 months of the conflict [5–7].
Although the exact cause of GWI is still unknown, there

is a consensus that exposure to environmental toxins is the
most likely cause [8]. GWI symptoms are highly heteroge-
neous, and specific symptoms may be related to specific
experiences: for example, Gulf War veterans exposed to
nerve agents or oil well fires are at increased risk of brain
cancer compared to other Gulf War veterans [9].
A leading hypothesis for the cause of GWI is that the

high physical and psychological stress of combat interacted
with exposure to acetylcholinesterase (AChE) inhibitors [1,
4, 10–19]. Military personnel were exposed to a number of
AChE inhibitors [1, 20], including pyridostigmine bromide
(PB), a reversible AChE inhibitor, as a prophylactic against
nerve agents; sarin, soman, and related nerve agents,
irreversible AChE inhibitors, which combatants were
inadvertently exposed to after demolition of Iraqi supply
depots, such as at Khamisiyah; organophosphate pesticides,
irreversible AChE inhibitors, which were widely used to
prevent pest-borne diseases and irritation [20]; permethrin,
an insecticide which may inhibit AChE [10, 21]; and DEET,
an insect repellent and a weak AChE inhibitor which may
enhance the activity of other AChE inhibitors [22]. For
example, an estimated 95,000 deployed personnel were
exposed to the plume from the Khamisiyah demolition,
and approximately 250,000 may have been exposed to low
levels of nerve agents during aerial bombardments earlier
in the conflict [23]. Further, the number of nerve agent
alarms heard is correlated with risk for GWI [24].
Accumulating research has indicated that deleterious
health effects of exposures to psychophysiological stress
[25, 26] and environmental toxicants [27, 28] involve epi-
genetic modifications that affect transcriptional regulation.
The overall objective of this study was to examine

genome-wide epigenetic transcriptional modifications in
the brain using an established mouse model of GWI [4, 12,
15, 16]. Our previous research demonstrates that effects on
neuroinflammatory pathways occur shortly after initial

exposures. For example, pre-exposure with the stress
hormone corticosterone (CORT) causes an increase in
expression of specific chemokines and cytokines in
response to diisopropyl fluorophosphate (DFP) [4], an
irreversible acetylcholinesterase inhibitor [29] used here as
a sarin surrogate. This corresponds well with the work in
GWI study participants [30–37], which have shown im-
munological abnormalities, and a recent paper [38], which
has shown specific immune-related biomarkers for GWI
veterans. We hypothesized that epigenetic and transcrip-
tomic changes upon initial exposures would identify gene
pathways linked to poor health outcomes in GWI.

Methods
Animals
Adult male C57Bl/6J mice were purchased from Jackson
Laboratory (Bar Harbor, ME, USA). A total of 79 animals
were used for the analyses presented here. All procedures
were performed under protocols approved by the Institu-
tional Animal Care and Use Committee of the Centers for
Disease Control and Prevention, National Institute for
Occupational Safety and Health and the US Army Medical
Research and Materiel Command Animal Care and Use
Review Office. The animal facility was certified by
AAALAC International. Upon receipt, the mice were
housed individually in a temperature (21 ± 1 °C) and
humidity-controlled (50 ± 10%) colony room maintained
under filtered positive-pressure ventilation on a 12-h light/
12-h dark cycle beginning at 06:00 h. The plastic tub cages
were 46 × 25 × 15 cm; cage bedding consisted of heat-
treated pine shavings spread at a depth of approximately
4 cm. Teklad 7913 irradiated NIH-31 modified 6% rodent
chow, and water were available ad libitum.

Dosing
The dosing paradigm is presented in Fig. 1. Mice were
given CORT in the drinking water (200 mg/L in 0.6%
EtOH) for 4 days. This CORT regimen is known to be
immunosuppressive as evidenced by decreased thymus
weight [39]; thymus and spleen weights were confirmed
to be decreased (> 20%) in similarly exposed animals [4,
15]. On day 5, mice were given a single intraperitoneal
injection of either DFP (4 mg/kg) or saline (0.9%).
Thus, there were four exposure groups: (1) saline: vehicle

for 4 days, then saline injection on day 5; (2) CORT: CORT
for 4 days with a saline injection on day 5;( 3) DFP: vehicle
for 4 days with DFP injection on day 5; and (4) CORT +
DFP: CORT for 4 days with a DFP injection on day 5.

Brain dissection and tissue preparation
Mice were killed by decapitation and the brains rapidly
removed. The frontal cortex, consisting of the anterior
portion of the cortex [4], and total hippocampus were dis-
sected free-hand on a thermoelectric cold platform (Model
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TCP-2; Aldrich Chemical Co., Milwaukee, WI, USA) and
immediately frozen at − 80 °C.

