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Abstract

its relationship with Hunt-Hess grades.

injury and prognosis.

Background: Peroxiredoxin (Prx) protein family have been reported as important damage-associated molecular
patterns (DAMPs) in ischemic stroke. Since peroxiredoxin 2 (Prx2) is the third most abundant protein in erythrocytes
and the second most protein in the cerebrospinal fluid in traumatic brain injury and subarachnoid hemorrhage
(SAH) patients, we assessed the role of extracellular Prx2 in the context of SAH.

Methods: We introduced a co-culture system of primary neurons and microglia. Prx2 was added to culture medium
with oxyhemoglobin (OxyHb) to mimic SAH in vitro. Neuronal cell viability was assessed by lactate dehydrogenase
(LDH) assay, and neuronal apoptosis was determined by TUNEL staining. Inflammatory factors in culture medium were
measured by ELISA, and their mRNA levels in microglia were determined by qPCR. Toll-like receptor 4 knockout
(TLR4-KO) mice were used to provide TLR4-KO microglia; ST-2825 was used to inhibit MyD88, and pyrrolidine
dithiocarbamate (PDTC) was used to inhibit NF-kB. Related cellular signals were analyzed by Western blot.
Furthermore, we detected the level of Prx2 in aneurysmal SAH patients’ cerebrospinal fluids (CSF) and compared

Results: Prx2 interacted with TLR4 on microglia after SAH and then activated microglia through TLR4/MyD88/
NF-kB signaling pathway. Pro-inflammatory factors were expressed and released, eventually caused neuronal
apoptosis. The levels of Prx2 in SAH patients positively correlated with Hunt-Hess grades.

Conclusions: Extracellular Prx2 in CSF after SAH is a DAMP which resulted in microglial activation via TLR4/
MyD88/NF-kB pathway and then neuronal apoptosis. Prx2 in patients’ CSF may be a potential indicator of brain
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Background

Emerging studies have shown that peroxiredoxin family
plays a dual role in many diseases [1-4]. The intracellular
Prxs are hydrogen peroxide and organic hydroperoxide
scavengers, which exert protective effects on oxidative
stress. However, Prxs, especially Prx5/6, are proven to be
strong damage-associated molecular patterns (DAMPs) in
ischemic stroke [5]. Prxl-mediated activation of TLR4/
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NE-«B contributes to neuroinflammatory responses in in-
tracerebral hemorrhage [6]. Recent study has demon-
strated that Prx2 was the second most protein in the
cerebrospinal fluid (CSF) of traumatic brain injury and
SAH patients [7]. In Prxs family, Prx2 was the third abun-
dant protein in erythrocytes and it was also highly
expressed in neurons [8, 9]. So it is obvious that the lytic
red blood cells and damaged neurons will release a great
amount of Prx2 into the subarachnoid space after SAH.
However, the role of extracellular Prx2 after SAH has not
been clarified.

In this study, we investigated whether the extracellular
Prx2 has an effect on neuronal apoptosis after SAH. A
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primary neuron and microglia co-culture model was
introduced to mimic SAH in vitro. Since microglia is an
important initiator cell in neuroinflammation, we
focused on the interaction between Prx2 and microglial
activation.

Methods

Animals

All animal procedures were approved by the Ethics Re-
view Committee for Animal Experimentation at Drum
Tower Hospital (Nanjing, China) and performed in
accordance with the institutional guidelines. Neonatal
C57BL/6JNju mice were sacrificed for primary cortical
neurons and microglia. For primary TLR4-KO microglia,
neonatal C57BL/10ScNJNju mice were used. Two strains
of mice were purchased from Nanjing Biomedical
Research Institute of Nanjing University.

