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Abstract

Background: Degenerative cervical myelopathy (DCM) is caused by degenerative or congenital changes to
the discs and soft tissues of the cervical spine, which leads to chronic compression of the spinal cord. The
current treatment for moderate to severe DCM consists of surgical decompression, which, while effective in
most cases, can result in neuroinflammation and spinal cord reperfusion injury, leading to perioperative neurological
complications and suboptimal neurological recovery. The primary objective of this study was to assess, in a translationally
relevant animal model of DCM, the efficacy of perioperative methylprednisolone (MP) in enhancing neurological recovery
and to evaluate its effect on the inflammatory response following decompression.

Methods: DCM was induced in C57BL/6 mice. Briefly, an aromatic polyether material was implanted underneath the C5-
C6 laminae to cause progressive compression of the cervical spinal cord due to focal ossification. Decompressive surgery
was undertaken at 12 weeks post initial biomaterial implantation. Animals received one dose of MP (30 mg/kg) or vehicle
30 min before decompression and at 2 weeks after decompression. Acute analysis of secreted cytokines and spinal cord
microvasculature was complemented with immunohistochemistry for glial and neuronal cell markers. Locomotor outcomes
were measured using the CatWalk system. The composition of circulating white blood cells was analyzed by flow cytometry.

Results: A single dose of MP before decompression significantly sped locomotor recovery (*p < 0.05) and reduced the
incidence of perioperative motor complications, without affecting the composition of circulating white blood cells.
Histological assessment of the spinal cord showed significant neuronal preservation and a modest reduction in
parenchymal inflammation.

Conclusions: Our data suggest that MP reduces perioperative neurological complications following decompressive surgery
for DCM by protecting neurons from inflammation, without compromising the composition of circulating immune cells.
We propose that MP, which is commonly used for neurological disorders including spinal cord injury, be considered as a
perioperative adjunct to decompressive surgery to attenuate neurological complications.
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Background

Degenerative cervical myelopathy (DCM) is an overarch-
ing term used to describe the most common forms of
non-traumatic cervical spinal cord myelopathy (includ-
ing cervical spondylotic myelopathy and ossification of
the posterior longitudinal ligament). DCM, which in-
creases in prevalence with aging, is caused by degenera-
tive or congenital changes to the discs and soft tissues of
the cervical spine, which leads to chronic compression
of the spinal cord [1]. Importantly, increased recruit-
ment and excessive activation of different immune cells
(activated microglia/macrophages, T cells and neutro-
phils), accompanied by the production of inflammatory
cytokines in the spinal cord, have been shown to con-
tribute to the progression of DCM [2, 3].

DCM is associated with significant neurological dys-
function, including gait impairment, loss of manual
dexterity, and pain [1]. The current treatment, particularly
with moderate to severe impairment [4], consists of surgi-
cal decompression [5]. However, approximately 4% of pa-
tients who undergo decompression develop perioperative
neurological complications, including worsening of myel-
opathy and delayed C5 palsy [5]. Moreover, while most
patients show neurological recovery with decompressive
surgery, approximately 20% of patients fail to show neuro-
logical improvement, with a minority exhibiting continued
neurological decline. Additionally, our DCM mouse
model has demonstrated that post-decompression neuro-
logical decline is associated with the presence of an
ischemia-reperfusion injury (IRI) and increased activation
of the immune system [6, 7]. Thus, neuroprotective or
neuroregenerative strategies, which complement surgical
decompression and rehabilitation approaches, would en-
hance the management of patients with DCM.

In the present study, we hypothesized that reducing neu-
roinflammation following decompression for DCM would
attenuate perioperative neurological decline and promote
enhanced neural recovery. To examine this hypothesis, we
used a mouse model of DCM that is associated with severe
neuroinflammation [7]. This model is intended to mimic pa-
tients who present with chronically progressive DCM. The
anti-inflammatory treatment selected for this study was
methylprednisolone (MP), which has long-standing use in
clinical practice as an anti-inflammatory and neuroprotec-
tive treatment for traumatic spinal cord injury (SCI) [8]. Pa-
tients with cervical SCI and low baseline severity of injury
have been shown to benefit the most from MP treatment
[9]; however, the use of MP for SCI has been questioned by
some clinicians due to heterogeneous findings reported in
the literature [10]. In animal models of SCI, MP has also
been shown to preserve neurons and limit axonal dieback,
as well as reduce microglia/macrophages and cytokine levels
immediately following injury [11]. In addition to its use in
SCI, the use of perioperative corticosteroids as a
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complementary approach to decompressive surgery has
been shown to reduce pain as well as the duration of post-
operative hospitalization in patients with lumbar and cer-
vical radiculopathy due to degenerative conditions [12, 13].
Given this background, we sought to examine the repurpos-
ing of MP as a potential neuroprotective treatment for
DCM as a complement to surgical decompression.