Differential gene expression
Frontal cortex mRNA-seq data was generated on the
Illumina HiSeq 2000 by Q Squared Solutions Expression
Analysis LLC (Morrisville, NC, USA), paired-end, with a
read length of 100 bp (four samples of saline, CORT and
DFP, five samples of CORT + DFP). Hippocampus mRNA-
seq data was generated by Sickkids (Toronto, Ontario). Se-
quencing was carried out on the HiSeq 2500, paired-end,
with a read length of 125 bp (n = 4 for all groups).
Fastq files were trimmed to remove adaptors and low--

quality reads (q < 30) using TrimGalore version 0.4.1 [40],
around Cutadapt [41] (version 1.9.1). The pre-processed
reads were examined using FastQC [42].
Trimmed files were aligned with the STAR aligner [43]

(version 2.5.2a) in a two-pass mode. The GENCODE
GRCm38.p4 assembly (mm10) and annotations were
obtained from the GENCODE website [44, 45] and used
throughout. For the frontal cortex, there was an average of
33,547,161 reads per sample and 98.2% average mapped
reads. For the hippocampus, there was an average of
35,429,647 reads per sample and 98.2% average mapped
reads.
The resultant Bam files were analysed using the Genomi-

cAlignments [46] and DEseq2 [47] (version 1.10.1) R
packages, using the DEseq2 standard pipeline. A recent
comparison study has identified this as an appropriate tool
to use with replicates and when relatively large biological
effects are expected [48]. Briefly, DESeq2 first fits a
generalized linear model for each gene, with read counts
modelled as a negative binomial distribution. An empirical
Bayes approach is used for shrinkage of dispersion estima-
tion, and the Wald test is used for significance testing,
which is then adjusted for multiple corrections using the
Benjamini and Hochberg method [49].
Samples were checked for similarity using Poisson

dissimilarity matrix [50] with the R package PoiClaClu
1.0.2 and visualised with pheatmap 1.0.8.

Cell proportions
The R Bioconductor package DeconRNASeq [51] was
used to estimate the proportion of different cell types
within the sample from the RNA-seq data. Data enriched

for specific CNS cell types were downloaded from the
Gene Expression Omnibus (GEO) [52, 53], Series
GSE52564, which contains data from the Mus musculus
cerebral cortex [54], to use as a reference of cell-type-
specific gene expression. This RNA-seq data was trimmed
and aligned and gene expression quantified as above. An
expression signature for each of six cell types (astrocytes,
neurons, oligodendrocyte precursor cells (OPC), myelinat-
ing oligodendrocytes (MO), microglia and endothelial
cells) was obtained by finding those genes with a five-fold
difference in expression in one cell type, compared to each
of the others.
Using these expression signatures, the proportion of

astrocytes, neurons, oligodendrocyte precursor cells
(OPC), myelinating oligodendrocytes (MO), microglia and
endothelial cells were estimated for each of the 17 cortex
samples and 16 hippocampus samples using DeconRNA-
Seq [51]. DeconRNASeq is based on a linear model of a
sum of pure tissue or cell-type-specific reads of all cell
types, weighted by the respective cell-type proportions. To
estimate the proportions of known tissue types in a sample,
DeconRNASeq solves a non-negative least-squares
constraint problem with quadratic programming to obtain
the globally optimal solution for estimated fractions. It is
accurate down to cell types making up only ~ 2% of the
total cell populations [51].

DNA methylation modifications
DNA was extracted using the E.Z.N.A Tissue DNA Kit
(VWR-Omega Bio-Tek). Bisulfite conversion was carried
out using the Qiagen Epitect Fast Bisulfite Conversion Kit,
and library preparation was performed using the Ovation
NuGen RRBS Kit. Reduced representation bisulfite sequen-
cing (RRBS) was carried out by the Princess Margaret
Genomics Centre, part of the University Health Network,
Toronto, on a NextSeq 500, using a single end, 70 base
read length and multiplexed at 9–10 samples per flowcell.
Samples for the cortex were 6 saline, 6 CORT, 6 DFP and
8 CORT + DFP, and for the hippocampus, 4 saline, 5
CORT, 3 DFP and 8 CORT + DFP.
RRBS fastq files were trimmed to remove adaptors and

low-quality reads (q < 30) using TrimGalore version 0.4.1
[40] around Cutadapt [41] (version 1.9.1). Trimmed files
were then aligned to the GENCODE GRCm38.p4 (mm10)
assembly, using Bismark (v0.16.0) [55] wrapped around

Fig. 1 Overview of exposure timeline. CORT + DFP exposed animals were given CORT in the drinking water for 4 days and injected with DFP on
the 5th day, before being culled 6 h later
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bowtie2 (version 2.2.6) [56]. For the frontal cortex, the
average reads per sample was 34,962,881 with 57% map-
ping efficiency, and for the hippocampus, the average reads
per sample was 37,512,807, 63.6% mapping efficiency.
The resultant bam files were analysed with MethPipe

(3.4.2) [57, 58], using the suggested methods. The bisulfite
conversion rate was > 98.9 for all samples. The methylation
level for every cytosine site at single-base resolution is
estimated as a probability based on the ratio of methylated
to total reads mapped to that loci. Differential methylation
was calculated by beta-binomial regression, with all batches
and exposures included as factors, and CORT + DFP
exposure set as the test factor. We examined both differen-
tially methylated cytosines (DMCs) and differentially
methylated regions (DMRs).