Primary cell culture

Primary cortical neural cells were cultured as described
previously [10]. In brief, cerebral cortex was isolated from
brains of neonatal (1-3 days) mice. The leptomeninges
and white matter were removed, and brain tissue were
digested with 0.125% trypsin (Gibco) for 5 min at 37 °C.
Subsequently, the suspension was filtered through a
40-pm strainer (Millipore) and centrifuged at 1500 r/min
for 10 min. The remaining cells were resuspended in Dul-
becco’s modified Eagle’s medium (DMEM) with 10% fetal
bovine serum (FBS) and penicillin-streptomycin. For neu-
rons, cell suspensions were seeded into poly-D-lysine-
coated six-well plates, and their culture medium was
replaced after 2 h with Neurobasal Medium containing
0.5 mmol/L GlutaMAX-I and 2% B27 supplement
(Gibco). Neuronal cultures were used on day 8 in vitro
(DIV8). Primary microglia were obtained as described
[11]; cells were seeded in flasks coated with poly-D-lysine
to obtain mixed glial cultures. When the glial cultures
reached confluency for 3 days, the flasks were shaken
2 h at 250 rpm. The floating cells were collected and
seeded in six-well plates to obtain microglia. Microglial
cultures were used on DIV14. For neurons and micro-
glia co-culture system, microglia were seeded in Trans-
well (Corning, pore size = 0.4 pm) upper chamber and
the neurons were seeded in the plates. Co-culture
medium was DMEM with 10% FBS. The serum was
reduced to 2% before any treatment. The co-culture
system was harvested 24 h after indicated intervention.
The purity of primary neuron and microglia was more
than 90% (Additional file 1: Figure S1).

Preparation of oxyhemoglobin

Mouse hemoglobin (Sigma) was used to produce oxy-
hemoglobin as per the manufacturer’s instruction. In
brief, the reduced hemoglobin was prepared by gel
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filtrating 1 mmol/L hemoglobin solution with sodium
dithionite in a column containing Sephadex G-25
(Sigma). Then, the reduced hemoglobin was saturated
with oxygen gas. Sodium dithionite was then removed
by dialysis against 100 volumes of oxygen-saturated
phosphate buffer. Oxyhemoglobin were achieved and
stored at — 80 °C.

Oxyhemoglobin-incubated in vitro SAH model and drug
administration

To mimic SAH in vitro, the co-culture system was ex-
posed to oxyhemoglobin (OxyHb) at a concentration of
25 pumol/L. The treatment groups were prepared with
OxyHb-exposed neuron-microglia co-culture systems re-
spectively adding 1, 5, and 10 pg/mL recombinant Prx2
(Abcam) for 24 h. MyD88 inhibitor ST-2825 (MCE) was
premixed with culture medium at a concentration of 10
and 100 pmol/L, and the NF-kB inhibitor pyrrolidine di-
thiocarbamate (PDTC) was premixed with microglial
culture medium at a concentration of 80 pmol/L 24 h
before the in vitro SAH model was induced respectively.

Cell viability assay

The Cytotoxicity Detection Kit (LDH) (Roche) was used
to measure neural cell viability as per the manufacturer’s
instruction. After treatment, 100 pL of culture medium
was transferred to a 96-well plate; the reaction mixture
was added to each well and incubated for 30 min at
room temperature. The absorbance was measured at a
wavelength of 490 nm, and the reference wavelength
was 690 nm.

Real-time polymerase chain reaction

RNA extracted using TRIzol Reagent (TAKARA) was
reverse transcribed into ¢cDNA with the Reverse Tran-
scriptase Reagent (TAKARA). Quantitative real-time PCR
analysis was performed with UltraSYBR Mixture using the
LightCycler 96 Real-Time PCR System (Roche). The
primers are as follows: IL-1B, 5-GCCTGTGTTTTC
CTCCTTGC-3" (forward), 5-TGCTGCCTAATGTCCCC
TTG-3" (reverse); TNF-o, 5'-CGGGCAGGTCTACTTT
GGAG-3' (forward), 5'-ACCCTGAGCCATAATCCCCT-
3" (reverse); IL-6, 5'-GAGACTTCCATCCAGTTGCCT-3’
(forward), 5'-TGGGAGTGGTATCCTCTGTGA-3" (re-
verse); and Rpl5, 5'-GGAAGCACATCATGGGTCAGA-
3" (forward), 5'-TACGCATCTTCATCTTCCTCCATT-3’
(reverse). Rpl5 was used as housekeeping gene. After 95 °C
for 30 s, 40 PCR cycles were performed, each consisting
of a denaturation step (95 °C, 5 s) and an annealing
step (60 °C, 30 s).

