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Abstract

effect on seizure-related neuroinflammation.

novel therapeutic target for epilepsy.

Background: Zinc-a2-glycoprotein (ZAG) is a 42-kDa protein reported as an anti-inflammatory adipocytokine.
Evidences from clinical and experimental studies revealed that brain inflammation plays important roles in
epileptogenesis and seizure. Interestingly, closely relationship between ZAG and many important inflammatory
mediators has been proven. Our previous study identified ZAG in neurons and found that ZAG is decreased in
epilepsy and interacts with TGF3 and ERK. This study aimed to investigate the role of ZAG in seizure and explore its

Methods: We overexpressed AZGP1 in the hippocampus of rats via adeno-associated virus vector injection and
observed their seizure behavior and EEG after pentylenetetrazol (PTZ) kindling. The level of typical inflammation
mediators including TNFa, IL-6, TGF(3, ERK, and ERK phosphorylation were determined.

Results: The overexpression of AZGP1 reduced the seizure severity, prolonged the latency of kindling, and
alleviated epileptiform discharges in EEG changes induced by PTZ. Overexpression of AZGP1 also suppressed the
expression of TNFaq, IL-6, TGF3, and ERK phosphorylaton in PTZ-kindled rats.

Conclusions: ZAG may inhibit TGF3-mediated ERK phosphorylation and inhibit neuroinflammation mediated by
TNFa and IL-6, suggesting ZAG may suppress seizure via inhibiting neuroinflammation. ZAG may be a potential and
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Background

Zinc-a2-glycoprotein (ZAG) is a 42-kDa, soluble,
secretory protein encoded by the AZGPI gene located
on chromosome 7q22.1 [1, 2]. The structure and amino
acid sequence of ZAG are highly homologous to pro-
teins in the major histocompatibility complex class I
(MHC-I) family, which has important function in im-
munity [3]. In our previous study, we found that both
ZAG protein and AZGPI mRNA levels were
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significantly decreased in brain tissues of refractory TLE
patients and pentylenetetrazol (PTZ)-kindled rats [4],
but the role of ZAG in epilepsy and seizure is still
unclear.

ZAG is known to be involved in many molecular path-
ways linked to epilepsy and seizure, and it can regulate
many epilepsy- or siezure-related molecules, although its
role has never been studied in epilepsy and/or seizure.
AZGP1 overexpression can inhibit the mammalian target
of rapamycin (mTOR) pathway activity [5], and ZAG
can inhibit transforming growth factor-B (TGEp)-medi-
ated vimentin expression and extracellular regulated
protein kinase (ERK) phosphorylation [6]. Meanwhile,
mTOR, TGFp, ERK, and phosphorylated ERK (pERK)
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were known to play important roles in epilepsy and seiz-
ure. The mTOR pathway regulates various cellular pro-
cesses involved in growth, metabolism, structure, and
cell—cell interactions of neurons and glia [7]. Inhibiting
mTOR by rapamycin can suppress seizure, delay seizure
development, or prevent epileptogenesis [7]. Increase of
TGEFp in neurons was proven to be involved in epilepto-
genesis via regulating dendrite growth and synaptogene-
sis [8, 9]. The level of pERK in refractory epilepsy
patients is significantly higher than that in controls [10],
indicating an increased ERK activity in epilepsy. Inhibit-
ing sodium glucose co transporter 2 (SGLT2) has been
proven to increase the level of ZAG via activating
PPARy [11], while activating PPARy was confirmed to
increase AZGP1 mRNA [12]. Interestingly, both SGLT2
and PPARy are known to participate in epileptogenesis,
especially PPARy was considered as a promising thera-
peutic target of epilepsy [13—15]. ZAG can also increase
the level of mitochondrial uncoupling proteins (UCP)
[16], and PPARy-upregulated mitochondrial UCP2 ex-
pression can ameliorate neuronal death in the hippo-
campus following status epilepticus [17]. Interactions
between ZAG and these epilepsy- or seizure-related
molecules or pathways suggest a potential role of ZAG
in epilepsy and/or seizure.