Chromatin accessibility
H3K27ac is a mark of active enhancers, strongly suggesting
that genes with differential enrichment of H3K27ac will be
differentially expressed [59, 60]. Native chromatin immu-
noprecipitation sequencing (ChIP-seq) using an MNase
digestion and alignment to the mm10 genome using
Burrows–Wheeler Alignment was carried out by the
Genome Sciences Centre, BC Cancer Agency. Samples
were sequenced single end, 75 base read length on a Hiseq
2500 platform. The average read per sample was
131,727,189 with 98.9% average mapped reads. There were
four samples per group, with each sample having immuno-
precipitated and input DNA sequenced.
PePr (Python) and diffReps (Perl) packages were used

for ChIP-seq analysis, as a recent paper by Steinhauser
et al. [61] suggested that both are good tools when
biological replicates are available. The results from each
were compared and analysed to provide a conservative
list of sites showing differential enrichment.
PePr (1.1.14) [62] was run according to the authors’

suggested pipeline. PePr used a sliding window
approach, shifting all reads toward their 3′ direction by
half of the empirically estimated DNA fragment length
and estimating window width based on the average
width of the top pre-candidate peaks. The genome was
then divided into consecutive widths that overlap by
50%, and the number of reads within each window was
counted. This read count was then normalised based on
total read count among ChIP and control sample and
the relative average peak heights among ChIP samples.
Read counts were modeled across replicates and
between groups with a local negative binomial model.
Genomic regions with less variable read counts across
replicates were ranked more favourably than regions
with greater variability, thus prioritizing consistently
enriched regions [62]. Narrow peaks were assumed, in
line with previous literature on H3K27ac (e.g. [63]).

diffReps (1.55.6) [64] was run according to the authors’
suggested pipeline. Bam files first had to be converted to
bed files, using Bedtools (v2.26.0) [65]. Unlike PePr,
diffReps used a set window size of 1000 bp for narrow
peaks with a step size of 100 bp. The genome was pre--
screened to remove regions with low read count to im-
prove power and decrease computational time.
Normalisation was carried out using the read count for a
particular window over read count across all samples. An
exact negative binomial test was used for differential ana-
lysis, which used biological replicates. p values were ad-
justed by the Benjamini-Hochberg method [49]. Peaks
were annotated to genes using region_analysis [64].

Identifying genes unique to the CORT + DFP exposure
For several computational tools, e.g. DESeq2, PePr and dif-
fReps, only direct comparisons between any two exposure
groups (1v1) could be made, rather than the multifactorial
comparisons available for differential DNA methylation
modifications with MethPipe (RRBS). Therefore, in these
cases, a series of 1v1 comparisons were made to conserva-
tively estimate which genes were differentially expressed
(RNA-seq) or enriched for H3K27ac (ChIP-seq). To use
the RNA-seq data as an example, the 1v1 comparisons
were carried out as:

1. Genes differentially expressed between CORT and
CORT + DFP and then include only the subset of
genes which were not differentially expressed
between saline and DFP.
(a)Changes between CORT and CORT + DFP may

be due to DFP or the combination of CORT +
DFP; removing those differentially expressed
between saline and DFP removes those which are
due to DFP alone

2. Genes differentially expressed between DFP and
CORT + DFP and then include only the subset of
genes which were not differentially expressed
between saline and CORT.
(a)Changes between DFP and CORT + DFP may be

due to CORT or the combination of CORT +
DFP; removing those differentially expressed
between saline and CORT removes those which
are due to CORT alone

3. Intersect of the genes which appear in both list 1
and list 2
(a)Both should be genes differentially expressed due

to the combined CORT + DFP exposure
4. Those genes which appear in list 3 and are

differentially expressed between saline and CORT +
DFP
(a)Final check, as they should be different in the

CORT + DFP exposure vs saline
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This provides a list of changes unique to the combined
CORT + DFP exposure, which are not seen in either
CORT or DFP exposure alone. Note that this is conserva-
tive, as genes with low but significant differential expres-
sion in either CORT or DFP alone, but a larger change in
the combined CORT + DFP exposure, will be lost.

