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Abstract

Background: Acute neurological insults caused by infection, systemic inflammation, ischemia, or traumatic injury
are often associated with breakdown of the blood-brain barrier (BBB) followed by infiltration of peripheral immune
cells, cytotoxic proteins, and water. BBB breakdown and extravasation of these peripheral components into the
brain parenchyma result in inflammation, oxidative stress, edema, excitotoxicity, and neurodegeneration. These
downstream consequences of BBB dysfunction can drive pathophysiological processes and play a substantial role in
the morbidity and mortality of acute and chronic neurological insults, and contribute to long-term sequelae.
Preserving or rescuing BBB integrity and homeostasis therefore represents a translational research area of high
therapeutic potential.

Methods: Induction of general and localized BBB disruption in mice was carried out using systemic administration of
LPS and focal photothrombotic ischemic insult, respectively, in the presence and absence of the monoacylglycerol
lipase (MAGL) inhibitor, CPD-4645. The effects of CPD-4645 treatment were assessed by gene expression analysis
performed on neurovascular-enriched brain fractions, cytokine and inflammatory mediator measurement, and
functional assessment of BBB permeability. The mechanism of action of CPD-4645 was studied pharmacologically using
inverse agonists/antagonists of the cannabinoid receptors CB1 and CB2.

Results: Here, we demonstrate that the neurovasculature exhibits a unique transcriptional signature following
inflammatory insults, and pharmacological inhibition of MAGL using a newly characterized inhibitor rescues
the transcriptional profile of brain vasculature and restores its functional homeostasis. This pronounced effect
of MAGL inhibition on blood-brain barrier permeability is evident following both systemic inflammatory and
localized ischemic insults. Mechanistically, the protective effects of the MAGL inhibitor are partially mediated
by cannabinoid receptor signaling in the ischemic brain insult.

Conclusions: Our results support considering MAGL inhibitors as potential therapeutics for BBB dysfunction
and cerebral edema associated with inflammatory brain insults.
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Background
The blood-brain barrier (BBB) is a selectively permeable
barrier that regulates protein, metabolite, and ion trans-
port to and from the central nervous system (CNS). It is
composed of endothelial cells connected by tight junc-
tions, pericytes, and astrocyte end-feet [1]. Acute neuro-
logical insults caused by infection, ischemia, or traumatic
insults are often associated with breakdown of the BBB
followed by infiltration of circulating immune cells and
extravasation of plasma components. BBB breakdown and
extravasation of these peripheral components into the
brain parenchyma result in inflammation, oxidative stress,
edema, excitotoxicity, and neurodegeneration [2]. Each of
these insults can drive pathophysiological processes and
play a substantial role in the morbidity and mortality of
acute and chronic neurological diseases. Preserving or res-
cuing BBB integrity and function is therefore a research
area with high therapeutic potential.
Systemic inflammatory challenges such as lipopolysac-

charide (LPS), an immunogenic component of Gram-
negative bacteria, promote BBB dysfunction [3]. Several
inflammatory pathways have been proposed to contrib-
ute to the disruptive effects of LPS on BBB. Central to
these mechanisms is the activation of the cerebrovascu-
lar endothelium and surrounding cells within the neuro-
vascular unit by pro-inflammatory cytokines (IL-1β and
TNFα) and eicosanoids induced by LPS [4].
Although the triggering mechanism of BBB disruption

in ischemic stroke is relatively distinct from other sys-
temic or central inflammatory stimuli [5], the neurovas-
cular unit is dramatically sensitized to further disruptive
changes by peripheral or central inflammation [6]. As a
consequence, brain damage and mortality are exacer-
bated by systemic and central inflammation in clinical
outcome as well as in experimental animal models [6, 7].
The interplay between brain injury and the subse-

quent inflammatory cascade as it pertains to BBB in-
tegrity and properties is not completely understood.
Moreover, it is still unclear whether cerebrovascular
changes and BBB breakdown can initiate pathogenic
events that lead directly to neuronal injury, impaired
functional activity, and early neurological symptoms
in humans [2]. Therefore, a better mechanistic under-
standing of the molecular events leading to BBB dys-
function is necessary to address the unmet medical
needs in acute brain injury and perhaps other chronic
neurodegenerative conditions.
We and others have recently shown that monoacylglycerol

lipase (MAGL), a serine hydrolase which modulates levels of
the abundant endocannabinoid 2-arachidonoylglycerol
(2-AG) [8, 9], also regulates neuroinflammation [10, 11].
Through hydrolysis of 2-AG, MAGL produces a pool of
arachidonic acid (AA) which contributes to the inflam-
matory cascade in the CNS. Inhibition of MAGL

enhances 2-AG-mediated cannabinoid receptor signaling
while lowering arachidonate levels in the brain.
Interestingly, both pathways triggered by MAGL in-

hibition, elevation of 2-AG and reduction of AA, have
been proposed to be implicated in modulation of BBB
properties. After neurological insults, endocannabinoids
are elevated and are hypothesized to protect the CNS
through enhanced cannabinoid receptor signaling [12].
Indeed, administration of 2-AG was shown to be neuro-
protective and restored BBB function after traumatic
brain injury (TBI) [13]. In contrast, elevation of AA has
long been known to induce BBB dysfunction and cere-
bral edema [14]. Due to the bidirectional effects on brain
inflammation, MAGL inhibition has demonstrated a var-
iety of beneficial therapeutic effects including improve-
ment of BBB function in a TBI model [15]. However, the
specific mechanism(s) of action of MAGL in BBB func-
tion and dysfunction has yet to be elucidated.
In this study, we assessed the effects of systemic in-

flammation on BBB function and the contribution of the
inflammatory cascade to BBB dysfunction subsequent to
an ischemic insult. We have characterized and used a se-
lective inhibitor of 2-AG hydrolysis to modulate the cen-
tral arachidonate inflammatory cascade and to enhance
endocannabinoid tone. Transcriptomic analysis coupled
with functional measurement of BBB integrity demon-
strated that MAGL inhibition promotes preservation of
BBB integrity in both inflammatory and ischemic condi-
tions. In addition, we characterized the contribution of
central arachidonate lowering effects relative to canna-
binoid receptor agonism and demonstrated a dynamic
and differential MAGL inhibition-mediated mechanism
of BBB protection, which is dependent on the nature
(inflammatory vs. ischemic) of the initial insult.

