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Abstract

Background: Systemic inflammation induces neuroinflammation and cellular changes such as tau phosphorylation
to impair cognitive function, including learning and memory. This study uses a single model, laparotomy without
any pathogen, to characterize these changes and their responses to anti-inflammatory treatment in the
intermediate term.

Methods: In a two-part experiment, wild-type C57BL/6N mice (male, 3 month old, 25 + 2 g) were subjected to
sevoflurane anesthesia alone or to a laparotomy. Cognitive performance, systemic and neuroinflammatory
responses, and tau phosphorylation were evaluated on postoperative days (POD) 1, 3, and 14. The effect of
perioperative ibuprofen intervention (60 mg/kg) on these changes was then assessed.

Results: Mice in the laparotomy group displayed memory impairment up to POD 14 with initial high levels of
inflammatory cytokines in the liver, frontal cortex (IL-13, IL-6, and TNF-a), and hippocampus (IL-13 and IL-8).

On POD 14, although most circulating and resident cytokine levels returned to normal, a significant number of
microglia and astrocytes remained activated in the frontal cortex and microglia in the hippocampus, as well as
abnormal tau phosphorylation in these two brain regions. Perioperative ibuprofen improved cognitive performance,
attenuated systemic inflammation and glial activation, and suppressed the abnormal tau phosphorylation both in
the frontal cortex and hippocampus.

Conclusions: Our results suggest that (1) cognitive dysfunction is associated with an unbalanced pro-inflammatory
and anti-inflammatory response, tauopathy, and gliosis; (2) cognitive dysfunction, gliosis, and tauopathy following
laparotomy can persist well beyond the immediate postoperative period; and (3) anti-inflammatory drugs can act
rapidly to attenuate inflammatory responses in the brain and negatively modulate neuropathological changes to
improve cognition. These findings may have implications for the duration of therapeutic strategies aimed at
curtaining cognitive dysfunction following surgery.
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Background

The impact of systemic inflammation on neuroinflam-
mation has received increasing attention. This is because
neuroinflammation may trigger the development of
Alzheimer-like pathology and even neurodegeneration if
long-lasting neuroinflammation occurs [1, 2]. Activation
of inflammatory responses in the brain is one of the
pathological events leading to neurodegeneration [3].
Experimentally, majority of the animal model utilizes
bacterial endotoxin lipopolysaccharides (LPS) or infec-
tion using live bacteria to induce systemic inflammation
[4, 5]. We have also used live Escherichia coli or LPS to
study the molecular events of how systemic inflamma-
tion triggers neuroinflammation [6, 7]. However, the
drawback of using LPS and pathogens is the limited ex-
perimental time frame in several days only. Therefore,
we adopt an experimental model of laparotomy to
simulate the problem of some patients who suffer from
cognitive dysfunction after surgery. In this kind of ex-
perimental model of laparotomy, many previous studies
examined the impact of postsurgical effects up to 7 days
only [8-10]. In this study, we had prolonged the exam-
ination time frame from 4 h to 2 weeks in order to
investigate the early event from gene expression of
cytokines to the development of pathology and cogni-
tive dysfunctions.

In this study, we used a single surgical treatment by
opening the abdomen to take out the small intestine for
massage without any damage on the intestine. After-
ward, the intestine was restored back to the abdomen.
By using this surgical procedure (laparotomy), we found
a transient upregulation of systemic inflammatory cyto-
kines within 4 h. Surprisingly, activation of neuroim-
mune responses appeared to be long-lasting for 2 weeks
as indicated by the morphology of activated microglia
and astrocytes, but not the levels of cytokines. Persistent
neuroimmune responses can further promote phos-
phorylation of tau protein, which may lead to the
development of tau pathology. Neuroinflammation and
tau protein phosphorylation can be further translated
into cognitive dysfunctions, as indicated by Y-maze and
novel object recognition tests at 2 weeks after laparot-
omy. More importantly, we can prove that attenuation
of systemic inflammation by ibuprofen could reverse all
the above impact in the brain. Our results demonstrate
that systemic inflammation can exert relatively long-
term effects on the brain, which is not because of the
long-lasting high levels of pro-inflammatory cytokines.
However, once the microglial cells are activated, they
may play the major role in sustaining neuroimmune
responses, resulting in cognitive dysfunctions. Our study
may reshape clinical practice of targeting systemic
immune responses in order to minimize the damage to
the brain after surgery.
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Methods

Animals

Three-month-old male C57BL/6N mice (25+2 g) were
obtained from the Laboratory Animal Unit (LAU) of The
University of Hong Kong and housed according to
Association for Assessment and Accreditation of Laboratory
Animal Care (AAALAC). All experimental protocols and
animal handling procedures were approved by the Faculty
Committee on the Use of Live Animals in Teaching and
Research of the university (CULATR, Ref. No. 3437-14).
The mice were housed in a temperature-controlled room
at 20-22 °C, humidity of 50 + 10%, and were kept on
a 12/12-h light/dark cycle. All animals had access to food
and water ad libitum, and they underwent an ac-
climatization period for 1 week before being employed in
the experiment. All behavioral tests have been performed
from 09:00 to 12:00 A.M. during the light phase.