Enrichment analysis
For the sets of significant genes identified by RNA-seq,
RRBS and ChIP-seq, as well as those genes that were
significant in two or more of these analyses, gene set
enrichment analyses were carried out. The R package
clusterProfiler 3.4.4 [66] was used for Gene Ontology
Biological Process (GO BP) [67, 68] and KEGG pathway
[69, 70] enrichment analysis, with p and q value cutoffs of
≤ 0.05. Reactome pathway analyses were carried out using
the ReactomePA 1.20.2 R package [71], with a p value
cutoff of ≤ 0.05. All three packages reference the latest ver-
sions of their respective databases. These significantly
enriched annotations were then visualised with the ‘enrich-
Map’ function of DOSE 3.2.0 R package [72], with parame-
ters altered to aid legibility with different numbers of
enriched annotations.

Overlap between gene sets
The overlap between gene sets was visualised using the
UpSetR R package [73]. This provides similar informa-
tion to a Venn diagram, but in a way which makes pro-
portions clear. Significance of overlap was determined
by permutation analysis: random gene sets of the same
size as our observed gene sets were taken from the same
annotations, and the overlap between the two random
gene sets was recorded. This was repeated 1,000,000
times, and the number of occurrences of an overlap
equal to or larger than our observed overlap was divided
by 1,000,000 to give an empirical p value.

Results
Differential gene expression
Samples were clustered using a Poisson dissimilarity
matrix to determine if samples from the same exposure
group showed similar expression profiles. As can be seen
in Additional file 1: Figure S1 and Additional file 2:
Figure S2, the samples largely clustered by exposure
group. The only sample that appeared to be out of place
was a CORT + DFP sample in the frontal cortex that
appeared intermediate between CORT and DFP alone.
In the frontal cortex, the RNA-seq analysis identified 206

GENCODE genes (204 with unique entrez IDs) that were
uniquely differentially expressed in the CORT + DFP
exposure group compared to all other groups
(Additional file 3: Table S1). Enrichment analysis showed
12 enriched KEGG pathways (Additional file 4: Figure S3;
Additional file 5: Table S2) and 24 enriched GO BP

annotations (Fig. 2; Additional file 6: Table S3). These an-
notations formed several broad groups related to immune
response, including chemokine production, oxidative stress
and steroid biosynthesis.
In the hippocampus, 667 GENCODE genes (637 with

unique entrez IDs) were uniquely differentially expressed in
the CORT + DFP exposure group (Additional file 7: Table
S4) compared to all other groups. Enrichment analysis
showed 19 enriched KEGG pathways (Additional file 8:
Figure S4, Additional file 9: Table S5) and 294 enriched GO
BP annotations (Fig. 3, Additional file 10: Table S6). Similar
to the frontal cortex, these annotations were grouped into
several clusters (Fig. 3), including immune-related annota-
tions (e.g. I-kappaB and NF-kappaB signalling), annotations
related to nervous system differentiation, and development.
The two analyses revealed two overlapping KEGG

annotations: cytokine–cytokine receptor interaction and
rheumatoid arthritis and nine GO BP annotations
(Additional file 11: Table S7). There are 32 genes differen-
tially expressed under CORT + DFP priming and exposure
found in both the cortex and hippocampus RNA-seq data
(Additional file 12: Figure S5; Additional file 13: Table S8).
Enrichment analysis of these 32 genes showed 31

enriched KEGG pathways, including annotations such as
rheumatoid arthritis and cytokine–cytokine receptor
interaction (Additional file 14: Table S9) and 333 GO BP
annotations, including positive regulation of steroid
biosynthetic process, positive regulation of chemokine
production and regulation of I-kappaB kinase/NF-kap-
paB signaling (Additional file 15: Table S10).

DNA methylation modifications
We next examined DNA methylation in the frontal cortex
and hippocampus using RRBS to identify DNA methylation
modifications associated with the exposures. The frontal
cortex RRBS data showed 297 differentially methylated
cytosines corresponding to 60 differentially methylated
regions. Once these regions were annotated to genes (53
entrez IDs; 60 GENCODE; Additional file 16: Table S11),
there was no significant enrichment for any KEGG or GO
BP annotations. The hippocampus RRBS data showed 926
differentially methylated cytosines corresponding to 192
differentially methylated regions and annotated to 98 GEN-
CODE genes (95 unique entrez IDs; Additional file 17:
Table S12). Enrichment analysis was carried out for KEGG
pathways or GO BP annotations, showing three significant
GO BP enrichments: norepinephrine metabolic process (n
= 3, p = 0.048, q = 0.045), cilium morphogenesis (n = 7, p
= .048, q = 0.045) and cilium organization (n = 7, p = 0.049,
q = 0.046). It is interesting to note in relation to the
acetylcholinesterase action of DFP that a CpG site within
the acetylcholinesterase gene (Ache) was significantly differ-
entially methylated in the hippocampus (chr5: 137291317;
adjp = 0.0296).
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Given our hypothesis that DNA methylation modifica-
tions contribute to long-term changes in gene expression
as a function of GWI exposures, this apparent lack of large,
coordinated changes in DNA methylation was unexpected
but could have at least two explanations. First, DNA
methylation is thought to be relatively stable, and therefore,
there may not have been an opportunity for substantial
methylation changes to have occurred only 6 h after DFP
exposure. A second possibility is that any changes were
confounded by the number of different cell types within
the brain. Consequently, methylation changes from any
single cell type, especially cells making a small proportion
of the tissue, may be lost in the ‘noise’. To investigate this
second possibility, we used RNA-seq data to estimate the
proportions of cells in our two tissues.