Methods
Animals
Animals were purchased from Charles River (CD1) or
Jackson Labs (C57Bl/6). All animals were housed in
groups in a temperature-controlled environment, kept
on 12 h light/dark cycle, and allowed food and water ad
libitum. All procedures were conducted under the
approval of the Institutional Animals Care and Use
Committee (IACUC) at Pfizer Inc. (Cambridge, MA).

Pharmacokinetic, pharmacodynamic, cytokine, and
activity-based protein profiling measurements
CPD-4645 was dissolved in a vehicle of 5:5:90 DMSO:
Cremophor:Saline and subcutaneously administered to
CD1 mice at a dose of 10 mg/kg. Plasma and brain sam-
ples of CPD-4645-treated mice were collected at 0.5, 1,
2, 4, 8, 12, and 24 h post-dose (three mice per time
point). Plasma and brain samples of vehicle-treated mice
were collected at 1 h post-dose.
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Plasma samples were prepared for CPD-4645 meas-
urement on wet ice. Briefly, samples were spiked with IS
(internal standard) solution (100 ng/mL Labtalol,
400 ng/mL diclofenac, and 200 ng/mL tolbtamide in
CAN/MeOH (v:v 50:50) with 0.1% formic acid) followed
by extraction in water/MeOH (v:v 75:25) with 0.1% for-
mic acid. Samples were then centrifuged at 4000 rcf for
10 min at 4 °C, and supernatant was directly injected for
LC-MS/MS analysis. Cerebellums were homogenized
with three volumes (w:v) of PBS. The homogenates were
then spiked with IS solution followed by centrifugation
at 15,700 rcf for 15 min at 4 °C. Supernatant was re-
moved and directly injected for LC-MS/MS analysis.
Levels of brain 2-AG and AA were measured by

homogenizing brain with three volumes (w:v) of
homogenization buffer (1% PMSF and 5% 100 mM
NH4OAc in water pH 2.0, adjusted with formic acid).
The brain homogenates were then spiked with IS2
[1 μg/mL d5-2-AG or d8-AA (deuterated 2-
arachidonoylglycerol or deuterated arachidonic acid)
(Cayman Chemical Ann Arbor, Michigan) in ACN] solu-
tion followed by precipitation and organic extraction in
ACN. Samples were then centrifuged at 15,700 rcf for
15 min at 4 °C and supernatant directly injected onto a
C-18 UPLC column held at 50 °C at a flow rate of 0.
5 mL/min. For 2-AG measurement, mass spectrometry
was run in positive ESI mode with SRM detection. The
2-AG m/z was 379.4/287.3. The d5-2-AG m/z was 384.
4/287.4. For AA measurement, mass spectrometry was
run in negative ESI mode with SRM detection. The AA
m/z was 303.1/205.2. The d5-2-AG m/z was 311.2/267.0.
Calibration standards and quality control samples were
prepared using the same methodology. The 2-AG
calibration curve consisted of 50–50,000 ng/mL 2-AG in
homogenization buffer. The AA calibration curve
consisted of 50–50,000 ng/mL AA in homogenization
buffer.
Brain cytokine levels were measured by preparing sol-

uble proteomes as previously described [11] followed by
ELISA measurement using V-Plex Proinflammatory
Panel 1 (Meso Scale Diagnostics, Rockville MD) with
detection antibodies for IL1β and IL6. Cytokine levels
were normalized for total protein as determined by
bicinchoninic acid (BCA) protein assay (Thermo Fisher,
Waltham, MA).
Activity-based protein profiling was performed as previ-

ously described [9] with minor modifications. Briefly,
membrane proteomes were isolated by homogenizing
brain tissue in PBS buffer and centrifuged at 145,000×g
for 45 min at 4 °C. Pellets were washed three times in
PBS. Samples were diluted to 1 mg/mL total protein and
incubated with 2 μM final fluorophosphonate-rhodamine.
Reactions were incubated for 30 min at room temperature
and quenched with 4× SDS loading buffer and boiled for

10 min at 95 °C. Samples were run on 12% SDS mini-gels
and visualized using a fluorescent scanner (GE Image-
Quant Las4000). Densitometry analysis was performed on
the in-gel fluorescence images using Image Studio version
4 software (LI-COR, Lincoln, Nebraska).

Induction of BBB disruption by lipopolysaccharide
Male CD1 mice aged 8–10 weeks were intraperitoneally
injected with 3 mg/kg of salmonella enterica typhimur-
ium (Sigma L2262) at 0, 6, and 24 h as previously de-
scribed [3]. For the pharmacology studies, mice were
dosed with 10 mg/kg subcutaneous CPD-4645 in a ve-
hicle of 5:5:90 DMSO:Cremophor:Saline with and with-
out combination of 3 mg/kg rimonabant and AM630 in
vehicle (5:5:90; DMSO:Cremophor:Saline) 30 min post
each LPS dose. For assessment of BBB function, mice
were euthanized at 28 h after the first LPS injection. An-
imals were perfused with heparinized PBS, and brains
were collected and frozen on dry ice for fluorescent im-
munostaining or ELISA. For the RNA-seq studies, the
brains were not perfused as above and frozen brains
were transferred into RNA-later-ICE Frozen Tissue
Transition Solution (Life Technologies AM7030) in
stored for 24 h at − 20 °C. Brain vasculature was then
isolated as previously described [16] with the addition of
two extra washes in sucrose buffer to remove remaining
traces of myelin. Total RNA was purified using Qiagen
RNeasy kits. RT-qPCR was performed to determine
which cell types are present in the preparations.

