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Abstract

Inflammation

Recent research has shown that the triggering receptor expressed on myeloid cells 2 (TREM2) in microglia is closely
related to the pathogenesis of Alzheimer's disease (AD). The mechanism of this relationship, however, remains
unclear. TREM2 is part of the TREM family of receptors, which are expressed primarily in myeloid cells, including
monocytes, dendritic cells, and microglia. The TREM family members are cell surface glycoproteins with an
immunoglobulin-like extracellular domain, a transmembrane region and a short cytoplasmic tail region. The present
article reviews the following: (1) the structure, function, and variant site analysis of the Trem2 gene; (2) the
metabolism of TREM?2 in peripheral blood and cerebrospinal fluid; and (3) the possible underlying mechanism by
which TREM2 regulates innate immunity and participates in AD.
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Background

Alzheimer’s disease (AD) is the most common age-
related neurodegenerative disease. The early symptoms
of AD are short-term memory loss and disorientation,
followed by progressive memory loss and irreversible
cognitive decline. As AD progresses, severe clinical
neuropsychiatric symptoms appear, and the patients can
no longer take care of themselves. On average, a person
with Alzheimer’s lives 4 to 8 years after diagnosis, but
patients can live as long as 20 years, depending on other
factors. AD is characterized by an abnormal aggregation
of B-amyloid (AP) peptides and neuronal neurofibrillary
tangles (NFTs) derived from hyperphosphorylated tau
(p-tau).

Currently, approximately 47 million people live with de-
mentia worldwide, and that number will increase to more
than 131 million by 2050 [1]. The global costs of AD will
increase to $1 trillion by 2018. Therefore, AD has become
an urgent health problem around the world [1].

Innate immunity is a type of non-targeted defense mech-
anism [2]. When a living organism makes contact with the
external environment, such as with viruses, germs, or other
pathogenic microorganisms, innate immunity can protect
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and keep our bodies healthy. Innate immunity has been
gradually established during the long-term process of evo-
lution. Over the past few years, genetic research has found
some new pathogenic factors associated with AD [3]. In the
analysis of these factors, the innate immune system has
attracted a great deal of attention, especially regarding the
function of microglia [4].

Microglia are macrophages in the brain and spinal
cord and act as the first line of immune defense in the
central nervous system (CNS). Microglia participate in
the identification of pathogens and activate the innate
immune response, which is of major importance in the
brain [5]. Based on previous reports, we know that
mouse microglial cells exhibit a chemotactic response to
B-amyloid 1-42 (AP42). Furthermore, mouse homolog
formyl peptide receptor 2 (mFPR2) enhances Af42
internalization when the microglia are stimulated by
Toll-like receptors (TLRs) [6]. The activation of TLRs
promotes the ability of microglia to digest and process
AP42. In the pathologic process of AD, the clearance of
microglial cells may be dynamic [6, 7]. Triggering recep-
tor expressed on myeloid cells 2 (TREM2) is expressed
in microglia. Studies [8, 9] have shown that certain
TREM2 variants have an important effect on AD, and
that effect is similar to that of apolipoprotein E (ApoE).
They are all the risk factors of AD. TREM2 and ApoE &4
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may interact synergistically in the preclinical stage of
AD [10].

Structure and function of the Trem2 gene

The Trem2 gene is located on human chromosome 6,
from 41,126,246 bp to 41,130,922 bp, with a total length
of 4676 bp. TREM2 consists of five exons that can en-
code a 230 amino acid protein (Fig. 1) [11]. TREM2 be-
longs to the TREM family of receptors, which are
expressed in a variety of myeloid cells. TREM2 is mainly
expressed in monocytes, macrophages, dendritic cells,
and microglia. Members of the TREM family are cell
surface glycoproteins with immunoglobulin-like extra-
cellular domains, transmembrane regions, and short
cytoplasmic tails. In the brain, TREM2 is involved in
regulating the inflammatory responses of microglia and
phagocytosis of cellular debris.

A decade ago, TREM2 has been founded as a phago-
cytic receptor for bacteria [12]. In neural cells, TREM2
signaling is completely dependent on the adapter pro-
tein, DNAX-activation protein 12 (DAP12, also known
as TYROBP), because the major isoform of TREM2 has
a short cytoplasmic tail. Since TREM2 lacks an add-
itional cytoplasmic domain, TREM2 must signal via
DAP12, which contains an immunoreceptor tyrosine-
based activation motif (ITAM) [13]. This cooperation is
absolutely necessary for effective phagocytosis.