Cell proportions
The estimated average proportion of each of our five cell
types of interest for each exposure group is shown in Fig. 4.

In the rat cortex, neurons make up ~ 40% of cells [74] and
~ 44% of whole mouse brain [75]. In the human and
mouse cortex, microglia make up ~ 5% of cells [76, 77].
These reports are in line with our estimates of ~ 40–50%
of cells being neurons and ~ 4–6% of cells being microglia.
This, therefore, may indicate that enriching for specific
cell types, such as microglia, may enhance our ability to
detect cell-type-specific methylation modifications due to
these exposures. For example, currently only ~ 1:25 RRBS
counts will come from microglia.
An interesting incidental finding in the cortex was that

CORT exposure, with or without co-exposure with DFP,
was associated with an increase in the proportion of
neurons and a decrease in the proportion of myelinating
oligodendrocytes (MOs) in the frontal cortex (Fig. 4b). As
we would not expect neurogenesis to occur in the frontal
cortex, this suggests that the increase in the proportion of
neurons is driven by a decrease in the absolute number of
myelinating oligodendrocytes. A reduced number of

Fig. 2 Frontal cortex RNA-seq significantly enriched gene ontology biological process annotations. Gene ontology biological process annotations significantly
enriched in genes which were differentially expressed in the frontal cortex of CORT + DFP exposed mice, with groups of similar annotations highlighted
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oligodendrocytes would be in line with previous work in
rats where CORT was shown to reduce the proliferation of
oligodendrocytes [78, 79]. We emphasize that these are
estimated cell proportions; however, the results indicate
that stereology to confirm this will be important in future
studies.

Chromatin accessibility
H3K27ac is a mark of regions of the genome that are
being actively transcribed [59, 60]. Our RNA-seq data
showed enrichment for genes involved in histone modifi-
cation, suggesting that changes in chromatin accessibility
may play a role in the response to the exposures.
H3K27ac ChIP-seq provides an additional layer of epigen-
etic regulation, which may respond more quickly than
methylation. It also allows an indirect examination of
current transcription in the largest cell population, as
H3K27ac is found at actively transcribed regions. In ChIP-
seq (and RRBS), every locus gives a single signal: either it
is enriched for H3K27ac or it is not (or is methylation or
is not). However, in RNA-seq, every locus could produce
none, one or hundreds of RNA molecules, meaning that a
small cell population with large changes in gene expres-
sion could mask the signal from a large population with
small changes in gene expression. Therefore, using ChIP--
seq will allow indirect examination of potential gene ex-
pression changes in neurons.

PePr identified 3294 GENCODE genes (3023 entrez IDs;
Additional file 18: Table S13) with differential enrichment of
H3K27ac, whereas diffReps identified 1518 GENCODE
genes (1465 entrez IDs; Additional file 19: Table S14). The
overlap between these two analyses was 563 GENCODE
genes (557 entrez IDs; Additional file 20: Table S15) which
were used for further analysis. However, gene annotation en-
richment for each of the two gene sets (PePr and diffReps)
demonstrated a large overlap in enriched annotations,
suggesting that they are both finding changes in similar
pathways but that the individual pathway members they find
are different (85% of diffRep and 69% of PePr KEGG
pathways (74) are found in both; 68% of diffReps and 54% of
PePr GO BP annotations (521) are found in both).
The enrichment data indicated a clear bias towards

neuronal-linked annotations, including neuronal morph-
ology and synapse-related annotations (Additional file 21:
Figure S6 and Fig. 5; Additional file 22: Table S16 and
Additional file 23: Table S17). Of particular interest are the
observed enrichment of GO BP annotations ‘cognition’ and
‘learning or memory’, both of which are observed to be dis-
rupted in GWI study participants, ‘Circadian entrainment’
which may relate to observed sleep disruption, and ‘re-
sponse to steroid hormone’, which likely relates to CORT
(a steroid hormone involved in the response to stress).
These findings demonstrate that there are potential

changes in neuronal-related gene expression in the frontal
cortex, as was also seen in the hippocampus RNA-seq,

Fig. 3 Hippocampus RNA-seq significantly enriched gene ontology biological process annotations. Top 50 gene ontology biological process annotations
significantly enriched in genes that were differentially expressed in the hippocampus of CORT + DFP exposed mice, with groups of similar
annotations highlighted
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highlighted by the fact that 33 genes were found in both
the ChIP-seq frontal cortex analysis and the hippocampus
RNA-seq analysis.