Gene
symbol

Protein name Taqman assay ID

Gfap Glial Fibrillary Acidic Protein Mm01253033_m1

Pdgfrb Platelet-Derived Growth Factor
Receptor Beta

Mm00435546_m1

Pecam1 Platelet Endothelial Cell Adhesion
Molecule

Mm01242576_m1

Sypl Synaptophysin-like Mm01289818_g1

Aif1 (Iba1) Allograft Inflammatory Factor 1 Mm00520165_m1

Transcriptomics
Library preparation
Stranded cDNA libraries were prepared from 50 ng
RNA using TruSeq Stranded mRNA NeoPrep kits
(Illumina) and sequenced on a NextSeq 500 (Illumina)
at a read depth of 10–20 million reads per sample (75
base pair single-end reads). FASTQ files were assembled
using bcl2fastq.

Sequence data processing
Sequence reads were aligned to mouse genome mm10/
GRCm38 assembly using STAR 2.5.2a (http://github.
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com/alexdobin/STAR; parameters: –outFilterMultimap
Nmax 20 –outFilterType BySJout –alignSJoverhangMin
8 –alignSJDBoverhangMin 1 –outFilterMismatchNmax
999 –outFilterMismatchNoverLmax 0.1 –alignIntron
Min 20 –alignIntronMax 1000000 –alignMatesGapMax
1000000). Read counts for gene expression
quantification were calculated using STAR –quantMode
based on GENCODE release M9 basic annotation.

Differential gene expression analysis
The read count data were normalized by the trimmed
mean of the M-values method [17] using the
calcNormFactors() function from the edgeR package
[18]. The mean-variance relationship of the counts was
estimated using the voom() function [19] from the
limma package [20]. To identify differentially expressed
genes, the log2 fold differences and p values were esti-
mated by fitting a linear model for each gene and apply-
ing empirical Bayes to moderate residual variances,
using lmFit() and eBayes() functions from the limma
package. Benjamini-Hochberg procedure for multiple
hypothesis testing was applied to adjust p values. Differ-
entially expressed genes were selected at twofold change
(FC) cutoff and false discovery rate (FDR) of 0.05.

Gene ontology analysis
DAVID 6.7 bioinformatics tools (http://david-d.ncifcrf.
gov) were applied for gene ontology (GO) analysis. The
enriched GO categories were identified using the
functional annotation clustering tool.

Assessment of extravascular fibrinogen via fluorescent
immunostaining
Fresh frozen brains were stored at − 20 °C until sectioning.
Twelve-micrometer sections were cut using a cryostat and
were heat mounted to slides and stored at − 20 °C until use.
Sections were incubated in Zinc fix (BD Pharmingen #51-
7538KZ) for 3 h prior to permeabilization (0.1% citrate,
0.1% Triton-X100 in PBS) for 10 min at 4 °C. Next,
sections were blocked in 3% bovine serum albumin (BSA)
for 1 h. Sections were incubated overnight at 4 °C in sheep
anti-Fibrinogen (1:500; Serotec #4440-8004) and rat
anti-CD31 (1:250; Serotec MCA2388T) made in 0.1%
BSA. The next day, sections were washed in PBS-T and
incubated in Alexa Fluor anti-sheep-555 (Invitrogen
#A21436) and Alexa Fluor anti-rat-488 (Life Technologies
#A21208) made in 0.1% BSA for 1 h at 37 °C. Slides were
imaged on a Zeiss 710 confocal microscope. Images were
taken with 20× objective and analyzed using ImageJ soft-
ware. All images and subsequent analysis were performed
blinded. To analyze extravascular fibrinogen, images
were thresholded to remove signal where CD31 staining
(vascular endothelial marker) and fibrinogen staining
were co-localized. The areas of exclusively fibrinogen

signal in the brain were quantified using the ImageJ
integrity density function.

Measurement of brain and plasma fibrinogen levels
Brain homogenates were made by sonicating one
cerebral hemisphere (without cerebellum) in radioimmu
noprecipitation assay buffer (Sigma #R0278) containing
protease and phosphatase inhibitors (Pierce #88669).
Lysates were centrifuged twice at 13,300 rpm for
15 min. Pellets were discarded and supernatants were
kept for analysis. For plasma sample collection, blood
samples were collected in heparin-sodium (1:10) via car-
diac puncture and centrifuged at 6000 rpm for 5 min.
Plasma was collected and spun again at 13,300 rpm for
5 min to remove any residual blood cells. Brain homoge-
nates (1:30 dilution) and plasma samples (1:20,000 dilu-
tion) were analyzed for fibrinogen levels by ELISA
(Genway; cat #GWBBB0BA2) following the manufac-
turer’s protocol.

Measurement of FITC dextran permeability in LPS model
At 1 h prior to tissue collection, 200 μL of 25 mg/mL
solution of fluorescein isothiocyanate (FITC) conjugated
dextran (70 kDa, Sigma Aldrich, St Louis, MO) in sterile
saline was injected retro-orbitally. At 1-h post-
fluorescent tracer administration, mice were anesthe-
tized with isoflurane and transcardially perfused with
approximately 20 mL of phosphate buffered saline (PBS)
with heparin (5 U/ml). The brain was collected, frozen
in liquid nitrogen, and stored at − 80 °C until use.
To measure FITC-Dextran fluorescence, a hemi-brain

was homogenized using a TissueLyser II (Qiagen,
Germantown, MD) set at 25 Hz for 2 min at 4 °C in
600 μL of ice-cold radioimmunoprecipitation (RIPA)
assay buffer (150 mM NaCl, 1.0% IGEPAL® CA-630,
0.5% sodium deoxycholate, 0.1% SDS, and 50 mM Tris,
pH 8.0) (Sigma Aldrich, St Louis, MO) with protease
inhibitors (cOmplete EDTA-free, Roche, Indianapolis, IN).
Each sample was then centrifuged at 10,000 rcf for 10 min
at 4 °C to pellet large debris.
Supernatant was collected and diluted 1:1 with PBS

placed into a black 96-well plate. Fluorescence was mea-
sured in a SpectraMax M5 (Molecular Devices, Sunnyvale,
CA) with excitation at 488 nm and emission at 525 nm.
After the initial reading, samples were further diluted (1:4
and 1:8) and fluorescence intensity re-measured. Each
reading was multiplied by the corresponding dilution fac-
tor, and an average fluorescence reading was determined.