Experimental protocols

In the first experiment, mice were randomly divided into
the following groups: control (CON), sevoflurane
anesthesia (SEVO), and laparotomy under sevoflurane
anesthesia (LAP). In the second experiment, mice were
randomly assigned to undergo laparotomy with (LAP+Ibu)
or without (LAP) perioperative ibuprofen administration.
Ibuprofen (Sigma-Aldrich, USA) (60 mgkg’1 day’l) [11]
was administrated orally in drinking water for 14 days,
with the first dosage given by gavage 1 hour before the
laparotomy. To evaluate biochemical and histological
characterization of inflammation induced by laparotomy,
we measured mRNA expression and protein levels of
inflammatory cytokines in the liver, brain, and plasma, as
well as the activation of glial cells in the brain. Cognitive
performance was evaluated by serial behavioral tests
including open field test, novel object recognition test, and
Y-maze test. Tau protein phosphorylation and related sig-
naling pathways were comparatively determined on post-
operative day 14 by Western blot analysis.

Surgical and anesthetic procedures

Anesthesia was induced with sevoflurane (Sevorane™,
Abbott, Switzerland) at 5% and maintained at 3% sevo-
flurane using a rodent inhalation anesthesia apparatus
(Harvard Apparatus, USA) with a fresh gas flow of
800 mlmin~'. We modified our surgical procedure from
those previous studies [12, 13]. For the surgical
procedure, a 2.5-cm longitudinal midline incision was
made in the abdomen, and then approximately 10 cm of
the intestine was exteriorized and vigorously rubbed for
30 s. The bowel loops remained outside the abdominal
cavity for 1 min and then replaced into the abdominal
cavity. Sterile gut sutures (4-0, PS-2; Ethicon, USA) were
used to suture the peritoneal lining and abdominal
muscle in two layers and the skin. The entire procedure



Huang et al. Journal of Neuroinflammation (2018) 15:147

was completed within 15 min with monitoring of the
rhythm and frequency of respiration and the color of
animals’ paw on the heating pad. Mice from the
anesthesia only group were subjected to 15 min of
sevoflurane anesthesia at the same concentrations and
gas flow.

Von Frey filament test

Von Frey filament (VFF) test was performed at postopera-
tive 24 h. VFFs of six different calibers (0.4, 0.6, 1.4, 4, 6,
10 g; North Coast Medical, Morgan Hill, CA) were applied
to the abdomen in ascending order three times, each for 1
to 2 s with a 10-s interval between applications. The areas
designated for stimulation were 1 cm from the longitu-
dinal midline. A positive response consisted of the rat rais-
ing its belly (withdrawal response).

Open field test

OFT is a classic experimental tool to evaluate general
locomotor activity and anxiety in rodents based on their
innate tendency to avoid open spaces [14]. During the
spontaneous exploration period in an enclosed gridded
arena, ambulation was measured in the first 5 min, de-
fined as the total grid line crossing. Total exploration
time in the central area was also recorded as the param-
eter for anxiety.

Novel object recognition test

Novel object recognition (NOR) task evaluates the rodents’
ability to recognize a novel object in a controlled environ-
ment [15]. Twenty-four hours after habituated in the
open-field arena in the absence of objects, the mice were
placed in the same arena containing two identical sample
objects (A + A). After a retention interval (24 h), the ani-
mal was returned to the arena with two objects, one is
identical to the sample and the other is novel (A + B). The
discrimination index was used to evaluate the recognition
memory as the ratio of the exploration time of one object
to two objects.

Y-maze training and test

The modified Y-maze test is used to assess hippocampal-
dependent special learning capacity [8]. After habitu-
ation for assessing spontaneous alternating behavior,
each mouse was placed in one of the black compart-
ments, and electric shocks (2 Hz, 10 s, 40 +5 V) were
applied until it entered the shock-free compartment
and stayed there for 30 s. This was recorded as a cor-
rect choice. Successful training was made with continu-
ous nine correct choices. For the testing trial, each
mouse was tested ten times following the same proce-
dures as in the training trial. The number of incorrect
choices as well as the time taken to enter the shock-
free compartment (latency) was recorded.
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Real-time quantitative reverse-transcription polymerase
chain reaction for mRNA

Total RNA from tissues was isolated using TRI Reagent®
(MRC, Cincinnati, USA). Only the isolated RNA samples
with an OD260/280 ratio > 1.8 and OD260/230 ratio < 2.0
were used for analysis. After further purification with
Ambion® DNA-free™ DNA Removal Kit (Invitrogen, USA)
and reverse transcription using PrimeScript™ Master
Mix Kit (TAKARA, Japan), PCR was performed using
StepOnePlus™ Real-Time PCR system (Applied Biosystems,
USA) with the SYBR°Premix Ex Taq™ II Kit (TAKARA,
Japan). The amplification conditions were 95 °C for 20 s,
followed by 40 cycles of denaturation at 95 °C (15 s), ex-
tension at different gene-specific annealing temperature as
described in Table 1, and data capture at 72 °C (30 s). The
relative levels of cytokines were normalized to the en-
dogenous reference glyceraldehyde-3-phosphate dehydro-
genase (GAPDH) following the 224" method.