Overlap between genes found in different analyses
As shown in Fig. 6, there is not a large overlap in genes
found between any of our analyses. However, this

disparity may be partly explained from the aforemen-
tioned difference between mRNA and DNA, whereby
one locus can produce many mRNA molecules, but
DNA either has a modification or does not. This is
reflected by the fact that the largest percentage overlap
is between those genes found with RRBS and ChIP-seq,
as these are both examining DNA modifications: 12% of

Fig. 4 Estimated cell proportions from RNA-seq data. a Hippocampus and b frontal cortex cell proportions, estimated from RNA-seq data. Proportion of
five cell types of interest in each exposure group, showing significant differences due to exposure. OPC oligodendrocyte precursor cells, MO myelinating
oligodendrocytes. *p< 0.05, **p < 0.01, ***p < 0.005, ****p < 0.001
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Fig. 5 Frontal cortex H3K27ac ChIP-seq significantly enriched gene ontology biological process annotations. Top 50 GO BP annotations significantly
enriched for differential enrichment of H3K27ac with CORT + DFP exposure

Fig. 6 Annotated GENCODE genes found in each of our differential analyses. UpSetR diagram [73] of annotated GENCODE genes found in each
of our differential analyses: frontal cortex RRBS (FC RRBS), frontal cortex H3K27ac ChIP-seq (FC ChIP), hippocampus RNA-seq (Hipp RNA), frontal
cortex RNA-seq (FC RNA) and hippocampus RRBS (Hipp RRBS)
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genes found in frontal cortex RRBS, and 16% in hippo-
campus RRBS, are also found in the frontal cortex ChIP-
seq, whereas this is only 1% and 5% for frontal cortex
and hippocampus RNA-seq respectively. Similarly, 15.5%
of genes found in the frontal cortex RNA-seq are also
found in the hippocampus RNA-seq.
Because of the very few annotations enriched in genes

differentially methylated in either of our tissues, we see
very little overlap between annotations in methylation
and ChIP-seq. However, we do see annotations and
pathways enriched in both our ChIP-seq and RNA-seq
data (Additional file 24: Figure S7 and Additional file 25:
Figure S8).

Discussion
To our knowledge, this is the first transcriptome- and
epigenome-wide study to examine evidence for transcrip-
tional, chromatin and DNA methylation modifications in
a model of GWI. A previous study [12] examined 84
microRNAs (MiRNAs) and global but not gene-specific
changes in DNA methylation and hydroxymethylation in
rats subjected to restraint stress and a protocol of PB,
DEET and permethrin to simulate troops’ chemical
exposures. This study found differential expression of two
miRNAs and in increase in global methylation in the
hippocampus. Although this was an important step
forward, our study was able to examine the whole
transcriptome, a histone modification associated with
chromatin accessibility and DNA methylation at a
genome-wide, single cytosine level.
Overall, our results represent several interesting findings.

First, as expected, there was a large change in the expres-
sion of immune-related genes in both the frontal cortex
and hippocampus, building upon previous findings in this
model [4]. Second, many genes associated with synaptic
function are changed in their activity, as shown by our
frontal cortex H3K27ac ChIP-seq data and hippocampus
RNA-seq. These changes in gene expression seem to be
subtler than those found for immune-related genes (lower
expression), but differential expression of genes related to
synaptic function in mice is associated with impaired mem-
ory and cognition, consistent with impairments reported by
GWI suffers. Interestingly, long-term potentiation- and
depression-related genes are enriched in the ChIP-seq data.
Finally, we see evidence of not just a change in gene activity
but of a suggested change in cell proportions. This is in line
with previous work with CORT [78, 79].
It is possible that microglia are responsible for this large

change in immune-related gene expression, but we ac-
knowledge that other cells, such as astrocytes, also express
cytokines and chemokines (e.g. Kim et al. [80]). However,
this is usually at a much lower level than that in microglia:
in genes significantly differentially expressed uniquely with
CORT + DFP in both the frontal cortex and hippocampus