Induction of focal photothrombotic ischemia
To alleviate any potential pain or discomfort, mice were
treated with 0.05 mg/kg of buprenorphine prophylactically.
Mice were anesthetized with isoflurane for the duration of
the procedure. Mice (C57BL/6) received a retro-orbital
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injection of 30 μL of a 15 mg/mL solution of rose bengal
dissolved in sterile saline. The head of the mice was shaved
and a small incision aseptically made along the midline of
the skull. The mice were then placed into a stereotaxic
frame, and a green laser held approximately 4 cm from the
surface of the skull was positioned over the somatosensory
cortex. Mice were subjected to the laser exposure for
10 min. After green laser illumination, the skin incision was
closed with wound clips and animals monitored as they
woke from the anesthesia. Mice were subcutaneously ad-
ministered vehicle or 10 mg/kg CPD-4645 30 min post-
photothrombosis. Mice received a daily injection of vehicle
of CPD-4645 for 3 days.
On day 3, each mouse was retro-orbitally injected with

Alexa Fluor® 555-conjugated Cadaverine (Thermo A30677)
at 500 μg/20 g body weight as previously described [21] or
200 μL of 25 mg/mL solution of fluorescein isothiocyanate
(FITC)- conjugated dextran (70 kDa, Sigma Aldrich, St
Louis, MO) in sterile saline. At 1 h post-fluorescent tracer
administration, mice were anesthetized with isoflurane and
transcardially perfused with approximately 20 mL of PBS
with heparin (5 U/ml). The brain was collected and the cor-
tex dissected. A 5-mm tissue punch was taken from the
core of the thrombotic infarct and from the identical region
of contralateral cortex. Tissues were frozen in liquid nitro-
gen and stored at − 80 °C until use.
To measure FITC-Dextran fluorescence, a 5-mm

stainless steel bead was added to each tube along with
300 μL of ice-cold radioimmunoprecipitation (RIPA)
assay buffer (150 mM NaCl, 1.0% IGEPAL® CA-630, 0.5%
sodium deoxycholate, 0.1% SDS, and 50 mM Tris, pH 8.0)
(Sigma Aldrich, St Louis, MO) with protease inhibitors
(cOmplete EDTA-free, Roche, Indianapolis, IN). Samples
were then homogenized using a TissueLyser II (Qiagen,
Germantown, MD) set at 25 Hz for 2 min at 4 °C followed
by incubation on ice for 30 min. Each sample was
then centrifuged at 10,000 rcf for 10 min at 4 °C to
pellet large debris.
Supernatant was collected and diluted 1:1 with PBS

placed into a black 96-well plate. Fluorescence was mea-
sured in a SpectraMax M5 (Molecular Devices, Sunnyvale,
CA) with excitation at 488 nm and emission at 525 nm.
After the initial reading, samples were further diluted (1:4
and 1:8) and fluorescence intensity re-measured. Each
reading was multiplied by the corresponding dilution fac-
tor, and an average fluorescence reading was determined.

Results
Profiling of inflammatory gene expression in
neurovascular-enriched brain fraction following
systemic insult
Brain fraction enriched for cerebrovascular tissue was
isolated as previously described [16]. To confirm
enrichment of the neurovasculature, we assessed

expression of cell type-specific genes characteristic of
the different cell types that compose the blood-brain
barrier. Gene expression analysis by RT-qPCR demon-
strated enrichment in the expression of Gfap, Pdgfrb,
and Pecam1 and low abundance of Syp and Aif1 (Fig. 1a)
demonstrating prevalence of astrocytes, pericytes, and
endothelial cells over neurons and microglia which is
consistent with the cell types that comprise the neu-
rovascular unit.
Activation of the neurovasculature through inflammatory

challenge has previously been shown to disrupt the
integrity of the BBB and substantially induce its
permeability [3, 22]. After systemic LPS administration,
brain vasculature was isolated and extracted RNA was
analyzed by next generation sequencing for gene
expression quantification. The RNA-seq analysis identified
949 differentially regulated genes (false discovery rate ≤ 0.
05, increased or decreased by at least twofold) by LPS
challenge compared to vehicle controls (Fig. 1b and
Additional file 1: Table S1). Among those, 745 were statisti-
cally significantly upregulated, and 204 were significantly
downregulated. The GO analysis of the upregulated genes
using DAVID bioinformatics tools identified the top three
enriched functional annotation clusters as inflammatory re-
sponse, regulation of cytokine production, and immune re-
sponse (Fig. 1c and Additional file 2: Table S2). The
inflammatory response cluster contained genes pertaining
to TLR (Toll-like receptor) signaling and inflammasome ac-
tivation as expected in an LPS challenge model. The cyto-
kine regulation and immune response clusters contained a
number of genes coding for cytokines, chemokines, and
complement system proteins. Of the LPS downregulated
genes, there were no statistically significant clusters identi-
fied (Additional file 2: Table S2), and therefore in this study,
we only focus on the upregulated genes.