SDS-PAGE and Western blot analysis

Mice were sacrificed by CO, asphyxiation following all
behavioral tests, in accordance with the guidelines of the
American Veterinary Medical Association. Blood was
transcardially collected and then centrifuged at 1400g
for 14 min for plasma separation. After transcardial per-
fusion with cold 0.9% saline, the right hemispheres were
fixed with 4% paraformaldehyde for 72 h and then dehy-
drated in serial ethanol and embedded in paraffin for
immunofluorescence. The hippocampal and frontal cor-
tical tissues were dissected from the left hemisphere for
Western blotting. Total proteins were collected and sub-
jected to 10% polyacrylamide gel electrophoresis as de-
scribed previously [16]. After blocking with 5% non-fat
dry milk, the membranes were incubated overnight at
4 °C with specific primary antibodies (Table 2). Horse-
radish peroxidase-conjugated secondary antibodies
(DAKO, Denmark) were then used. The immunoreactive
band signal intensity was subsequently visualized by
chemiluminescence (ECL or ECL-plus, Amersham GE
Healthcare, UK). All immunoblots were normalized for
gel loading with p-actin, GAPDH, or a-Tubulin anti-
bodies. The intensities of chemiluminescent bands were
measured using Image-] software (National Institutes of
Health, USA).

Immunofluorescence staining and confocal microscopy

In brief, before antigen retrieval and blocking, 6-pm-thick
coronal sections (frontal cortex—from 2.46 to 1.98 mm an-
terior to bregma; hippocampus—from - 1.46 to — 2.46 mm
posterior to bregma) were deparaffinated and rehydrated.
Then the brain sections were incubated at 4 °C
overnight with the following primary antibodies: Ibal
(1:400, Wako, Japan) and glial fibrillary acidic protein
(GFAP) (1:400, Millipore, USA). Alexa Fluor 568 goat
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Table 1 PCR conditions for inflammatory cytokines
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Gene

Primer sequences

Annealing temperature (°C)

Interleukin-1-B (IL-1) F: 5'-CCTCCTTGCCTCTGATGG-3' 60
R: 5-AGTGCTGCCTAATGTCCC-3'

Tumor necrosis factor (TNF-a) F: 5'-CCCCAGTCTGTATCCTTCT-3' 59
R: 5'-ACTGTCCCAGCATCTTGT-3'

Interleukin-6 (IL-6) F: 5'-GGCAATTCTGATTGTATG-3' 56
R: 5'-CTCTGGCTTTGTCTTTCT-3'

Interleukin-8 (IL-8) F: 5'-TGCCGTGACCTCAAGATGTGCC-3' 60
R: 5-CATCCACAAGCGTGCTGTAGGTG-3'

Interleukin-10 (IL-10) F: 5'-CCAAGCCTTATCGGAAATGA-3' 60
R: 5'-TTCTCACCCAGGGAATTCAA-3'

Glyceraldehye-3-phosphate dehydrogenase (GAPDH) F: 5-ATTCAACGGCACAGTCAA-3' 56
R: 5'-CTCGCTCCTGGAAGATGG-3'

anti-mouse or Alexa Fluor 488 goat anti-rabbit sec-
ondary antibodies (1:400, Invitrogen, USA) were used.
Sections were co-stained with 5 pM 4'-6-diamidino-
2-phenylindole (DAPI) to identify the cell nucleus.
Immunolabeled tissues were observed under a Carl Zeiss
LSM 700 confocal microscope (x5, x20, and x40 oil
immersion objectives) at 1024 x 1024 resolution
equipped with ZEN light software. Z-stack images
were acquired and exported by using the Image-]
software. All qualitative analyses were performed on
at least four images acquired from at least four

Table 2 Primary antibodies used in Western blot analysis

serial sections per animal from at least three inde-
pendent experiments.

Milliplex cytokine assays

Protein levels of IL-1f, IL-6, MIP-2, TNF-a, and IL-10
in whole protein lysates or plasma were measured using
a customized Milliplex Mouse Cytokine Immunoassay
Kit (2620525)/MILLIPLEX MAP Mouse Cytokine/
Chemokine Magnetic Bead Panel, MCYTOMAG-70K
with Analyzer 3.1 Luminex 200 machine (Millipore, USA).