Enzyme-linked immunosorbent assay
The primary microglial culture medium of each group
was collected, and the quantities of IL-1f, TNF-a, and
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IL-6 were determined using enzyme-linked immuno-
sorbent assay kits (Boster) according to the manufac-
turer’s instructions.

Immunofluorescence staining

Immunofluorescence staining was performed according
to our previous study. Briefly, cultured cells on cover-
slips were fixed in 4% paraformaldehyde. Following
treatment with 0.1% Triton X-100, the samples were
blocked by 5% bovine serum albumin (BSA) prior to in-
cubation with primary antibody overnight. The samples
were washed three times with 0.5% phosphate-buffered
saline with Tween-20 (PBST) and then were incubated
with proper secondary antibodies. After three washes
again, the coverslips were counterstained by 4,6-diami-
dino-2-phenylindole (DAPI) for 2 min. The following
antibodies were used: anti-Ibal (1:200, Abcam) and
NeuN (1:200, Millipore). Pictures were acquired with a
fluorescence microscope (Zeiss) under the same expos-
ure time 0.5 s.

TUNEL staining

Terminal deoxynucleotidyl transferase-mediated dUTP
nick-end labelling (TUNEL) staining was conducted by
using a TUNEL detection kit according to the manufac-
turer’s instructions (Roche). Coverslips were incubated
with primary antibody against NeuN (1:100, Millipore)
at 4 °C overnight. After washed three times with PBST,
the coverslips were incubated with TUNEL reaction
mixture for 45 min prior to be counterstained by DAPI.
The positive cells were identified, counted, and analyzed
by two investigators blinded to the grouping.

Western blot analysis

Cells after indicated treatment were washed three times
with PBS and lysed in radioimmunoprecipitation assay buf-
fer (RIPA) containing protease and phosphatase inhibitor
cocktails (Roche). Protein concentrations were determined
with the BCA kit (Beyotime). Equal amounts of protein
(10 pg) per lane were separated by SDS-polyacrylamide gel
and transferred to a polyvinylidene difluoride (PVDEF)
membrane. The membrane was blocked in 5% skim milk
for 2 h at room temperature and incubated overnight at
4 °C with primary antibodies against Iba-1 (1:1000,
Abcam), MyD88 (1:2000, Abcam), p65 (1:1000, Cell Signal-
ing Technology), Prx2 (1:5000, Abcam), and TLR4 (1:200,
Santa Cruz) in 0.1% TBST containing 5% BSA. After the
membrane was washed, it was incubated with HRP-
conjugated secondary antibody for 2 h at room
temperature. Detection was performed by Immobilon
Western Chemiluminescent HRP Substrate (Millipore), ac-
cording to the manufacturer’s instruction. Band intensities
were quantified using the Image]J software.
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Patient recruitment and CSF collection

Eight control patients and 24 SAH patients from Drum
Tower Hospital were included prospectively after written
informed consent was obtained from all patients or their
family members. This study was conducted in accordance
with the Declaration of Helsinki and was approved by the
Ethics Committee of Drum Tower Hospital. CSF samples
were collected through lumbar puncture between 24 and
72 h after the SAH. Immediately after collection, samples
were centrifuged at 3000 rpm for 10 min at 4 °C and the
supernatants were collected. An equal amount (50 pL) of
sample per lane was added and detected by Western blot.

Statistical analysis

All data were expressed as the mean + SD. Statistical
comparisons were performed using one-way ANOVA.
Differences between experimental groups were deter-
mined by Student’s ¢ test. A value of P < 0.05 was consid-
ered statistically significant.