Inhibition of 2-AG hydrolysis rescues altered
transcriptional profile of the neurovascular unit after LPS
challenge
Previous studies have highlighted the anti-inflammatory
effects of MAGL inhibition in acute and chronic brain
insults and transgenic mouse models [10, 11, 23, 24].
Additionally, the protective role of 2-AG in preserving
BBB integrity after acute brain injury has been described
[13]. Therefore, we sought to determine whether inhib-
ition of MAGL activity in vivo can reverse BBB patho-
genesis and rescue neurovascular integrity and function
after insults.
CPD-4645 (Fig. 2a) is a hexafluoroisopropyl carbamate

covalent MAGL inhibitor [25]. CPD-4645 is brain pene-
trant (Fig. 2b), and administration of subcutaneous
CPD-4645 at 10 mg/kg to CD1 mice resulted in ~ 3-fold
increase in brain 2-AG (Fig. 2c) which persisted for 8 h.
Levels of brain AA were reduced by 50% over the
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same time period (Fig. 2d). CPD-4645 inhibited MAGL
(~ 99% max), alpha-beta-hydrolase domain containing 6
(ABHD6) (~ 70% max), and fatty acid amide hydrolase
(FAAH) (~ 50% max) in the brain as determined by
activity-based protein profiling (Additional file 3:
Figure S1). No inhibition of additional serine hydrolases
was detected (data not shown). ABHD6 and FAAH are
serine hydrolases responsible for the degradation of 2-AG
and anandamide (AEA), respectively. ABHD6 is closely
related to MAGL and is responsible for ~ 15% of the
hydrolysis of 2-AG while MAGL is responsible for the
remaining ~ 85% [26]. Although the majority of the
pharmacodynamic effects seen with CPD-4645 may be
attributed to inhibition of MAGL, the partial inhibition of
ABHD6 may also be contributing to the 2-AG elevation
and AA lowering seen in the brain. It has previously been
shown that > 85% inhibition of FAAH is required to main-
tain significant elevations in brain AEA levels [27], as such
the 50% inhibition of FAAH seen in these experiments is
below the threshold level needed to elicit a pharmacody-
namic effect.
Mice were subjected to the LPS challenge as described

above, in the presence and absence of CPD-4645 which
was administered 45 min post each dose of LPS. Assess-
ment of brain 2-AG levels 3.5 h post last dose of CPD-
4645 revealed no effect of LPS while CPD-4645 treat-
ment significantly elevated levels of the endocannabinoid
(Fig. 3a). There was a modest but significant elevation in
brain AA levels due to LPS challenge, which was

significantly attenuated by CPD-4645 treatment (Fig. 3b).
Given the potent anti-inflammatory effects of MAGL
inhibition, we next measured levels of the proinflamma-
tory cytokines IL1β and IL6 in the brains of mice
challenged with LPS. The LPS challenge significantly ele-
vated levels of both cytokines above baseline levels while
treatment with CPD-4645 significantly reduced the in-
flammatory mediators (Fig. 3c, d). We next profiled the
effects of LPS and CPD-4645 on the transcriptional pro-
file of the neurovasculature. As expected, transcriptional
signatures showed a clear distinction between the sham
and LPS group (separated by the first principal compo-
nent as shown in Additional file 4: Figure S2). However,
the CPD-4645 treatment exhibited a striking reversal of
the transcriptional induction observed in the LPS group
(Fig. 4a). Among the 745 statistically significantly upregu-
lated genes in response to LPS challenge, the expression
of 550 (74%) showed reduction in gene expression with
CPD-4645 treatment (95% confidence interval 0.70–0.77,
proportion test). The majority of the LPS upregulated
genes in the annotation clusters related to inflammation,
cytokine regulation, and immune response (Fig. 1c and
Additional file 2: Table S2) were attenuated by CPD-4645
treatment (Fig. 4b). The top enriched GO clusters
identified for the significantly downregulated genes
(Additional file 1: Table S1) in the CPD-4645-treated
animals included leukocyte migration, inflammatory
response, and chemotaxis (Additional file 2: Table S2).
These results suggest a role of MAGL inhibition in

Fig. 1 Transcriptomic profiling of neurovascular unit after LPS challenge. a Expression profile of cell type-specific makers in neurovasculature prep-
aration. b Volcano plot of statistically significant upregulated (green) and downregulated (red) genes in the neurovascular unit after LPS challenge.
c Gene ontology clusters for up- and downregulated genes identified using DAVID bioinformatics resource. Neurovasculature was isolated 4 h
post last LPS dose. Data are means ± SEM, n = 4/5 mice per group
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reducing mediators of leukocyte-endothelial cell inter-
action and inflammation.
In addition to the notable changes in genes directly

involved in immune and inflammatory responses, several
genes associated with endothelial activation and loss of
BBB integrity were significantly altered by LPS challenge
and attenuated in animals treated with CPD-4656
(Fig. 5a). We found that in mice treated with CPD-4645,
the transcript levels of Vwf, Selp, Sele, Vcam1, Itga5, and
Tgfb1, markers of endothelial cell activation and inflam-
matory responses, were significantly reduced compared
to vehicle-treated animals following the LPS challenge
(Fig. 5b). In addition, transcript levels of the extracellular
proteases Adamts9, Adamts4, and Mmp8 were also
upregulated by LPS challenge and significantly reduced
following CPD-4645 treatment (Fig. 5c).

Inhibition of 2-AG hydrolysis reduces BBB permeability
after LPS challenge
In order to assess the physiological consequences of
reversing the inflammatory signature of brain endothelial
activation and dysfunction, we evaluated BBB integrity by
measuring extravasation of an abundant plasma protein,

fibrinogen, into the brain via ELISA analysis and
immunofluorescent staining in LPS-challenged animals
treated with either vehicle or CPD-4546. We measured
the ratio of the brain to plasma fibrinogen using ELISA.
As fibrinogen is an acute phase protein upregulated under
inflammatory conditions, to account for potential differ-
ences in plasma fibrinogen, we normalized the brain fi-
brinogen to the amount of fibrinogen present in the
plasma. We showed that the ratio of the brain to
plasma fibrinogen was significantly decreased in ani-
mals treated with CPD-4645 following LPS challenge
(Fig. 6a). Of note, LPS challenge resulted in elevated
levels of circulating fibrinogen in both vehicle- and
MAGL inhibitor-treated mice to the same degree,
suggesting that reduction of brain fibrinogen in the
LPS/CPD-4645 group relative to LPS/veh is not due
to reduction in systemic fibrinogen (Fig. 6b). In
addition, we stained for CD31+ endothelial cells and
fibrinogen in the striatum. Images were merged to de-
termine the degree of extravascular fibrinogen stain-
ing as previously reported [28]. Vehicle-treated mice
show significant leakage of fibrinogen into the brain
parenchyma (Fig. 6c, d, and g) a phenotype that was

Fig. 2 Pharmacokinetic and pharmacodynamic profiling of CPD-4645 in naïve mouse brain. a Structure of the 2-AG hydrolysis inhibitor CPD-4645.
Total CPD-4645 concentrations in brain and plasma (b) and bulk levels of brain 2-AG (c) and AA (d) at given time points following single 10 mg/
kg subcutaneous dose of CPD-4645 in CD1 mice. Data are means ± SEM, n = 3/5 mice per group
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significantly reversed when LPS-challenged animals
were treated with CPD-4546 (Fig. 6e–g).