Phosphor peptide/kinase Dilution Resource Catalog no.
AT8 (pSer’®2/Thr?%) 1:1000 Thermo Fisher Scientific, USA MN1020
AT180 (pThr?'/Ser®) 1:1000 Thermo Fisher Scientific, USA MN1040
pS404 (pSer™) 1:3000 Biosource, USA 44-758G
Total tau (polyclonal rabbit anti-human tau) 1:30,000 DAKO, Denmark A0024
Jak2 1:1000 Cell Signaling Technology 32308
phospho-Jak2 (Tyr!%7/1008) 1:1000 Cell Signaling Technology 3771S
Stat3 1:1000 Cell Signaling Technology 9139S
Phospho-Stat3 (Tyr’®) 1:1000 Cell Signaling Technology 91315
Glycogen synthase kinase-3 (GSK-33) 1:1000 Cell Signaling Technology 9315S
Phospho-GSK-38 (Ser?) 1:1000 Cell Signaling Technology 93365
Extracellular signal-regulated kinase (ERK) 1/2 1:3000 Cell Signaling Technology 9102
Phospho-ERK1/2 (Thr?®2/Tyr?®%) 1:3000 Cell Signaling Technology 9101S
Stress-activated protein kinases (SAPK)/c-Jun N-terminal kinase (JNK) 1:3000 Cell Signaling Technology 9258S
Phospho-SAPK-INK (Thr'®/Tyr'®) 1:1000 Cell Signaling Technology 9251S
PP2A-C 1:3000 Millipore, USA 05-421
Phospho-PP2A (Tyr’”) 1:3000 Epitomics 1155-1
B-actin 1:30,000 Sigma-Aldrich A5441
Glyceraldehye-3-phosphate dehydrogenase (GAPDH) 1:3000 Sigma-Aldrich G8795
a-Tubulin 1:40,000 Sigma-Aldrich T9026
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Data were analyzed on corresponding software according
to the manufacturer’s instructions.

Statistical analysis

Data are represented as the mean+ SEM and analyzed
by using the statistic software GraphPad Prism (version
6.0; Graph Pad Software Inc., USA). A one-way ANOVA
followed by Bonferroni’s post hoc tests was used to as-
sess differences among CON, SEVO, and LAP groups.
Unpaired two-tailed Student’s ¢ test was used to compare
the differences between LAP and LAP+Ibu groups.
Normality of the data and homogeneity of group vari-
ances were assessed using the D’Agostino-Pearson
omnibus normality test, Shapiro-Wilk normality test,
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and Kolmogorov-Smirnov test, respectively. Statistical
significance was determined if p < 0.05.

Results

Activation of immune responses in systemic and central
nervous system after laparotomy

The presence of peripheral inflammation was demon-
strated by high levels of mRNA for pro-inflammatory
cytokines in the liver at 4 h, while the presence of neuro-
inflammation was indicated by the increases in mRNAs
for interleukin-1p (IL-1p), IL-6, and tumor necrosis
factor (TNF-a) in the frontal cortex (Fig. 1a; 163.82, 71.73,
80.87% increase compared to SEVO group; p < 0.0001,
p=0.0351, p=0.036) and IL-1p and IL-8 in the
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hippocampus (Fig. 1la; 106.88, 113.89% increase com- liver (Fig. 1b; 56.35, 47.34% increase compared to
pared to SEVO group; p =0.0452, p=0.037). At 24 h, SEVO group; p =0.0249, p =0.0033) and in the frontal
elevations of IL-1B and IL-10 levels were found in the cortex (Fig. 1b; 59.32, 58.4% increase compared to

a Frontal Cortex - 14d Hippocampus - 14d
150 = *% *% *
NE xx A NE - *  kkk kk NE 140 = %
S £ . E 120 -
2 1004 AL E 1007 o —A} 2 i‘
8 -+ 8 s % D 8 1004 2 .
+ + A
= &> - P s v + j}:— - ’Hv-i
3 sod - - S 6o —_ii- s T w0 =
“6 ‘B 40 B 60 ¢
S S 10 S 10
Z  o- = oL'_'_'_'_ z I
RS S O KR & O K &
SO F S TS SO P
RN N RN
b Frontal Cortex - 14d Hippocampus - 14d
—~ 20+ * * — 16 * *k  * 20- *
X N X A < ,kk Kk
< < 1 s —_——
& 151 8 . 8 154 Ao
. 1 F ol : &
3 3 T 10 =
3 10-? . 4 v S 8 L4 At v § 10-* —i— %!
=3 g A4 =3 >
el el
S 5- S 6 » - 8 s -
3 T 1 %
O o © 0]—|—|—|—|— © o
> O K > > O K 3>
o N "4 o N ©
[ 9@ Na Q* o J Qx\

LAP+lbu

o
*

o 2.0 * *kk o 2.0
g g § 8 *%k kkk
gﬁ_ 1.5 . § B 154 s
o < £ o < =
36 % 3610l ="
S O 1.0 eee S O 1.04 v
L5 by [ 7 %
0 = v o =
> = i > = h
§ 20 5209
T8 T8
£ 0.0- £ 0.0
S O K & S O K &
NN Y 2N
) < ) Q
N4 Ny