Results

Prx2 aggravated neuronal damage in neuron-microglia
co-culture system after SAH

Single-neuron culture and neuron-microglia co-culture
system were treated with different doses of recombinant
Prx2 respectively. The neuronal damage was aggravated
after incubation with oxyhemoglobin (OxyHb) for 24 h,
and the damage became more severe when it was co-
cultured with microglia (Fig. 1a). In neuron-microglia co-
culture system, exposure to Prx2 10 pg/mL alone could
cause neuronal disintegration. As shown in Fig. 1b, treating
single-neuron culture with Prx2 alone did not affect the
neuronal cytotoxicity. Incubation with OxyHb produced
obvious neuronal cytotoxicity; however, when compared
with the OxyHb group, there were no significant differ-
ences in the OxyHb+Prx2 groups. In neuron-microglia co-
culture system, a Prx2 dose-dependent neurotoxicity was
observed. The OxyHb+Prx2 10 pg/mL group was the most
severe one. Interestingly, treating the co-culture system
with Prx2 alone could also cause neurotoxicity (Fig. 1c).
To determine the microglial activation, we assessed the
Iba-1 expression in primary microglia by Western blot. As
shown in Fig. 1d, Prx2 significantly increased the expres-
sion of Iba-1 after in vitro SAH.

Prx2 facilitated the synthesis and secretion of pro-
inflammatory cytokines by microglia after SAH in vitro

To investigate the mechanism of microglia-dependent
Prx2-induced neurotoxicity, we detect the interleukin 13
(IL-1p), interleukin 6 (IL-6), and tumor necrosis factor-a
(TNF-a) mRNA expression in microglia and their con-
centrations in the co-culture medium. As shown in
Fig. 2a, the IL-1p, IL-6, and TNF-a mRNA level in cul-
tured microglia were elevated after OxyHb incubation
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Fig. 1 Prx2-induced neuronal cytotoxicity was mediated by microglia. a The phase-contrast photomicrographs of cultured neuron, scale bar =100 um.
Treated by Prx2, cultured neuron did not show overt neuronal damage. In neuron-microglia co-culture system, the Prx2 exerted neurotoxicity. b Prx2
had no neurotoxicity when treated with cultured neurons after SAH. ¢ Co-cultured with microglia, the neurons were injured by Prx2 in a dose-
dependent manner. d The microglia were activated by Prx2 after SAH. *#P < 0,001 vs control; **P < 0.01, ***P < 0.001, P> 0.05 vs indicated
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for 24 h. Moreover, incubation of OxyHb along with
10 pg/mL Prx2 promoted the mRNA expression of IL-
1P and IL-6. However, TNF-a mRNA level remained un-
changed in the OxyHb+Prx2 group compared with the
OxyHb group. Consistent with the results above, the
concentration of IL-1p and IL-6 in the microglial culture
medium were significantly increased after SAH. Prx2
treatment markedly increased their concentration in cul-
ture medium when compared with the OxyHb group
(Fig. 2b). Phase-contrast microscope images revealed the
morphological remodeling of microglia in response to
OxyHb and OxyHb+Prx2 treatment. In the control
group, microglia have highly ramified morphology with
thin processes. Upon OxyHb stimuli, the processes of

microglia retracted and thickened, which indicated the
microglial activation and acquirement of the ability of se-
creting pro-inflammatory cytokines. Compared with the
OxyHb group, incubation of OxyHb+Prx2 further acti-
vated the microglia (Fig. 2c).