the six genes with the largest fold change are expressed in
microglia (Additional file 26: Table S18). Therefore, al-
though other cell types may be contributing to cytokine
and chemokine expression, it is highly unlikely that micro-
glia are not the cell type driving this change. Similarly, we
attribute many of the transmembrane transporter-related
annotations we see in the frontal cortex ChIP-seq data and
hippocampus RNA-seq data to neurons; however, many of
these transporters are also expressed in glial cells [54]. For
this reason, future work should be carried out to isolate or
enrich specific cell populations, allowing these predictions
to be tested.
Our findings of altered cholinergic neurotransmitter ex-

pression after DFP exposure are in line with previous stud-
ies of low dose sarin exposure in rats [81, 82]. Specifically,
changes in M1 and M3 acetylcholine receptor expression
were seen in the frontal cortex in a dose-dependent
manner when the animals were maintained under hyper-
thermic conditions (i.e. a stressor; Henderson et al. [81,
82]). In relation to this, we see choline-related annotations
at all levels we analysed: our H3K27ac ChIP-seq analyses
show changes in cholinergic synapse-related genes and
differential binding related to Chrm2, the gene coding for
M2; the KEGG annotation, ‘choline metabolism in cancer’,
is enriched in our hippocampus RNA-seq genes and our
H3K27ac ChIP-seq genes; finally, in our hippocampus
RRBS, we see altered methylation of a CpG site within
Ache, the gene coding for acetylcholinesterase.
These findings not only link to rat models but also to

GWI subjects, where differences in prefrontal cortex work-
ing memory have been previously found and have been
attributed to the cholinergic system [83]. This again
connects with our findings from ChIP-seq where both
‘learning and memory’ and ‘cholinergic synapse’ annota-
tions are significantly enriched. Therefore, pre-exposure
with CORT may not only be potentiating the immune
response to AchE inhibitors but also causing longer term
changes to the cholinergic signalling system in line with
previous animal models. Human studies have been more
varied, with evidence both for [84, 85] and against [86]
long-term changes in the cholinergic system, perhaps re-
lated to the heterogeneity of symptoms or to differences in
tissues being examined. Recent work by Locker et al. [15]
has shown that increased neuroinflammatory response in
this model is not directly related to AChE inhibition but
instead may result from changes in other aspects of signal-
ing (e.g. epigenetic alterations in gene expression).
In relation to the potential reduction in myelinating

oligodendrocytes in the cortex, this may have an effect on
some of the phenotypes seen in GWI: reduced oligoden-
drocytes have been linked to major depressive disorder
(MDD), functional consequences in neurons and mood-re-
lated symptoms in rats [87]. As this change in cell propor-
tion would affect myelinating cells, it could also contribute
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to the reported alterations in white matter in GWI veterans
[20, 88–90].
Our RNA-seq data suggests both immune dysfunction

and oxidative stress. Previous reports have shown immune
dysfunction and oxidative stress in other disorders with
similar phenotypes to GWI such as myalgic encephalomy-
elitis/chronic fatigue syndrome (ME/CFS) [91]. However,
whether the immune response is causing oxidative stress
or oxidative stress is causing an immune response is less
clear. This is directly relevant, as oxidative stress contrib-
utes to the toxicity of AchE inhibitors [29] and has been
suggested as a cause of GWI [1, 92].
One of the six genes (Additional file 26: Table S18) we

find strongly differentially expressed in both the frontal
cortex and hippocampus, Tlr2, has previously been linked
to sickness behaviour when expressed in hypothalamic
microglia [93] and was reported to show increased expres-
sion in a model of GWI [94]. Therefore, it is of great inter-
est in terms of the sickness-like behaviour that defines
GWI. TLR activation by immune insult appears to increase
Tlr2 expression [95]. We can speculate that the change in
Tlr2 expression we see is upstream of the change in Il1b
and TNF, as specific activation of TLR2 increases their
expression [93, 96]. Further, TLR stimulation increases
SLC15A3 expression in dendritic cells, which in turn regu-
lates TNF and IL-1β expression [97]. At the very least,
these six, consistently, strongly upregulated genes make up
a robust core of immune- and microglia-related genes for
further investigation (Additional file 26: Table S18).
Our results correspond very well with those of Broderick

et al. [98] in blood samples from GWI study participants,
who found changes to NF-KappaB-related genes (which
are enriched in our hippocampus RNA-seq data and in the
genes significant in both the cortex and hippocampus
RNA-seq), and in pathways under the broad theme of
neuronal development and migration, which we see in our
hippocampus RNA-seq and our cortex ChIP-seq. They also
saw ligand–receptor interactions supporting neurotrans-
mission, which again we see strongly in our cortex ChIP--
seq data. Further, our KEGG pathway analysis of the
transcriptomics data highlighted rheumatoid arthritis-
related gene enrichment. Interestingly, a study in veterans
with GWI also highlighted the possibility of medication
used to treat rheumatoid arthritis also being used to treat
GWI [99]. The same study identified the TNF-alpha path-
way (which we see in our transcriptomics) and the estro-
gen pathway (which we saw in our ChIP-seq) as potential
drug targets [99]. Therefore, data from our model corre-
sponds to data identified from veterans with GWI and
could be used as a model to test these compounds as
potential therapeutics.
A recent paper described eight potential blood bio-