Inhibition of 2-AG hydrolysis reduces blood-brain barrier
permeability following photothrombosis
Ischemic injury results in a brain inflammatory cascade
that also alters BBB properties and permeability. To
assess efficacy of MAGL inhibition at reducing BBB
permeability following ischemic inflammatory injury, the
photosensitizing dye, rose bengal, was combined with
exposure to green laser light to induce focal ischemic
injury in the somatosensory cortex which results in BBB
breakdown [29, 30]. The extravasation of high molecular
weight fluorescent tracers, which are typically excluded
from the brain parenchyma, was utilized as a surrogate
marker of altered BBB permeability. Treatment with
CPD-4645 30 min after inducing the lesion resulted in
significant attenuation of BBB damage (Fig. 7a, b). To
further test the clinical utility of a MAGL inhibitor, ani-
mals were treated 6 h after the onset of the ischemic le-
sion. Interestingly, leakage of the fluorescent tracer was

significantly attenuated in CPD-4645-treated animals
compared to vehicle (Fig. 7c, d). These results indicate
that inhibition of MAGL, even when withheld for 6 h,
could significantly improve BBB function after ischemic
injury.

Differential mechanisms of action of 2-AG hydrolysis
inhibition in models of BBB damage
To assess the contribution of cannabinoid signaling to
the mechanism of action of MAGL inhibition in
preservation of blood-brain barrier integrity, we tested if
the efficacy of MAGL (and possibly ABHD6) inhibition
was reversed by blockade of cannabinoid type 1 and 2
receptor signaling. A combination of CB1 and CB2 re-
ceptor antagonists, Rimonabant and AM630 (3 mg/kg s.
c.), were used in the LPS- and focal ischemia-induced
BBB disruption models. Co-treatment of LPS-challenged
mice with CB1 and CB2 antagonists did not significantly
reverse the effect of MAGL inhibition on BBB break-
down (Fig. 8a). In contrast, co-treatment of photothrom-
botic mice with MAGL inhibitor and CB1 and CB2

Fig. 3 Pharmacodynamic and anti-inflammatory activity of CPD-4645 in LPS-challenged mouse brain. Inhibition of MAGL by CPD-4645 resulted in
significant elevation of brain 2-AG (a) and concomitant reduction in brain AA (b). Levels of the proinflammatory cytokines, IL1β (c) and IL6 (d),
were significantly modulated in brain tissue following LPS challenge and CPD-4645 treatment. Bar graphs were plotted with mean ± SEM and
data analyzed using one-way analysis of variance (ANOVA) with Bonferroni post-hoc comparisons. n = 10 mice per group. Significance is shown
as *p < 0.05; **p < 0.01; ****p < 0.0001
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antagonists partially reversed the protective effect of
MAGL inhibition on BBB dysfunction (Fig. 8b). These
results suggest that 2-AG hydrolysis differentially regu-
lates BBB permeability after systemic or ischemic inflam-
matory injury, and that enhanced cannabinoid signaling,
through CB1 and/or CB2, contributes to the rescue of
BBB permeability following ischemic injury. The contri-
bution of cannabinoid signaling to BBB rescue in the
LPS model still cannot be ruled out based on these re-
sults alone and will require additional molecular and
pharmacological characterizations.

Discussion
The integrity of the BBB is often compromised following
acute insults or in cases of chronic neuroinflammation
leading to infiltration of circulating immune cells and
extravasation of blood components into the brain
parenchyma. The entrance of these restricted components
into the CNS can lead to a multitude of pathophysiological

responses and further exacerbate the initial trauma or
disease. In this study, we demonstrate that inhibition of
2-AG hydrolysis (inhibition of MAGL and partial inhibition
of ABHD6) by CPD-4645 is sufficient to reduce BBB
damage in both inflammatory- and ischemic-driven models
of BBB dysfunction.
We show that CPD-4645 is a potent and brain penetrant

covalent MAGL inhibitor. Treatment with CPD-4645 was
sufficient to elevate brain levels of the major endocannabi-
noid, 2-AG, while reducing levels of brain AA in naïve
and LPS-challenged mice. In addition to modulating AA
levels, inhibition of 2-AG hydroylsis resulted in significant
attenuation of the proinflammatory cytokines IL1β and
IL6 in the brains of LPS-challenged mice. These results
highlight the potent anti-inflammatory mechanism of
MAGL inhibition.
RNA-seq analysis of isolated brain vasculature after

LPS challenge showed a significant elevation of genes
related to the immune and inflammatory responses as

Fig. 4 CPD-4645 alters LPS-induced gene expression profiles. a Volcano plots showing expression changes of the LPS upregulated genes (left,
green points) after treatment with CPD-4645 (right). b Bubble plot showing changes in expression of genes that are induced by LPS and related
to cytokines and inflammation. The y-axis represents the log2-fold change due to LPS challenge while the x-axis represents the log2-fold change
due to CPD-4645 treatment. Dotted line represents a return to basal expression level. Size of the bubbles represents the multiple comparison
adjusted p values for vehicle versus CPD-4645 treatment. Neurovasculature was isolated 4 h post last LPS dose. n = 4/5 mice per group
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well as endothelial cell activation. Treatment with CPD-
4645 was able to restore these gene clusters closer to
sham-treated levels. The results of this particular experi-
ment are confounded by the fact that peripheral immune
cells like macrophage and neutrophils may be attaching
to the cerebral endothelium and/or entering the brain
after LPS challenge. The transcriptomic signature shown
in this study is a combination of all cells present in the
isolated neurovascular unit preparation including those
peripheral cells. The changes in gene expression are
therefore a snapshot of the overall state of health of the
BBB and do not necessarily imply that MAGL inhibition
is directly responsible for altering transcription.
Further analysis into the gene expression dataset

revealed a number of interesting findings related to
endothelial activation, leukocyte-endothelial interaction,
and BBB integrity-related genes. Although assumed
based on previous reports, our RNA-seq results con-
firmed that endothelial activation occurs in this LPS
model as is evidenced by the upregulation of von