Evidences from clinical and experimental studies re-
vealed that brain inflammation plays important roles in
epileptogenesis [18]. ZAG was reported as one of the
anti-inflammatory adipocytokines including adiponectin,
omentin, SFRP5, vaspin, and interleukin-10 (IL-10) [19].
ZAG was reported to block transforming growth factor-
B (TGEP)-mediated extracellular regulated protein kin-
ase (ERK) phosphorylation [7]. While TGEp plays a sig-
nificant role in inflammation, inhibition of TGER
receptor 1 or TGFP1 diminished TGFP1-induced inflam-
mation [20]. ERK pathway also plays an important role
in the inflammatory response [21-24]. We have verified
the interaction between ZAG and TGFp or pERK previ-
ously [4]. Therefore, it is possible that ZAG may partici-
pate in the pathogenesis and pathophysiology of epilepsy
via regulating TGFB-mediated ERK phosphorylation. In
addition, increase of various inflammation-related cyto-
kines has been observed in epilepsy [25-27]. Pro-
inflammatory cytokines, such as tumor-necrosis factor
(TNFa) and interleukin-6 (IL-6), were increased in epi-
lepsy patients and epilepsy models [28—-32]. Interestingly,
TNFa has been identified to reduce ZAG production
[33], while the interaction between ZAG and IL-6 has
not been found.

The role of ZAG in seizure and seizure-related inflam-
mation has not yet been discussed. In this study, we
injected adeno-associated virus (AAV) that overexpress
AZGPI to the hippocampus of rats and investigated the
effect of AZGP1 overexpression on PTZ kindling-
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induced seizures in rats by behavior tests and scalp elec-
troencephalogram. To further explore the molecular
mechanism by which ZAG affects seizure and seizure-
related inflammation, the effect of AZGP1 overexpres-
sion on pERK, total ERK (tERK), TGFf, TNFq, and IL-6
were also measured in the hippocampus of PTZ-kindled
rats and controls.

Methods

Experimental animals

Adult, male, 200-300 g, specific-pathogen-free Sprague—
Dawley rats (Experimental Animal Center of Chongqing
Medical University) were raised in a temperature and
humidity-controlled room (temperature 27 °C, humidity
55-65%) with a 12-h light/12-h dark cycle (lights on 6:
00 and off 18:00), and they were allowed free access to
food and water. All rats were housed for 1 week before
the experiment.

Adeno-associated virus (AAV) vector construction and
stereotaxic injections

A DNA sequence that amplifies AZGP1 expression was
incorporated into the adeno-associated virus (AAV) vec-
tor (pHBAAV-CMV-ZsGreen) containing green fluores-
cent protein (GFP) sequence and was named AAV-
AZGPI1. The same AAV vector containing only GFP was
used as a control and named as AAV-GFP. Both vectors
were manufactured by Hanbio Biotechnology (Shanghai,
China). The final titer was 1.35 x 10** vector genomes/
ml for AAV-AZGP1 and 1.5 x 10'* vector genomes/ml
for AAV-GFP.

To verify the successful transfection of AAV, 60 rats
were randomly divided into 4 groups and treated as fol-
lowing (n = 15 for each group): (1) controls: rats received
stereotaxic injection of saline; (2) GFP group: rats re-
ceived AAV-GFP injection; (3) AZGPI1-3W group: rats
received AAV-AZGPI injection and recovered for
3 weeks; (4) AZGPI-9W group: rats received AAV-
AZGPI injection and recovered for 9 weeks. After injec-
tion, GFP fluorescence was observed in the hippocam-
pus of rats from GFP group, AZGPI1-3W group and
AZGP1-9W group (n=5 for each group) as described
below. Quantitative real-time polymerase chain reaction
(qrt-PCR) (n =5 for each group) and western blot (n =5
for each group) were also performed in controls, GFP
group, AZGP1-3W group, and AZGPI-9W group as de-
scribed below.