While studies have suggested that TREM2 can regu-
late the number of myeloid cells, the impact of this oc-
currence in AD remains unknown. TREM2 knockdown
in primary microglia was found to reduce cell number
[14], while crosslinking TREM2 promoted an increase in
osteoclast number in cell cultures [15]. It has been con-
firmed that TREM2 can increase the number of myeloid
cells in the context of inflammation or disease. Recent
studies have revealed that myeloid cell accumulation
around amyloid plaques was reduced in TREM2 hemizy-
gous [16, 17] and DAP12-deficient [17] AD mouse
models.

Enhanced phagocytosis is an important function of
TREM2. TREM2 is expressed in myeloid cells in the
CNS, which have high phagocytic activity [18]. Both
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in vitro and in vivo studies have shown that a loss of
TREM?2 function results in reduced phagocytosis [19]
and B-amyloid 1-42 (AP42) uptake [20]. In contrast,
TREM?2 overexpression by lentivirus vector system could
enhance the clearance of apoptotic neurons [21].

TREM2 variants in Alzheimer’s disease

Studies have shown that a few rare variants of TREM2
are considered to be associated with susceptibility to AD
[22, 23]. Research on TREM2 missense mutations in
European populations revealed that variants, such as
L211P [24], H157Y [25], R136Q [26], T96K [26], D87N
[27], T66M [26], R62H [28], R47H [27], and Q33X [29]
(Fig. 2), have been found to be associated with AD.
However, studies of non-European populations have
shown different results. In our research on the Chinese
population, the R47H missense variant was very rare,
and another missense variant, G115S, was found to be
related to AD [30].

Many studies reported that the R47H variant of TREM2
is associated with the risk of AD [9, 27, 31-33]. Lill and
her colleagues reported that the rs75932628 variant of
TREM2 significantly increased the level of CSF-total-tau
but not AP42 in a European population and suggested
that the role of TREM2 in AD may involve tau dysfunc-
tion [34]. However, as shown in previous studies, the
1rs75932628 variant of TREM2 was not detected in either
Chinese or Korean populations [30, 35-37]. These results
suggest that TREM2 is differentially associated with the
incidence of AD in varying ethnicities, which may be re-
lated to the genetic backgrounds of different races.

The R47H variant of TREM2 increases terminal glyco-
sylation of complex oligosaccharides in the Golgi appar-
atus and reduces TREM2’s solubility. This may affect the
binding of DAP12 to TREM2, which would, in turn,
affect the function of the receptor [38]. Meanwhile, the
R47H variant has been presumed to destroy the stability
of the TREM2 protein [39]. On the basis of crystalline
structural analysis, another explanation suggested that
AD risk variant R47H might impact binding to a cell-
surface ligand (TREM2-L) and slightly impact the stabil-
ity and structure of TREM2 [40]. However, a contrary
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Fig. 1 Diagrams of the structure of TREM2. The protein structure has 230 amino acids (aa). TREM2 includes a signal peptide (aal-18, gray), a
transmembrane region (aa174-195, orange), an extracellular domain (aa19-173, blue), and an intracellular domain (aa196-230, green)
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Fig. 2 Diverse TREM?2 variants are associated with AD. There are five exons: exon 1(aal-14, orange), exon 2 (aa15-131, gray), exon 3 (aa132-161,
blue), exon 4 (aa 162-226, green), and exon 5 (aa227-230, turquoise blue). Genetic variants of the TREM2 gene result in diverse changes in the pro-
tein structure (shown above)

result showed that transfected R47H-TREM2 constructs
have an increased half-life relative to wild-type TREM2
and can resist proteasome degradation in the endoplas-
mic reticulum (ER) [38]. These statements are possible,
which depend on the specific activity of life. The
tyrosine-38 and threonine-66 residues of TREM2 are es-
sential for the glycosylation of the protein. The Y38C
and T66M variants of TREM2 may cause some signifi-
cant differences in the glycosylation patterns and dam-
age during transport to the plasma membrane. In the
previous studies, it was found that the TREM2 R47H
variant had a slight difference in N-glycosylation of the
complex oligosaccharide compared to the Y38C and
T66M variants, which are associated with Nasu-Hakola
disease (NHD) [38]. This difference causes NHD to be
an early-onset disease and AD to be a late-onset disease.