TLR4/MyD88/NF-kB signaling pathway was involved in
the Prx2-induced microglial activation after SAH in vitro
The TLR4/MyD88/NF-«B signaling pathway was involved
in the activation of microglia. Since peroxiredoxin 1
(Prx1) could interact with TLR4, we assumed that Prx2
may activate microglia after SAH by interacting with
TLR4. We detected the expression of TLR4, MyD88, and
p65 in cultured microglia by immunofluorescence and
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Fig. 2 The microglia were activated by Prx2 and polarized to M1-like microglia. a The mRNA level of IL-1B, IL-6, and TNF-a in microglia increased
dramatically after SAH. The IL-1( and IL.-6 mRNA level in OxyHb + Prx2 10 ug/mL group increased significantly after Prx2 treatment when compared
with OxyHb group. The mRNA level of TNF-a remained unchanged. b The concentrations of IL-1(, IL-6, and TNF-a in culture medium of microglia were
determined by ELISA. Consistent with the mRNA level, the IL-13 and IL-6 concentrations in OxyHb + Prx2 10 ug/mL group increased significantly after
Prx2 treatment compared with the OxyHb group. However, the concentration of TNF-a remained unchanged. ¢ The phase-contrast photomicrographs
of cultured microglia. Ramified microglia in the control group became less branching after SAH. Incubated with Prx2, the number of microglial
branches became more less. Scale bar =50 um. #P<0.01, **P <0001 vs control; **P < 0.01, ***P < 0.001, "*P > 0.05 vs indicated groups. Bars
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Western blot. After SAH, the expression of TLR4,
MyD88, and p65 were elevated (Fig. 3a). The Western
blot results showed that Prx2 increased the expres-
sion of TLR4, MyD88, and p65 when compared with
the OxyHb group (Fig. 3b). To confirm the effects,
we co-cultured neuron with TLR4-KO microglia and
ST-2825-treated microglia. We found that TLR4 KO
eliminated the Prx2-induced neuronal cytotoxicity
(Fig. 4a). Inhibition of MyD88 by ST-2825 at the con-
centration of 100 pmol/L significantly remitted the
neuronal cytotoxicity caused by Prx2 (Fig. 4b). PDTC
was used to inhibit NF-«xB activity in microglia. After
treated by PDTC at the concentration of 80 pmol/L,

the Prx2-induced microglia-mediated neuronal cytotox-
icity was eliminated (Fig. 4c).

TLR4 knockout microglia lose the ability to induce
neuronal apoptosis caused by Prx2

TUNEL staining was performed to demonstrate the
role of Prx2-induced microglia-mediated neuronal in-
jury (Fig. 5a). In neuron-microglia co-culture system,
the fraction of apoptotic neurons was significantly
increased after in vitro SAH model was induced.
Compared with the OxyHb group, the number of
apoptotic neurons was increased in the OxyHb+Prx2
group. We then co-cultured neurons with TLR4-KO
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microglia; the Prx2-induced microglia-mediated neur-
onal apoptosis was attenuated (Fig. 5b).

The level of Prx2 in cerebrospinal fluid of SAH patients
correlated with Hunt-Hess grades

To investigate the relationship between Prx2 in CSF
with the severity of brain injury, we detected the Prx2
level in aneurysmal SAH patients’ CSF by Western blot.
The CSF collected from patients who underwent hip
arthroplasty before surgery were used as control. We

found that the Prx2 level in CSF after SAH was elevated
significantly compared with the control group. There
were no obvious differences between Hunt-Hess grade
I-1I group and grade III group. However, in grade IV-V
group, the Prx2 level in CSF was increased significantly
compared with grade III group (Fig. 6). These results in-
dicated that the level of Prx2 in CSF of aneurysmal SAH
patients was positively correlated with the severity of
brain injury, and it may also correlate with prognosis of
SAH patients.
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Discussion
Previous study has revealed that Prx2 is the second most
protein in the CSF of traumatic brain injury and SAH
patients [7]. It is not surprising that Prx2 concentration
was high in CSF of SAH patients, because Prx2 is abun-
dant in both erythrocytes and neurons [8, 9]. Although
Prx2 is an organic hydrogen peroxide scavenger, it plays
a role of damage-associated molecular pattern (DAMP)
when it is released to the extracellular space. It has been
proven that Prxs family proteins play important roles in
ischemic stroke [5], and they function as DAMPs espe-
cially Prx5/6. In Prxs family, Prx1 and Prx2 share the
most similarities on molecular structure [12]. Prx1 could
increase the expression of TLR4 and activate TLR4/NF-
KB signaling pathway [6]. In the context of SAH, Prx2
concentration in CSF correlates with patients’ Hunt-
Hess grades, making it a potential indicator to judge the
extent of brain injury and predictor of prognosis. We
speculated that the level of Prx2 in CSF would positively
correlate with the amount of bleeding and the number
of necrotic neuron.