Willebrand factor (Vwf ), P-Selectin (Selp), and E-
Selectin (Sele). Vwf and Selp are two key components of
Weibel-Palade bodies which are released from endothe-
lial cells in response to cytokines, playing dual roles in
regulating hemostasis and additional inflammatory pro-
cesses [31]. Interestingly, Selp knockout mice show re-
duced BBB breakdown following transient ischemic
stroke, likely due to preventing leukocyte-endothelial cell
interaction and downstream inflammatory process dam-
aging the endothelial cell integrity [32]. In addition, mice
genetically engineered to produce high levels of soluble
Selp in circulation showed an increase in BBB perme-
ability [33]. We also demonstrated CPD4-656 treatment
reduced the upregulation of vascular cell adhesion mol-
ecule 1 (Vcam1), which is known to occur in response
to cytokine release and plays an additional roll in
leukocyte-endothelial interactions. Similar to P-selectin,
soluble Vcam1 in CSF and plasma correlates with BBB
lesion severity, in multiple sclerosis (MS) for example
[34]. Moreover, the mechanism of action of the approved

Fig. 5 Genes related to BBB (dys) function and proteases are differentially expressed after LPS challenge and treatment with CPD-4645. a Changes
in the expression of 40 genes related to BBB function and dysfunction. The y-axis represents the log2-fold change due to LPS challenge while the
x-axis represents the log2-fold change due to CPD-4645 treatment. Dotted line represents a return to basal expression level. Size of the bubbles
represents the multiple comparison adjusted p values for vehicle vs. CPD-4645 treatment. b Expression levels of selected BBB genes. c Expression
levels of selected extracellular proteases. n = 4–5 mice/group. Significance is shown as adjusted p values *p≤ 0.05, **p < 0.01, *** p < 0.001. Differential
gene expression was analyzed using the limma package in R/Bioconductor (see Methods)
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MS therapy Natalizumab involves prevention of the
α4β1-integrin receptor molecules on immune cells from
interacting with Vcam1 on endothelial cells to reduce
disease-related lesions and leukocyte trafficking into the
brain.
The interaction of endothelial cells with the

extracellular matrix protein fibrinonectin is mediated
through integrin alpha-5 (Itga5). It was recently found
that endothelial Itga5 protein levels are increased in
the inflammatory EAE model of multiple sclerosis
and coincide with fibrinogen leakage into the spinal
cord [35]; thus, our findings that Itga5 mRNA is
upregulated with LPS treatment is not surprising.
Moreover, deletion of Itga5 specifically in endothelial
cells strengthens BBB integrity and increases tight
junction protein expression following acute brain
injury [36]. Interestingly, MAGL inhibition following
LPS challenge also reduced the levels of Tgfb1, a
known upstream regulator of Itga5 and other

integrins [37]. The action of Tgfb1 on the vasculature
is complex and highly dependent on the cellular and
environmental context [38]. Whether the effects of
CPD-4645 on Itga5 expression are dependent or
independent on Tgfb1 signaling remains elusive and
should be addressed in future experiments.
Although interesting, it is currently unknown whether

the attenuation of upregulation of these genes in LPS-
challenged animals with CPD-4645 treatment is a direct
result of inhibiting the MAGL pathway in endothelial
cells or is due to an indirect effect of reducing neuroin-
flammation. Regardless, maintenance of these genes at a
baseline level after exposure to LPS most likely plays a
role in preservation of BBB as these proteins have been
implicated in modulation of BBB integrity [5, 39].
Gene expression analysis also revealed changes in the

matrix metalloproteinases (MMPs) and the disintegrin
and metalloproteinases with thrombospondin motifs
(ADAMTSs). MMPs and ADAMTs are classes of

Fig. 6 Inhibition of 2-AG hydrolysis reduces LPS-induced BBB permeability. a, b Fibrinogen levels in b plasma and the a ratio of brain to plasma
fibrinogen were assessed by ELISA. n = 5/7 mice per group. c, d Fluorescent immunostaining in the striatum for fibrinogen (red) and vascular
marker (CD31; green) demonstrated leakage of fibrinogen into the brain with vehicle treatment, whereas vascular integrity was preserved when
(e, f) MAGL was inhibited. g Extravascular fibrinogen was semi-quantitated in fluorescently labeled sections of the striatum. Bar graphs were
plotted with mean ± SEM and data analyzed using one-way analysis of variance (ANOVA) with Tukey post-hoc comparisons. n = 5/7 mice per
group. Significance is shown as *p < 0.05, **p < 0.01. Scale bar = 20 μm
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extracellular proteases which cleave a wide variety of
extracellular matrix, tight junction, and basement
membrane proteins leading to the hypothesis that their
activities contribute to the dysfunction of the BBB in
inflammatory and ischemic injuries [40–43]. In this
study, we found LPS challenge to induce the expression
of several MMPs including Mmp-3, 8, 9, and 19. Of
these, Mmp8 was significantly reduced by treatment

with CPD-4645. MMP-8 is an inducible MMP that has
been shown to be upregulated in experimental models
of multiple sclerosis [44] and elevated in the CSF of
children with bacterial meningitis [45]. Consistent with
our findings in the LPS model, which mimics a bacterial
challenge, infection of human brain microvascular endo-
thelial cells with Neisseria meningitides resulted in an
increase in MMP-8 activity and was shown to be directly