TREM2 expression and regulation in Alzheimer’s disease

Data have shown that TREM2 plays a vital role in the
cognitive function of the brain. An important function
of TREM2 is its regulation of phagocytosis in microglia.
Microglial removal of damaged cells, organic matrix
molecules, and biomacromolecules must be assisted by
the TREM2-DAP12 receptor complex. As a glial cell
immunoreceptor, TREM2 has been found to modulate
microglia-mediated inflammatory responses [41]. A dec-
ade ago, Gordon described the mechanism of two op-
posite types of macrophage activation [42], but now, the
type M1 and M2 are widely used to define classically
(proinflammatory) and alternatively activated (anti-in-
flammatory) microglia, which is controversial [43].
Outside the CNS, the mononuclear phagocyte system
has been divided into M1 phenotype and M2 phenotype.
Study shows that in the CNS, because that microglial
activation is heterogeneous, the microglia can also be
categorized into two opposite types: M1 phenotype and
M2 phenotype [44]. Therefore, we conjecture that in the
brain, microglia have two opposite roles, proinflammatory
(M1, cytotoxic) and anti-inflammatory (M2, neuroprotec-
tive). TREM2 inhibits neurotransmitters by blocking M2
microglia. This may reveal the potential mechanism by

which TREM2 inhibits microglial inflammatory responses
[45]. The microglial cells participate in the removal of AP
aggregates through phagocytosis. Previous study found
that TREM2 overexpression by intracerebral lentiviral par-
ticle injection significantly reduced soluble and insoluble
AB42 aggregates in the brain. In middle-aged APPswe/
PSI1AE9 mice (7—8 months old), the ability of microglia to
remove amyloid plaques increased after TREM2 over-
expression, and the density of amyloid plaques in the
brain decreased [20]. However, in a mouse model of
TREM?2 defects, the concentration of amyloid plaques
in the brain did not change [46]. Interestingly, after
the expression of TREM2 in 18-month-old APPswe/
PS1AE9 mice, the concentration of amyloid plaques
was not attenuated, and no alterations in the levels of
AP42 were observed in the brain [46]. Research utiliz-
ing mouse models has shown that the overexpression
of TREM2 plays a protective role in both early- and
mid-term AD, whereas this protective effect is lost in
late-term AD [47]. We speculate that the reduced
number of microglia in the brains of older mice may
lead to a decline in phagocytosis.

The high level of phosphorylation and abnormal ag-
gregation of tau protein are pathophysiological factors
associated with neuronal and synaptic damage. The loss
of neurons and synapses in the hippocampus is
associated with a decrease in spatial cognitive function.
The 7-month-old P301S mouse model has been shown
to exhibit significant neuronal and synaptic damage to
this region. Overexpression of TREM2 is effective in
inhibiting these lesions; water maze experiments have
demonstrated that TREM2 overexpression can restore
spatial cognitive impairment in mice [47]. In addition,
the overexpression of TREM2 by intracerebral lentiviral
particles injection has been found to significantly im-
prove hyperphosphorylation of tau proteins and reduce
the activity of cyclin-dependent kinase 5 (CDK5) and
glycogen synthase kinase-3f (GSK3B) [45]. Thus,
TREM2 overexpression significantly reduces neuronal
loss and may play a role in the phosphorylation of tau
protein, thereby reducing the incidence of AD.
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A recent study showed that TREM2 releases its
extracellular domain after protease cleavage, leaving
only the carboxy-terminal fragment (CTF) attached to
the membrane [48]. Soluble TREM2 (sTREM2) may
be produced by proteolytic cleavage and alternative
splicing. If insertions [49] or frameshifts [50] occur in
exon 4, it can terminate the transmembrane domain,
which is speculated to yield a soluble product. In
addition to the membrane-bound form, sSTREM2 has
been detected in the supernatants of human [51]
and mouse [51] cell cultures and in the peripheral
blood and cerebrospinal fluid (CSF) [52]. The
STREM2 in human peripheral blood and CSF can be
used as a more accurate tool for understanding the bio-
logical effects of TREM2 in the pathogenesis of AD. Hu
et al. analyzed the expression of TREM2 mRNA and
protein in the peripheral blood in a population of
Northern Han Chinese [53]. The results showed that
on the level of mRNA and protein, TREM2 expres-
sion were higher on monocytes, granulocytes, and in
plasma in AD group compared with that of control
groups. Mori et al. performed a similar analysis of
TREM2 expression in the peripheral blood in a small
population of Japanese individuals (26 patients with
AD, 8 males and 18 females) [54]. However, another
study mentioned that the absolute level of TREM2
expression in human peripheral blood monocytes is
quite low and unlikely to be useful for drawing mech-
anistic conclusions about TREM2 [55]. The upregula-
tion of TREM2 in the peripheral blood indicates that
the gene is abnormally active in the development of
AD pathology. More experiments are needed to con-
firm whether TREM2 was differently expressed in the
peripheral blood in some populations. The level of
STREM2 in the CSF also exhibits changes. Although
Kleinberge et al. showed that STREM2 levels were re-
duced in the CSF of AD patients [56], other studies
have shown that sSTREM2 levels in the CSF increased
with age and were positively correlated with the levels
of AB42 and tau protein [26, 57-59].