When performing stereotaxic injection, rats were anes-
thetized by intraperitoneal injections of pentobarbital
(60 mg/kg) and then placed in a stereotaxia frame (RWD
Life Science, Shenzhen, China). After disinfection, skin of
the dorsal surface of rat skull was cut apart, and two paral-
lel holes were created using dental drill in the skull. The
stereotactic coordinates of bilateral hippocampus region
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were 3.0 mm posterior to bregma, 2.0 mm lateral to me-
dian line of the skull, and 2.8 mm deep beneath the skull.
4 uL. AAV-AZGP1 or AAV-GFP was injected into the
hippocampus through a glass pipette at a speed of 0.2 puL/
min. To prevent backflow of vectors, the pipette was kept
in the hippocampus for an additional 5 min and then
retracted steadily and slowly. For the controls, an equal
volume of saline was injected in the same way. In most
cases, the surgical procedure last about 45 min for each
rat, and most rats recovered from anesthesia 1 h after sur-
gery ending, subsequent injection of pentobarbital was
not necessary in our experiment. Rarely, rats had respira-
tory failure after surgery was rescued using atropine
(1 mg/kg, intraperitoneally).

PTZ kindling

After the AAV transfection and AZGPI expression was
verified successful, another 45 rats were randomly di-
vided into three groups (n = 15 for each group): controls,
AZGPI +PTZ group and GFP+PTZ group. Rats in
AZGPI1 +PTZ group and GFP +PTZ group recovered
for 3 weeks after AAV injection and then received intra-
peritoneal injection of PTZ (35 mg/kg, Sigma-Aldrich,
St. Louis, USA) for 28 days daily. After each injection of
PTZ, all rats were observed for 30 min in plastic cages
to assess and record the seizure severity according to a
modified Racine scale as follows [34]: grade 0, no re-
sponse; grade 1, facial myoclonus; grade 2, head nod-
ding; grade 3, forelimb clonus; grade 4, rearing and
severe forelimb clonus; grade 5, rearing, falling, and se-
vere forelimb clonus. Controls (n=15) received equal
amount of saline instead of AAV and PTZ. Rats that ex-
hibited stage 4 or 5 seizures on 3 consecutive days were
considered to be fully kindled. Latency was defined as
the days between the first PTZ injection and fully kind-
ling. PTZ injection was conducted between 13:00 and
16:00 in order to minimize possible complicating effects
on the behavior of the animals’ circadian rhythms.

Scalp EEG recording

Scalp EEG was performed at the last time of PTZ injec-
tion. Two unipole scalp electrodes were placed on bilat-
eral temporal skin of rats. After the place of electrodes,
rats were allowed to move freely in plastic cages. EEG
baseline was recorded for approximately 5 min before
the injection of PTZ or saline, then EEG was recorded
for at least 30 min using the nicolet VEGG system
(natus, USA) and analyzed using nicoleton bms 5000
(natus, USA). The parameters of EEG are set as follows:
filtering 30 Hz, paper speed 30 mm/s, and sensitivity
70 pV/mm. All remaining rats that received PTZ injec-
tion for 28 days were sacrificed for further research.
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Tissue processing

Rats were deeply anesthetized by intraperitoneal injec-
tion of pentobarbital (60 mg/kg). For western blot and
quantitative real-time polymerase chain reaction (qrt-
PCR), rat brains were removed and stored at — 80 °C.
For GFP fluorescence observation, the rat brains were
removed after perfusion with saline and 4% paraformal-
dehyde in phosphate-buffered saline (PBS) by cardiac
puncture via the left ventricle. For comparing level of
ZAG protein and AZGP1 mRNA 3 and 9 weeks after
AAV injection, some rat brain tissues were stored for
6 weeks at - 80 °C before western blot and qrt-PCR
examination. The rest rat brain tissues were examined in
2 weeks after removal.