Fig. 2 Activation of glia in the brain from surgical mice. a In the motor cortex, the number of Ibal™ microglia was quantified by using Kruskal-Wallis
test with Dunn'’s correction, Kruskal-Wallis statistic = 15.11, LAP vs. SEVO, **p = 0.0051; LAP+lbu vs. LAP, *p = 0.0077. In the sensory cortex, the cell
count of Iba1* microglia was analyzed by using Kruskal-Wallis test with Dunn’s correction, Kruskal-Wallis statistic = 21.76, *p = 0.03, **p = 00023, and
*%p =0,0008. In the hippocampus, the number of Ibal™ microglia was quantified by using one-way ANOVA (n = 3-5, F = 5.492; LAP vs. CON,
*p=00218; LAP vs. SEVO, **p = 0.0041; LAP+lbu vs. LAP, *p =0.0182). Dots in the graphs represent the mean value of the four brain sections per
mouse. b The percentage of cell body to the total cell size of Ibal* microglia was quantified by using one-way ANOVA (n = 3-5). In the motor cortex,
F=7.146; LAP vs. SEVO, *p =0.0134; LAP+lbu vs. LAP, *p =0.0125. In the sensory cortex, F=10.99; LAP vs. CON, *p = 0.0226; LAP vs. SEVO, *p =0.0017;
LAP+lbu vs. LAP, *p = 0.0107. In the hippocampus, F = 16.99; LAP vs. CON, *p =0.0193; LAP vs. SEVO, **p = 0.0002; LAP+lbu vs. LAP, **p = 0.0029. Dots in
the graphs represent the mean value of the four brain sections per mouse. ¢ Representative confocal microphotographs presented the activation of
Iba1* microglia in the hippocampus. d The activation of GFAP™ astrocyte was quantified using one-way ANOVA. In the motor cortex (left), F=8.969,
*p=00452, and **p =0.0018. In the sensory cortex (right), F=12.52, *p = 00165, **p = 00045, and ***p = 0.0007




Huang et al. Journal of Neuroinflammation (2018) 15:147

SEVO group; p =0.0252, p <0.0001). In the laparotomy
group, level of circulating cytokines such as IL-6 remained
elevated up to 72 h (Fig. 1¢; 567.34% increase compared
to SEVO group; p =0.0038), IL-1p and MCP-1 up to
14 days (Fig. 1¢; 527.65 and 366.90% increase compared to
SEVO group; p = 0.0334, p = 0.0081). However, by 14 days
of postoperation, there was no longer any increase in ex-
pression of any cytokines in the brain, suggesting a reso-
lution of the neuroinflammation (Fig. 1d).

Up to 14 days following laparotomy, Ibal™ microglia
were increased in the whole frontal cortex (Fig. 2a;
59.52% increase compared to SEVO group, p =0.0216)
and its subregions, as well as the hippocampus (Fig. 2b;
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28.31% increase compared to SEVO group, p = 0.0094).
Furthermore, the morphology of increased cell bodies was
pronounced presented in the laparotomy group (Fig. 2c).
This is compared with the predominately resting microglia
seen in the control and sevoflurane groups. Notable
GFAP" astrocytes were also observed in the postsurgical
frontal cortex (Fig. 2d; 29.85% increase compared to SEVO
group, p =0.0359) but were absent in the hippocampus
(see Additional file 1: Figure S1 and S2).

Tau protein phosphorylation induced by laparotomy
The predictive role of abnormal phosphorylation of tau
protein in the pathogenesis of cognitive impairment and
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Fig. 4 Tau protein phosphorylation-related signaling pathways following sevoflurane anesthesia or laparotomy on POD 14. a & b Differential
changes of GSK3B and phosphatase (PP2A) in the frontal cortex (a) and hippocampus (b). Relative levels of p-GSK3B (Ser®)/GSK3B and p-PP2A
(Tyr*®) in Western blot analysis. ¢ & d Relative levels of p-Jak2 (Tyr'®”1%%)/jak2, p-Stat3 (Tyr’)/Stat3, p-ERK/ERK, and p-JNK/JNK in the frontal
cortex (a) and hippocampus (d) were evaluated by using Western blot analysis. For each panel, n =8, *p < 0.05, **p < 0.01, **p < 0.001

neuronal apoptosis in human diseases or postoperative
changes, such as Alzheimer’s disease (AD), is well dem-
onstrated by a number of studies [17, 18]. The phos-
phorylation sites of tau tested were selected based on
our preliminary experiments. On postoperative day
(POD) 14, the three sites tested had an increase in phos-
phorylation after laparotomy both for the frontal cortex
and hippocampus (S404, AT8, and AT180) (Fig. 3a, b).
Tau protein phosphorylation status is dependent upon
the balance between the activity of the kinases and phos-
phatases (Fig. 4). In the frontal cortex, the activation of
GSK3p and the inhibition of PP2A may provide evidence
for the elevated tau phosphorylation induced by laparot-
omy (Fig. 4a). While in the hippocampus, laparotomy
enhanced the activation of GSK3p without affecting the
activity of PP2A (Fig. 4b).

On POD 14 following laparotomy, the activities of
JAK/STAT3 and JNK were upregulated through phos-
phorylation in both the frontal cortex and hippocampus,
indicating the persistent cellular stress. On the other
hand, laparotomy negatively modulated the activity of
cell survival-related kinase ERK evidenced by the
reduction of phosphorylated ERK in the frontal cortex
(Fig. 4c, d).

Cognitive impairment following laparotomy

Significant weight loss was observed in mice after lapar-
otomy at different postoperative time points that were
evident from the first 24 h and remained different at
POD 7 with the greatest decline seen at POD 3 (Fig. 5a).
The rectal temperature was also changed after laparot-
omy, dropping about 1 °C at POD 3, but thereafter
returned to normal (Fig. 5b).