markers for GWI, the strongest being a 9.27-fold increase
in CaMKII protein in the blood of these veterans [100]. In

our study, Camk2b was found to be differentially methyl-
ated in the hippocampus and have differential H3K27ac in
the cortex.
Further linking our study with human data was the find-

ing that plasma CRP levels are increased in the blood of
GWI veterans [38]. CRP is often used as a biomarker of
IL-6-mediated inflammation [38, 101], and IL-6 related
annotations were enriched in the genes differentially
expressed in both the cortex and hippocampus
(Additional file 15: Table S10). This annotation was due to
four genes, Il1b, Tlr2, Il1a and Tnf, four of our six most
strongly and consistently differentially expressed genes.
We see minimal overlap in genes with significant differ-

ential methylation between the hippocampus and frontal
cortex (two genes, Bcar3 and Tmem242). This is likely due,
at least partly, to the two factors outlined above: cellular
heterozygosity and a short time point after treatment. Of
the two consistent genes, Bcar3 is involved in cell prolifera-
tion, which when overexpressed in breast cancer conveys
estrogen resistance, and Tmem242 is a transmembrane
protein with very little current annotation. We cannot
detect any coordinated methylation changes (denoted by
enriched annotations in our significant genes) in the frontal
cortex and very few in the hippocampus. As mentioned
above, we detect differential methylation of one CpG site
within Ache, the gene coding for acetylcholinesterase. A
number of the genes found to be differentially methylated
can be linked to GWI. Examples include Lims1, which is
known to be regulated by TNF and is involved in cell
growth and survival [102]; Sesn1, Aplnr, Pxn and Actn1,
which have been linked to ME/CFS [103, 104]; Col5a3,
which was identified in a rat model of GWI in the hippo-
campus [12]; and Slc1a2, which has been linked to ALS, a
disorder GW veterans are at increased risk of [105, 106].
This may indicate that networks of genes linked to GWI
are only just beginning to be methylated, or that different
groups of genes are methylated in different cell types.
However, until these coordinated networks are elucidated,
investigation of individual genes could lead to spurious
associations.

Conclusions
We are able to show a range of changes in the transcrip-
tome of this well-established mouse model, many of which
reflect gene expression seen in veterans with GWI. Further,
we see alteration in H3K27ac, showing potential chromatin
configuration changes, which could lead to epigenetic ef-
fects with long-lasting implications. We also find differences
in DNA methylation, although these are less easily interpret-
able than the transcriptome and H3K27ac changes.
Additional research is needed to assess whether effects

of these epigenetic and transcriptional modifications on
long-term health outcomes are cumulative and/or are
potentiated by later exposures (e.g. infection). Notably,
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however, our findings reveal gene pathways known to be
involved in long-term adverse health effects in GWI
veterans. These results suggest that epigenetic and
transcriptional regulation during the initial exposure
period likely contribute to pathological outcomes in
GWI. It would be important to examine these modifica-
tions in peripheral tissues from GWI veterans to ascer-
tain whether biomarkers could be developed to predict
future health outcomes.
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Additional file 19: Table S14. Genes identified by diffReps as having
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Additional file 20: Table S15. Genes identified by both PePr and diffReps
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Additional file 22: Table S16. Gene Ontology (GO) Biological Process
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Additional file 24: Figure S7. Comparison of significantly enriched gene
ontology biological process annotations in each of our analyses. UpSetR
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enriched in genes significant in each of our differential analyses: frontal cortex
RRBS (FC RRBS), frontal cortex H3K27ac ChIP-seq (FC ChIP), hippocampus
RNA-seq (Hipp RNA), frontal cortex RNA-seq (FC RNA) and hippocampus RRBS
(Hipp RRBS). (CSV 79 kb)

Additional file 25: Figure S8. Comparison of significantly enriched
KEGG pathway annotations in each of our analyses. UpSetR [73] diagram
of KEGG pathways enriched in genes significant in each of our differential
analyses: frontal cortex RRBS (FC RRBS), frontal cortex H3K27ac ChIP-seq
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Additional file 26: Table S18. Genes which are significantly differentially
expressed uniquely in CORT + DFP and have a greater than 0.75-fold
change in expression between saline and CORT + DFP in both frontal
cortex and hippocampus. All six show an increase in expression. (CSV 3 kb)
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