Though the polarization of microglia is controversial,
the dichotomy between M1 and M2 phenotypes remains

useful for explaining the function of microglia in brain
diseases [13]. Prx2 promoted microglia synthesizing
and secreting IL-1B and IL-6, but not TNF-a. Be-
cause IL-1B, IL-6, and TNF-a are the classical
markers of Ml-like microglia [14], Prx2 activated
microglia to the Ml-like phenotype. After oxidative
stress and inflammatory insult, the signaling path-
ways leading to NF-xB and AP-1 activation are
sometimes overlapping where both are involved in
the induction and regulation of cytokines and che-
mokines. Although the TNF-a is known to be acti-
vated by NF-«B, their expression may be regulated in
part by other independent pathways. Activator pro-
tein 1 (AP-1) is involved in LPS/TLR4-induced TNF
and IL-6 production independent of NF-kB in pri-
mary human macrophages [15]. So it is possible that
NF-kB signaling pathway was involved in Prx2-
induced microglial activation but AP-1 was not.

In our co-culture system, neurons and microglia
could not contact with each other physically. The
microglia-mediated neurotoxicity must intermediate
by some secreting substances. M1-like microglia has
been recognized as a pro-inflammatory phenotype; the
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production of M1l-like microglia such as reactive However, the crosstalk between the neurons and
oxygen species (ROS), Fas-ligand (FasL), and nerve microglia is complicated; the in vitro model has limita-
growth factor (NGF) can lead to neuronal apoptosis tions on interpretation of the comprehensive role of
and necrosis [16, 17]. Prx2 after SAH. The inflammatory response after SAH
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correlated with Hunt-Hess grades. The Prx2 level in patients’ CSF
was determined by Western blot. Prx2 in the CSF of SAH patients

increased significantly compared with the control group. In grade monocytes and exert more powerful pro—inﬂammatory
V-V patients, the level of Prx2 was higher than grade I-Ill patients. effects after SAH. On the other hand, the MAEFBM
# #itH . XRR

P <0.05, "™P <0001 vs control; ***P < 0.001 and "*P > 0.05 vs monocytes have been proven that can phagocytose

indicated groups. Bars represent the mean + SD. N =6 in each group DAMPs inCluding HMGBI1. Prxs, and S100 through
MSR1 to eliminate inflammation [23]. Because Mafb
[24, 25] and Msr1 [26] are highly expressed in micro-
glia, the potential role of microglial phagocytosis is
needed to be clarified.

IL-1B 1
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Fig. 7 Prx2 activated microglia through TLR4/MyD88/NF-kB pathway and caused neuronal damage after SAH
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Conclusions

Our research revealed that Prx2 released from lytic
erythrocytes and damaged neurons after SAH acti-
vated microglia through TLR4/MyD88/NF-kB path-
way. Then, the activated microglia elevated the
expression of IL-1B and IL-6, which could result in
neuronal apoptosis (Fig. 7). The level of Prx2 in
SAH patients’ CSF positively correlated with Hunt-
Hess grades.

Additional file

Additional file 1: Figure S1. The purity of primary neuron and
microglia. A-B. Immunofluorescence staining showed the neuron marker
NeuN and microglia marker TMEM119 in primary cultured cells. The
particle analysis was performed by ImagelJ, and the purity of primary
neuron and microglia was more than 90%. (DOCX 569 kb)
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