There were no major variations in locomotor activity
(grid crossing) and exploratory behaviors (central dur-
ation) in the open field test between the SEVO and LAP
groups during the postoperative period (Fig. 5¢). However,
following laparotomy, a greater number of errors (Fig. 5d;
35+37, 4343, 34+28; p=00028, p=00321, p=0.
009) was seen in the Y-maze test for all time points, as
well as a longer latency (Fig. 5d; 6.05+3.30, 5.51 + 3.
66, 6.58 +3.46 s; p=0.0014, p =0.0151, p =0.0003), indi-
cating that memory impairment is present soon after and
persisted into the postoperative period. And the impair-
ment of recognition memory induced by laparotomy was
indicated by a lower discrimination index in the NOR test
(Fig. 5e; 0.44 + 0.06 in the LAP group vs. 0.58 + 0.02 in the
SEVO group; p <0.0001). There was no difference in the

objective measurement of pain to account for the observed
behavorial results (see Additional file 1: Table S1).

Effects of ibuprofen on inflammation, tau protein
phosphorylation, and cognitive performance
Perioperative ibuprofen consumption was associated
with a downward trend in the levels of circulating cyto-
kines but only MCP-1 reached statistical significance, in-
dicating some anti-inflammatory effects of the drug
(Fig. 1c). There was also attenuation of the microgliosis
and astrogliosis triggered by laparotomy in the frontal
cortex (Fig. 2a, 35.47, 35.54% reduction compared to
LAP group; p = 0.0216, p = 0.0039). In the hippocampus,
ibuprofen suppressed the activation of microglia (Fig. 2b,
16.30% reduction compared to LAP group, p = 0.0478).

The ibuprofen-consuming mice displayed less body
weight loss (Fig. 6a), less impairment in recognition mem-
ory (Fig. 6b; 0.60 + 0.09 in LAP+Ibu vs. 0.46 £ 0.11 in LAP,
p=0.0012), and lower memory deficits (Fig. 6¢; 71.93%
decrease in error number compared to LAP group,
p =0.0029; 33.33% decrease in latency compared to
LAP group, p =0.0142).

Concurrently, there were decreases of tau protein
phosphorylation in the frontal cortex and the hippocam-
pus (5404, ATS8, and AT180) (Fig. 7a, b). The increase in
phosphorylation of GSK3p at Ser9 as an important in-
hibitory epitope of the kinase for tau phosphorylation
may contribute to the low levels of phosphorylated tau
by ibuprofen (Fig. 8a, b).

After ibuprofen administration, stress-related signaling
pathway JAK/STAT3 and kinase JNK were less active as
well as cell survival-related kinase ERK (Fig. 8a, b). It
indicated that stress signaling pathways and major tau
kinase GSK3p may be the major mechanisms mediating
the neuroprotective effect of ibuprofen against tau
phosphorylation induced by laparotomy. The cell
survival-related kinases and tau phosphatase were
relatively less prominent.

Discussion

In this study, we used a clinically relevant experimental
surgical model to demonstrate cognitive dysfunction ac-
company changes that bear resemblance to pathological
processes that underlie more indolent neurodegenerative
disorders. Though some of our findings have been
shown in other separate studies, few investigators have
incorporated them in a single model and examining the



Huang et al. Journal of Neuroinflammation (2018) 15:147

Page 10 of 16

Fig. 5 (See legend on next page.)

a b o
110 % 114
= 105- S T
s\o/ ./.___?'/,I 6 0 ? ........................
= 100 —
_-5, 1 o
(] 95 a -1 4 &
= - CON © T
-§‘ 90-;;# SEVO qé— 2 P -e- CON
m sg85d Kkk -*- LAP o SEVO
HiHt — 1 - LAP
2'[ = *%
0 T T T T o '3 T T T T T T T T T T T T T T
1 3 7 14 3 1 3 7 14
. o .
Time (day) Time (day)
C o OFT
200 -
- . e coN g ™ * CON
;é) 150 . = " = SEVO 3 " SEVO
o u ~ .
qg; .. .f Ak °q _} A .~ n . s LAP 5 100 - ¢ : L AP
(L 1004 ';_Li. L 5?{‘% S * u -
E’ ';f L™ e oo u" As a : n Ak (X3 {. ¥
® 504 :.: = u ° © 507 :£ Ayt ° N e A%
Q 4 T % i %E % N o LI
O ] o ° a:_ e H
0 — — T O ol st ar | e —
1 3 14 1 3 14
Time (day) Time (day)
d Y-maze test Y-maze test
15 - *k *% *kk 15 - *% Fekk
ke * *k e CON Fke * Fkk e CON
5 = SEVO - - - = SEVO
5 104 an 4 LAP 3 ah 4 LAP
- . 3 10 - .l Add AAA
5 A:A * AdA 3 L4 i _%
A A C
-g 54 % . % 549 o % . -;L o :
2 . % % - am 4 * o “e
mE aa mE A 3 " ") $ 4 % $ .
| A [ ) A A
Lo o 23 LT o - I
1 3 14 1 14
Time (day) Time (day)
e NOR test- POD 12 NOR test- POD 13
3(’: 0.8 2 0.8 *kk
3 o
£ ord . £ o1 . X
x x d e
S o . . § "1am B
E s B me T v
c 05 N c - ° AA
S E A o =
E 04 . g 0.4 ‘A“
E 0.0 E 0681
g o.ooT ‘\. T T g o:ooT T T T
O 4 > QO Q
£ & v N