TREM2 modulates inflammatory responses

While most people think that TREM2 exerts an anti-
inflammatory effect, it seems that the connection be-
tween TREM2 and other inflammatory responses is not
so simple. According to the cell type and context, the
strength [60] and duration [61] of the stimuli is different.
Therefore, TREM2 seems to play different roles in in-
flammatory responses.

Some in vitro and in vivo studies have shown that
TREM2 plays an anti-inflammatory role in certain contexts.
In cell lines, TREM2 deficiency increases the levels of pro-
inflammatory mediators, such as tumor necrosis factor-o
(TNFa), interleukin-1p (IL1pB), and interleukin-6 (IL6) [62].
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TREM2 knockdown in the senescence-accelerated mouse
P8 (SAMP8) mouse model also increased the production of
inflammatory cytokines [63]. Furthermore, overexpressing
TREM2 in AD mouse models [20, 45] reduced the levels of
proinflammatory transcripts. From these studies, we can
speculate that TREM2 can inhibit inflammatory responses
in some contexts.

However, many studies have supported that TREM2
can amplify or promote inflammatory responses.
TREM2-deficient microglia have reduced activation and
a more ramified morphology in cell cultures [19]. In AD
mouse models, TREM2-deficient microglia exhibit de-
creased cell size and surface area, as well as increased
process length, resulting in reduced activation [16].
STREM2 activate the Akt—GSK3p—B-catenin pathway,
which can suppress apoptosis in microglia [64]. In this
study [65], TREM2 promotes microglial survival by
activating the Wnt/B-catenin signaling pathway. The
upregulation of the Wnt/B-catenin pathway suppresses
GSK3p, restores [-catenin signaling, and promotes
TREM2-deficient microglial survival in vitro and in vivo.
NE-kB signaling is associated with proinflammatory
cytokines; the inhibition of NF-«B signaling markedly
downregulated the production of three proinflammatory
cytokines (IL-1B, IL-6, and TNF) [64]. Taken together,
these findings clearly supported that TREM2 can regu-
late inflammatory responses.

TREM2-mediated neuroprotection in microglia

AP can destroy synaptic transmission, induce oxida-
tive stress, and trigger cell death in vitro [66]. Mean-
while, microglia have been shown to devour AP in
the brain [67]. Therefore, microglial phagocytosis of
AP may serve a neuroprotective function. However,
the absence of TREM2 significantly impairs the ability
of microglia to engulf amyloid plaques. Some studies
have reported that a TREM2-deficient AD mouse
model results in a decrease in the number of micro-
glia around amyloid plaques because metabolic fitness
is reduced [68].

Condello et al. proposed a new hypothesis [69]; they
postulated that the tight envelope of microglia around
the amyloid surface constitutes a neuroprotective bar-
rier that limits fibril outgrowth and plaque-associated
toxicity. In AD mouse models, a lack of TREM2 or
DAPI12 results in more dispersed amyloid plaques and
increased synapses, causing a morphology that resem-
bles a sea urchin [17]. The greater the number of
synapses that protrude outside is, the larger the con-
tacted surface with nerve structures and the greater
the potential harm to the nervous system. Thus, in
human brains, the protective role of microglia may
primarily act as a barrier that isolates amyloid plaques
from peripheral nerve tissues.
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Conclusion

The relationships between TREM2 and TREM2 gene
expression, function, mutation site analysis, and me-
tabolism in peripheral blood and cerebrospinal fluid
were reviewed in this paper. It is important to note
that in the TREM family, the Trem2 gene plays an
important role in the pathogenesis of AD. TREM2
can maintain the ability of microglia to recover neu-
rons and engulf damaged neurons. However, some
variants of this gene not only lead to changes in
TREM2 expression levels but also impact the ability
of TREM2 to bind to its ligand in microglia [55, 70].
Thus, these gene variants can influence the natural
immune system. TREM2 mediates the neuroprotec-
tion in microglial cells by regulating the inflammatory
responses and microglia survival (Fig. 3).

These results indicate that TREM2 may be a poten-
tial biomarker for AD diagnosis and treatment. In
addition, TREM2 missense mutants have been found
in many neurological immune deficiencies, indicating
that TREM2 variants impact the immune function of
the nervous system. Further research is needed to
elucidate the biological role of TREM2 in the natural
immune regulation of Alzheimer’s disease. Therefore,
it is important to understand when, where, and how
TREM2 plays a role in AD. This information could
possibly provide new insights into immune function
and immunotherapy, such that we could regulate this
disease throughout its progression.
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