qrt-PCR

Total RNA was extracted from the brain tissue using
RNAiso plus (Takara, Dalian, China) and was reverse
transcribed into complementary deoxyribonucleic acid
(cDNA) with the Applied Biosystems Veriti-Well Ther-
mal Cycler (Thermo, Wilmington, USA) using the Pri-
meScript RT reagent Kit with genome DNA Eraser
(Takara, Dalian, China) following the manufacturer’s in-
structions. Briefly, 2 pg total RNA was mixed with 4 pl
Reverse Transcriptase and 0.5 pg oligo (dT) primer and
incubated at 37 °C for 15 min, and the reaction was then
terminated at 85 °C for 5 s. Each qrt-PCR reaction contained
2 ul ¢cDNA, 0.8 pl forward primer, 0.8 pl reverse primer, 6.
4 pl DEPC water, and 10 pl SYBR Premix ExTaq II (Takara,
Dalian, China). The PCR protocol consisted of an initial de-
naturation step at 95 °C for 30 s, followed by 40 cycles of
amplification at 95 °C for 5 s and at 60 °C for 34 s, and then
terminated at 95 °C for 15 s. Melting curve analyses were
also performed (65.0 to 95.0 °C, 0.5 °C increments for 5 s).
The relative gene expression levels in the hippocampus of
PTZ-kindled rats were calculated using the 27" method
[35]. The primer sequences for rat were as follows: AZGP1I:
forward 5'-TTCAAGCCACCGCATTTCTC-3’, reverse 5'-
TCCTTCTCCCAGTCCTCCATTC-3". GAPDH: forward
5'-ACGGTCAGGTCATCACTATCG-3’, reverse 5 -GGCA
TAGAGGTCTTTACGGATG-3'.

Observation of fluorescence of GFP

The fixed brain tissues were successively immersed in 20
and 30% sucrose solution for 48 h (24 h per solution)
and sliced into 10-pm-thick frozen sections. Finally, the
sections were mounted using 80% glycerol. Images were
collected using laser scanning confocal microscopy
(Nikon 1R, Japan).

Western blot

Brain tissue was homogenized in RIPA lysis buffer
(Beyotime, Haimen, China) containing proteinase inhibi-
tor mixture and phosphorylase inhibitor mixture and
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centrifuged at 12000 rpm, 4 °C for 25 min. The protein
concentrations in the supernatant were determined
using a BCA Protein Assay Kit (Beyotime, Haimen,
China). The extracted total proteins were mixed with 5x
sodium dodecylsulfate (SDS) loading buffer and boiled
for 5 min. Equal amounts of total protein (80 pg/lane)
were separated by SDS-polyacrylamide gel electrophor-
esis (PAGE) and then transferred onto polyvinylidene
fluoride (PVDF) membranes (Immobilon, Merck Milli-
pore, Darmstadt, Germany). The membranes were
blocked with 5% BSA at room temperature for 2 h and
then incubated with the anti-ZAG antibody (1:400, Santa
Cruz, USA), anti-TNFa« antibody (1:500, Bosterbio, USA)
, anti-IL6 antibody (1:500, Bosterbio, USA), anti-pERK
antibody (1:2000, Cell Signaling Technology, Danvers,
USA), anti-tERK antibody (1:2000, Proteintech, Wuhan,
China), anti-TGEB antibody (1:1000, Proteintech, Wu-
han, China), or anti-glyceraldehyde 3-phosphate de-
hydrogenase (GAPDH) antibody (1:3000, Proteintech,
Wuhan, China) at 4 °C overnight. After washed with
tris-buffered saline with Tween-20 (TBST), the mem-
branes were incubated with the horseradish peroxidase-
conjugated rabbit anti-mouse antibody (1:3000, Abcam,
Cambridge, UK) or mouse anti-rabbit antibody (1:3000,
Abcam, Cambridge, UK) at room temperature for 1 h
and washed again. Immunoreactivity was visualized
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Haimen, China) and quantified by densitometric scan-
ning with the Fusion-FX7 system (Vilber Lourmat, Col-
légien, France). The mean optic density (OD) was
normalized by GAPDH.

Statistical analysis

The results were expressed as mean + standard deviation
(SD). SPSS 20.0 (IBM, Armonk, USA) and GraphPad
prism 6.01 (GraphPad software, La Jolla, USA) were
used for data analysis and graph drawing. Mann—Whit-
ney U test was used to compare the differences of
Racine’s scores between AAV-AZGP1 group and AAV—
GFP group. Student’s ¢ test was used to compare the dif-
ferences of latency between AAV-AZGPI1 group and
AAV-GEFP group. One-way ANOVA with Bonferroni or
Dunnett’s T3 post hoc analysis was used to compare the
level of proteins between the three groups. p <0.05 (two
tailed) was regarded statistically significant.