Huang et al. Journal of Neuroinflammation (2018) 15:147

Page 11 of 16

(See figure on previous page.)

session. a—e n=9-12, *p < 0.05, *p < 0.01, **p < 0.001

Fig. 5 Persistent cognitive impairment during postoperative period. a Body weights as percentage of baseline were analyzed using a two-way
ANOVA followed by Bonferroni’s post hoc test (F5 103 =42.75; LAP vs. SEVO, *p = 0.0445, **p = 0.0059, ***p < 0.0001; LAP vs. CON, Wp <0.0001; on
POD 14, LAP vs. SEVO, p=0.0531). b Rectal temperature was analyzed by two-way ANOVA followed by Bonferroni's post hoc test (**p = 0.0071,
F=2588). ¢ In the open filed test, locomotor activity and anxiety indicated by grid crossing frequency and central exploration time respectively
on POD 1, 3, and 14. d In the Y-maze test, longer escape latency and greater error number showed working memory deficits on POD 1, 3, and
14. e In the novel object recognition (NOR) test, discrimination index (DI) was the ratio of exploration time of one object to two objects, old
object (A) to (A + A) on POD 12, or new object (B) to (A + B) on POD 13. There was no object and location preference during the familiarization

changes at a prolonged postoperative time point. Of par-
ticular note, we have demonstrated that there is
evidence of persistent gliosis 2 weeks postoperatively
accompanying cognitive deficits, and such changes may
be attenuated by sustained anti-inflammatory treatment.

In this model, laparotomy but not sevoflurane alone
induced peripheral inflammation and neuroinflamma-
tion, as well as tau phosphorylation. The inflammatory
response occurred very early following surgery, but the
cytokine levels in the plasma and the brain essentially
resolved by day 14 with the exception of plasma IL-1f
and MCP-1. However, there remained a greater number
of microglial cells and more in the activated morphology
both in the hippocampus and frontal cortex and a simi-
lar picture for astrocytes in the frontal cortex. These
changes were accompanied by deficits in recognition
memory and hippocampus-dependent working memory
with no significant difference in motor activity. A sus-
tained anti-inflammatory treatment with ibuprofen de-
creased tau phosphorylation and improved cognition via
anti-inflammatory actions.

It has been shown that inflammatory processes may
contribute to the development of neurodegenerative
changes, even before any changes of tau [19]. Peripheral
inflammation is associated with the production of both
pro- and anti-inflammatory cytokines, which activate glial
cells and attribute to the progression of neurodegenerative
diseases [20]. More recently [13, 21] and now in this
study, the role of inflammation has been shown for post-
operative cognitive dysfunction. In Hovens’s studies by
using another abdominal surgery model (ischemia-reper-
fusion of the upper mesenteric artery), significantly in-
creased IL-1f and microgliosis are observed at 7 days
after surgery, associated with impaired special learning
and memory. However, persistent activation of microglia
and memory deficits disappeared in postoperative 2 or
3 weeks in young rats [21] while continued to postopera-
tive day 14 [22] or even postoperative 6 weeks [23] in aged
rats. In our study, we found persistent microgliosis and
cognitive deficits (special memory and object recognition)
on postoperative day 14 in young mice (3 months old).
And the glial cells may remain activated even after the
resolution of cytokine elevation. The acute and con-
stant inflammatory responses in the brain may

contribute to the persistent cognitive dysfunction in-
duced by laparotomy during the whole postoperative
period. Our findings provided information for studying
the relationship of systemic inflammation and neuroin-
flammation by using one single animal model.

Contradictory studies showed that anesthesia improved
spatial memory in young rats [24] or prevented against
organ protection or cytoprotective effect by attenuating sys-
temic or local inflammatory responses and apoptosis after
ischemia-reperfusion injury [25, 26] or sepsis [27]. Sevo-
flurane has minimal impact on cytokine and microglia
activity [28, 29]. In this study, significant decreases in
MCP-1 and Ibal® microglia after brief exposure to
sevoflurane may suggest its suppressive effects on
cytokine production as well as glial activation.

Beyond its classical role in stabilizing microtubule, tau
has other cellular functions such as regulating microtu-
bules assembly, dynamic behavior, and the axonal trans-
port under physiological conditions via phosphorylation
[30, 31]. Accumulation of abnormally phosphorylated
tau is a major neuropathological feature of tauopathies
in neurodegenerative disorders [9]. In tauopathies, the
intracellular soluble tau forms filamentous structures of
aggregated, hyperphosphorylated tau, which are associ-
ated with synaptic loss and neuronal death. Therefore,
based on their role in the pathogenesis of cognitive
impairment and neuronal apoptosis, tau protein charac-
teristics may have diagnostic and possibly predictive
implications in postoperative cognitive changes [18].
Furthermore, the ability of tau protein transferring be-
tween neurons trans-neuronally and trans-synaptically
via the extracellular space [32] may contribute to the
toxic relationship between tau oligomers and inflamma-
tion. Tau protein could spread and initiate a feed-
forward cycle to magnify inflammation even though the
inflammation occurred in disease prior to the formation
of larger aggregates [33]. In our study, the significant
elevation of tau phosphorylation in the frontal cortex
and hippocampus (S404, AT8, and AT180) on postoper-
ative day 14 may characterize the pathological profiles of
cognitive impairment after laparotomy.