Fig. 8 CPD-4645 rescues BBB integrity via endocannabinoid dependent and independent mechanisms. Blockade of endocannabinoid signaling
with rimonabant and AM630 (3 mg/kg) does not reverse the BBB protective effects of MAGL inhibition in the inflammation-driven LPS model (a),
whereas blockade of endocannabinoid signaling partially reverses the protective effects of MAGL inhibition (administered 30 min post lesion) in
the photothrombotic ischemia-driven model (b) as measured by extravasation of 70 kDa FITC-dextran into the brain parenchyma. Data were
plotted with means ± SEM (n = 6–9 mice/group) and analyzed with one-way ANOVA with Bonferroni’s post-hoc test. Significance is shown as
*p≤ 0.05, **p≤ 0.01

Fig. 7 CPD-4645 rescues BBB integrity after ischemic challenge. The rose bengal photothrombosis model induces a focal ischemic injury that
leads to BBB dysfunction. CPD-4645 administered 30 min post lesion (a, b) reduced the penumbra size (a) and BBB permeability (b) as assessed
by extravasation of Cadavarin555 into the brain parenchyma. CPD-4645 administered 6 h post ischemic lesion (c, d) reduces penumbra size (c)
and BBB permeability (d) as assessed by extravasation of 70 kDa FITC conjugated dextran in the brain parenchyma. Data were plotted with means
± SEM and data analyzed using unpaired t test (n = 5 mice/group). Significance is shown as *p≤ 0.05 and **p < 0.01 compared to vehicle group
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involved in the cleavage of the occludin and subsequent
BBB dysfunction [46].
The role of ADAMTS family of proteins has been

extensively studied for their ability to remodel extracellular
matrix (ECM) in the context of osteoarthritis. Recent
emerging data suggest that astrocytic ADAMTSs may play
a variety of roles within the CNS including modulation of
neuronal signaling, inflammation, and permeability of the
BBB [42]. We found that LPS challenge stimulated the
expression of Adamts-1, 4, 9, and 14 in the
neurovasculature. Treatment with CPD-4645 significantly
downregulated expression of Adamts4 and 9. It has been
shown that IL1β and TNFα, cytokines which are elevated
in our LPS model, can induce the expression of Adamts4
and 9 [47, 48] in astrocytes and macrophage. Versican is
the major chondroitin sulfate proteoglycan within the vas-
culature and is a cleavage substrate for ADAMTS-4 [49]
and ADAMTS-9 [50] leading to the hypothesis that
ADAMTS activity may contribute to BBB dysfunction via
degradation of ECM [42, 51].
Taken together, our data suggest that inflammation

induced by LPS challenge can serve to upregulate
expression of Mmp8 and Adamts4 and 9 which may
contribute to subsequent damage of the BBB through
degradation of occludin and versican. Treatment with a
MAGL inhibitor elicits an anti-inflammatory response
which in turn serves to reduce levels of the neurovascu-
lar damaging proteases. Regulation of proteases through
reduction in inflammation is one possible explanation of
many for the BBB protective effects observed in this
study. A deeper understanding of the complex interplay
between neuroinflammation, protease activity, and BBB
function will be required to determine if MMP-8,
ADAMTS-4, or ADAMTS-9 are solely responsible or
act in concert with each other or with other patho-
physiological processes leading to BBB dysfunction.
Several studies have shown that augmentation of

2-AG, either through direct administration or through
inhibition of MAGL or ABHD6, can have beneficial
effects on neuroinflammation and blood-brain barrier
dysfunction in the context of TBI [13, 15, 52]. Rodent
TBI models result in damage to the BBB by trauma (cell
death), inflammation, or ischemia. In this study, we
sought to determine the molecular mechanisms of
MAGL-mediated BBB protection using animal models
which utilize inflammation or ischemia to drive damage
to the BBB. Here, we demonstrate that inhibition of
MAGL activity can attenuate BBB breakdown, as mea-
sured by the extravasation of brain impermeable en-
dogenous proteins or fluorescently labeled tracers, after
either inflammatory (LPS) or ischemic (rose bengal)
insults. To pressure test the clinical utility of a MAGL
inhibitor, we withheld treatment for 6 h and then admin-
istered the compound. This time frame is within the

required treatment window (within 3–4.5 h of onset of
ischemia) for ischemic stroke patients to qualify for tPA
treatment for example. Our results demonstrate that
inhibition of 2-AG hydrolysis still exerted significant
protection of BBB function in animals with delayed
treatment.

Conclusions
Previous work has not looked at the mechanism of the
efficacy of endocannabinoid degradation inhibitors [15],
or attributed this efficacy in TBI models to enhanced
cannabinoid receptor activation (lesion volume and
neurodegeneration) through the use of cannabinoid
receptor antagonists [52]. Here, we show for the first
time that the effect of MAGL inhibition in preserving
BBB function is driven through the reduction of
arachidonate production and through enhanced
cannabinoid signaling depending on the nature of the
initial insult. In the inflammation-driven LPS model, co-
treatment with CB1 and CB2 antagonists did not signifi-
cantly reverse the CPD-4645 effect on BBB breakdown,
suggesting a less pronounced cannabinoid-dependent
mechanism of action in this particular assay. In contrast,
in the ischemia-driven photothrombotic model, co-
treatment of CPD-4645 with CB1 and CB2 antagonists
partially reversed the effect of MAGL inhibition on BBB
disruption, suggesting a pronounced, but partial, canna-
binoid receptor-dependent mechanism of action. It
would therefore be of future interest to analyze expres-
sion profiles of the neurovasculature in the presence and
absence of cannabinoid receptor antagonists in a more
global model of ischemia such as the middle cerebral ar-
tery occlusion model, in order to further ascertain
whether the BBB pathology in the two models is differ-
ent or comparable. These results highlight a bi-
directional mechanism of action (simultaneous enhance-
ment of cannabinoid signaling through elevation of 2-
AG and decrease of AA and downstream eicosanoids)
that can achieve therapeutic efficacy through either
pathway depending on the nature of the insult.
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