Results

The transfection of AAV and the overexpression of AZGP1
To confirm the efficiency and stability of AAV-induced
AZGPI1 expression, we detected GFP distribution and
measured the level of AZGP1 mRNA and ZAG protein
in rat hippocampus 3 weeks and 9 weeks after AAV in-
jection. The GFP-positive cells in the CA3 region of

using chemiluminescence substrate kit (Beyotime, hippocampus were visualized (Fig. la). The level of
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AZGP1 mRNA (Fig. 1b) and ZAG protein (Fig. 1c, d)
was significantly increased on 3 and 9 weeks in AZGP1
group compared to GFP group. There was no difference
of AZGP1 mRNA (Fig. 1b) and ZAG protein (Fig. 1c, d)
levels between 3 and 9 weeks in AZGPI group, suggest-
ing a steady expression of AZGPI. In addition, no sig-
nificant difference of AZGP1 mRNA (Fig. 1b) and ZAG
protein (Fig. 1c, d) level was found between GFP group
and controls, suggesting no effect of AAV vectors on
AZGPI mRNA and ZAG protein expression.

Overexpression of AZGP1 suppresses seizures in PTZ-
treated rats

ZAG protein level in rats of AZGP1 + PTZ group (OD 1.
496 + 0.086) was significantly higher than in the GFP +
PTZ group (OD 0.778 £ 0.080) and controls (OD 1.104
+0.074) (n=5, p=0.0001, degrees of freedom (df) =12,
one-way ANOVA) (Fig. 2a). Rats in AZGP1 + PTZ group
had significantly milder seizure severity (Fig. 2b) before
being fully kindled and longer latency (Fig. 2c) compared
to rats in GFP + PTZ group (latency: AZGPI + PTZ 16.
07 £2.786, n =14 vs. GFP + PTZ 20.00 £ 2.530, n=11, p
=0.0014, df = 23, Student’s ¢ test). In addition, scalp EEG
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amplitude of seizure spike wave in AZGPI + PTZ groups
compared to GFP + PTZ group (Fig. 3).

Overexpression of AZGP1 decreased the level of TGF8

and pERK in PTZ-kindled rats without affecting total ERK
level

To explore the possibility that ZAG affects seizure via
TGFB-mediated ERK signaling pathway, we measured
the level of pERK, total ERK, and TGEFp in the hippo-
campus of rats in the three groups using western blot.
The level of pERK (Fig. 4a, c), pERK/total ERK ratio (Fig.
4c), and TGEp (Fig. 4d, e) was significantly increased in
both AZGPI + PTZ and GFP + PTZ groups compared to
controls, while rats in AZGP1+PTZ group had de-
creased pERK (Fig. 4a, c), pERK/total ERK ratio (Fig. 4c),
and TGFp (Fig. 4d, e) compared to rats in GFP + PTZ
group (pERK: control 0.674 + 0.045, GFP + PTZ 1.344 +
0.071, AZGPI +PTZ 0.787 £ 0.070, p=0.0001, df=12,
one-way ANOVA); (pERK/total ERK ratio: control 0.410
+0.026, GFP + PTZ 0.840 + 0.073, AZGP1 + PTZ 0.482
+0.040, p=0.0001, df =12, one-way ANOVA); (TGEp:
control 0.490 + 0.021, GFP + PTZ 0.862 + 0.070, AZGP1
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ANOVA), (n=5 for each group). In addition, there was
no significant difference in total ERK level between the
three groups (Fig. 4b) (control 1.642 + 0.123, GFP + PTZ
1.614 £ 0.183, AZGPI1 + PTZ 1.636 + 0.133, p = 1.000, df
=12, one-way ANOVA).