A growing body of evidence supports the critical activa-
tion by multiple cytokines of the Janus kinase (JAK)/signal
transducer and activator of transcription (STAT) pathway,
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the Ras-Raf-mitogen-activated protein kinase (MAPK) path-
way, in the pathogenesis of various neuro-inflammatory
and neurodegenerative disorders of the CNS [34, 35]. The
JAK/STAT pathway is involved in many cellular processes,
including cell growth and differentiation, immune func-
tions, and synaptic plasticity [36]. In addition, the JAK/
STAT pathway may also have a role in memory formation
[37] through either modulating the microtubule stability
[38] or regulating the synaptic plasticity [36]. As a key
effector of neuronal survival after injury, STAT3 influ-
ences neuronal survival during development, gliogenesis
regulation, neuroinflammation, and neurodegeneration
[35, 39, 40]. Therefore, the upregulation of STAT3
phosphorylation by laparotomy may contribute to the
increases in the population of GFAP" astrocytes and Ibal*
microglia in the frontal cortex and hippocampus, which
were then attenuated by ibuprofen application. The
involvement of the MAPK pathway and GSK3p for the
tau-dependent neurotoxicity was addressed to dissect the
mechanism concerning cognitive dysfunction resulted from
laparotomy [34]. The inhibition of phosphatase activity
negatively modulated neuronal tau phosphorylation, which
might be the major signal transduction target of
laparotomy. The relative increase of Ser9 epitope of GSK3[
after ibuprofen consumption, coupled with the decrease of
PP2A, an important tau phosphatase, suggests that GSK3B
plays a relatively more important role in the effect of
ibuprofen on tau phosphorylation.

The attenuation of the pro-inflammatory response is
known to be beneficial for functional recovery after CNS
injuries, and the inhibition of systemic inflammation pre-
vented the changes demonstrated in this study. Ibuprofen
is a widely used non-steroidal anti-inflammatory drug
(NSAID). Our study confirmed that sustained administra-
tion of ibuprofen prevented cognitive deficits correlated
with a reduction in tau phosphorylation following laparot-
omy [41]. During this process, ibuprofen suppressed the
activation of microglia and reactive astrocytes, as well as
the pro-inflammatory cytokines. The major contributor to
all these changes may be the attenuation of stress signal-
ing pathways by ibuprofen. Specifically, ibuprofen consist-
ently prevented the activation of JAK/STAT signaling
pathway and JNK. For tau phosphorylation, the stress sig-
naling pathways and major tau kinase GSK3f may be the
major mechanisms responsible for the attenuating effect
of ibuprofen against tau phosphorylation following lapar-
otomy. The cell survival-related kinases and tau phosphat-
ase were relatively less prominent.

In order to demonstrate and integrate the range of
changes in a single model, we used an approach of modu-
lating systemic inflammation with the non-steroidal anti-
inflammatory agent ibuprofen. While we demonstrated that
the approach of giving the drug for the entirety of the ex-
perimental period brought benefits, we have not explored
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whether just dampening the initial inflammatory response
with a shorter course would produce a similar response.
This question is of clinical significance as prolonged non-
steroidal use, especially in the perioperative period, may
cause an unfavorable risk-benefit ratio, particularly in the
elderly population. Taken together, we have shown that
neuroinflammation may be protracted after surgery,
and this causes adverse changes in the brain, the ef-
fects of which can be attenuated by the use of anti-
inflammatory treatment.

Conclusions

In summary, we established a stable and sensitive ani-
mal model for investigating neuropathological variants
induced by systemic inflammation, in which several
key components contributing to the development of
cognitive dysfunction have been demonstrated com-
prehensively, such as inflammation, tauopathy, and
gliosis. And the systemic and neural inflammation
profiles were further described during the cognitive
decline processes.
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Additional file

Additional file 1: Table S1. Analgesia measurement by von Frey
filament at postoperative 24 h. Figure S1. Activation of microglia in the
brain from surgical mice. Representative confocal microphotographs
presented the activation of Ibal* microglia in the frontal cortex

(M2 region, top boxes; sensory cortex, bottom boxes) and hippocampus
induced by laparotomy. Figure S2. Activation of astrocyte in the frontal
cortex from surgical mice. (@) Representative confocal microphotographs
presented the activation of GFAP" astrocyte in the motor cortex

(M2: secondary motor cortex; AlV: agranular insular cortex, ventral part)
on POD 14. (b) Representative confocal microphotographs presented the
activation of GFAP™ astrocyte in the sensory cortex (aci: anterior
commissure intrabulbar part; OV: olfactory ventricle (olfactory part of

lateral ventricle)) induced by laparotomy on POD 14. (ZIP 27129 kb)
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