Overexpression of AZGP1 suppressed the increase of
TNFa and IL-6 in PTZ-kindled rats

To assess the inflammatory state of the hippocampus,
two typical pro-inflammatory cytokines, TNF« and IL-6,
were measured using western blot in the hippocampus
of AZGP1 +PTZ and GFP + PTZ group rats and con-
trols. Hippocampal TNFa (Fig. 5a) level was increased in
AZGP1 + PTZ and GFP + PTZ groups compared to con-
trols, while in AZGP1 + PTZ group, TNFa (Fig. 5a) was
significantly decreased compared to GFP +PTZ group
(TNFa: control 0.415 + 0.055, GFP + PTZ 0.722 + 0.032,
AZGP1 + PTZ 0.554 +0.029, p =0.001, df =12, one-way
ANOVA). Hippocampal IL6 level was significantly de-
creased in AZGP1 + PTZ group compared to GFP + PTZ
group (IL6: AZGPI + PTZ 0.472 +0.068, GFP + PTZ 0.
692 + 0.081, p=0.001, df =12, one-way ANOVA) while
there is no statistical significance between AZGP1 + PTZ
group and control (IL6: AZGPI+PTZ 0.472 +0.068,
control 0413 +0.058, p=0.609, df=12,
ANOVA) (Fig. 5b).

one-way

Discussion

In our previous study, we had found that the level of
AZGP1 mRNA and ZAG protein was significantly de-
creased in the neocortex of refractory epilepsy patients
as well as in the hippocampus and neocortex of PTZ-
kindled rats compared to controls [4]. However, the spe-
cific role of ZAG in epilepsy and/or seizure remains
unclear.

In this study, behavior tests showed that overexpres-
sion of AZGP1 in the hippocampus prolonged the la-
tency of PTZ kindling and alleviated the seizure severity
in PTZ-treated rats. Similarly, in scalp EEG recording,
decreased frequency and amplitude of spike wave were
also identified in AAV-AZGPI group. These results in-
dicate a protective role of ZAG against seizure. Interest-
ingly, we found that the seizure severity score of AAV—
AZGPI group was significantly lower than AAV-GFP
group during 12-23 days of PTZ treatment, while after
the 24th day of PTZ treatment, the seizure severity was
of no difference between the two groups, indicating that
overexpression of ZAG can delay but not fully prevent
the kindling. Moreover, on the 28th day of PTZ treat-
ment, although the seizure severity of rats in both AAV—
AZGP1 group and AAV-GFP group were similar, the
scalp EEG recording demonstrated decreased frequency
and amplitude of spike waves in AAV-AZGPI group
compared to AAV-GFP group. This result indicates that
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although rats in the two groups had similar seizure
severity in behavior, their epileptiform discharge in
brain is different. It is possible that overexpression of
ZAG may have protective effect on seizure even if
the rats are fully kindled. Although ZAG only delayed
PTZ kindling in this study, it also alleviated the epi-
leptiform discharges after the rats were fully kindled.
It is possible that ZAG may prevent seizure in the
early stage of kindling and has protective effect in the
late stage of kindling, indicating a possible role of
ZAG in different stage of epileptogenesis or seizure.
This is the first study on the role of ZAG in seizure;

further study is needed to explore its effect on seizure
and mechanism.

ZAG was reported as an anti-inflammatory adipocyto-
kine [24]. Clinical and experimental evidences have re-
vealed that brain inflammation plays an important role
in epileptogenesis [23]. The most extensively studied
prototypical inflammatory cytokines in the central ner-
vous system are TNFa and IL-6 [36—38]. The enhanced
production of pro-inflammatory cytokines, including
TNFa and IL-6, were known to play pro-epileptic roles
in the brain [39]. The dynamic modulation of inflamma-
tory processes has potential to be a novel therapeutic
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Fig. 5 Overexpression of AZGP1 suppressed the increase of TNFa and IL-6 in PTZ-kindled rats. a Representative western blot bands and expression
level of TNFa in the hippocampal tissues of rats. Western blot showed increased level of TNFa in the hippocampal tissues of rats in GFP + PTZ
group compared to controls, and rats in AZGP1 + PTZ group had significantly decreased the level of TNFa compared to GFP + PTZ group.
b Representative western blot bands and expression level of IL-6 in the hippocampus of rats. Western blot showed increased level of IL-6
in the hippocampal tissues of rats in GFP 4+ PTZ group compared to controls, and rats in AZGP1 + PTZ group had significantly decreased
the level of IL-6 compared to GFP + PTZ group. Optic density normalized by GAPDH, n=5 for each group, *p <0.05
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strategy for pharmacologic treatment to control seizures,
delay disease progression, or retard epileptogenesis [40].
Moreover, overexpression of cytokines such as TNFa or
IL-6 results in age-dependent increase of seizure suscep-
tibility and spontaneous seizures [41, 42]. In our study,
overexpression of AZGP1 attenuated the increase of
TNFa and IL6 induced by PTZ kindling. Interestingly,
TNFa has been identified to reduce ZAG production
[33]. This is suggesting that there may be a circuit or
feedback regulation mechanism between ZAG and
TNFa. Therefore, ZAG may prevent seizure and protect
the brain via alleviating neuroinflammation. This is the
first time that the relationship between ZAG and IL-6
was identified.

We had previously verified the interaction between
ZAG and TGEpP or p-ERK in the hippocampus of rats
[4]. In this study, we found that overexpression of ZAG
could decrease the level of TGFB and ERK phosphoryl-
ation. Human recombinant ZAG was found to specific-
ally block TGFP-mediated ERK phosphorylation [6].
And TGEB and p-ERK/ERK ratio were upregulated in
patients with refractory epilepsy [8, 10]. TGFP can pro-
mote epileptogenesis via upregulating IL-6 [43] and inhi-
biting TGEP by losartan can suppress epileptogenesis
[44]. ERK activation induced by its phosphorylation is
known to cause seizure by activating N-methy-D-

aspartate (NMDA) receptors [45, 46]. In addition, TGFP
and ERK are known as inflammatory mediators [20—24].
Thus, it is possible that ZAG may prevent seizure via
inhibiting TGFp-mediated ERK signaling pathway and
alleviate inflammation induced by seizure. As the effect
of ZAG on TGEFp and ERK has not been investigated in
epilepsy and/or seizure before, further study is needed to
clarify the existence of ZAG-TGFB-ERK pathway and
its specific role in seizure and epilepsy.

Many studies showed that various inflammatory cyto-
kines are associated with seizure susceptibility [47-50].
Overexpressing IL-6 or TNFa can decrease seizure
threshold and exacerbate seizure-induced neuronal loss
[51, 52]. Inflammatory signaling is also known to worsen
the loss of GABAergic neurons in the hippocampus and
thus resulted in an increased susceptibility for seizure
[53]. TNFa have also been associated with the regulation
of seizure duration in amygdala-kindled rats [54]. In our
study, overexpression of AZGPI in the hippocampus
prolonged the latency of PTZ kindling and attenuated
PTZ kindling-induced increase of TNFa and IL-6. This
result suggests that overexpression of AZGP1 may de-
crease seizure susceptibility in PTZ-treated rats, and this
effect of overexpression of AZGPI may possibly be at-
tributed to its inhibition of neuroinflammation. This is
the first study relating ZAG to neuroinflammation in
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seizure; further study is needed to explore the relation-
ship between ZAG and neuroinflammation in seizure.
This study is a preliminary discuss on the role of ZAG
in seizure, but more specific mechanism, such as ZAG—
TGEFB-ERK pathway and the effect of ZAG on NMDA/
AMPA/GABA receptors, still needs to be further
researched. Furthermore, researches on the role of ZAG
deficiency in epilepsy and/or seizure are also needed.

Conclusion

Our study found that overexpression of AZGPI delayed
PTZ kindling, alleviated seizure and epileptiform dis-
charges, inhibited TGFp-mediated ERK phosphorylation,
and decreased TNFa and IL-6 in PTZ-treated rats. Our
study indicated that ZAG may suppress seizure via inhi-
biting neuroinflammation. As an anti-inflammatory
cytokine, ZAG may be a novel target for research and
clinical treatment of seizure and possibly for epilepsy.
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