In the present study, we examined the effectiveness of
MP treatment to reduce inflammation following decom-
pression in a mouse model of DCM at the C5-C6 level.
We observed perioperative MP treatment accelerated
locomotor recovery by preserving the number of
neurons, while modest effects on inflammation were ob-
served. There was also a reduction in the incidence of
perioperative motor complications (defined as reduced
ankle movement and plantar stepping, forepaw palsy,
and upper/lower limb stiffness and/or weakness) follow-
ing MP treatment. Importantly, no harmful side effects
(including increased incidence of wound infection and
death) or changes in the peripheral white blood cell
composition were observed after MP treatment.

Methods

Animals

The Animal Use Committee at the University Health
Network (UHN; Toronto, Canada) approved the study
protocol, and experiments were carried out in accordance
with the committee recommendations. Adult 8-week-old
female C57BL/6 mice were purchased from the Ontario
Council Institute (Canada) for use in this study. Investiga-
tors remained blinded to the treatment groups for the
duration of the study.

Spinal cord compression and decompression

DCM was induced in mice as previously described [7].
Briefly, an aromatic polyether material was implanted
underneath the C5-C6 laminae to cause chronic and pro-
gressive compression of the cervical spinal cord due to
focal ossification. This compression model mimics ossifi-
cation of the ligamentum flavum, one of the known causes
of DCM [1]. At 12 weeks post-compression (i.e.
post-material implantation), mice underwent decompres-
sion using a microdrill to remove the osteoid formation
between the aromatic polyether and laminae. All surgical
procedures were performed under anesthesia using 2%
isoflurane. Following deep anesthesia with isoflurane, ani-
mals were sacrificed at 24 h, 2 weeks, or 5 weeks after sur-
gical decompression.

Experimental groups

Animals were decompressed at 12 weeks following com-
pression and randomly assigned to one of two experi-
mental groups: (1) decompression with saline treatment
(herein referred to as saline) and (2) decompression with
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MP treatment (30 mg/kg). MP treatment was given
intravenously (i.v.) 30 min before surgical decompression
and 2 weeks following decompression (Fig. 1). A second
cohort of animals that did not undergo decompression
(naive group) was used to assess the effect of decom-
pression on the peripheral immune cell composition at 2
and 5 weeks following decompression.

Automated gait analysis

The CatWalk XT 10.6 system (Noldus, The Netherlands)
was used to assess locomotion of DCM and decom-
pressed animals, as described previously [7]. Stance
phase, stride length, and swing speed were analyzed in
both forepaws and hindlimbs at 2 and 5 weeks following
decompression. Runs (2-3 per animal) were averaged
and included in the analysis if they had a duration
between 0.50 and 5 s, without significant differences in
speed between runs [7, 14]. No food restriction or
reward was used to motivate mice to perform the task.

Blood collection and flow cytometric analysis

Repeated blood sampling of mice was performed via sa-
phenous vein puncture without anesthesia. Blood samples
were collected using a 23G needle with ethylenediamine-
tetraacetic acid (EDTA)-coated tubes to avoid blood co-
agulation [15] and were analyzed by flow cytometry [16].
Samples were collected at 12 weeks of DCM, and at 24 h,
2 weeks, and 5 weeks after decompression. Red blood cells
where lysed in red blood cell lysis buffer [7] and washed
twice with phosphate-buffered saline (PBS). Cells were
first stained with viability dye (Fixable viability dye eFluor
780, Thermo Fisher Scientific) for 20 min, followed by
extracellular staining with fluorescent antibodies to distin-
guish granulocytes, monocytes, and T cells in the blood.
The antibodies used were as follows: Ly6C-Pacific blue
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(clone HK1.4; BioLegend), Ly6G-PerCP/Cy5.5 (clone 1AS;
BioLegend), CD11b- FITC (clone M1/70; BioLegend),
CD3-PE (clone 17A2; BioLegend), and CCR2-PE (clone
475301; R&D Systems). Matching isotype controls were
used to set the gates during data acquisition and analysis.
Data were acquired using a BD LSR II flow cytometer (BD
Biosciences) and analyzed using FlowJo X 10 (Trestar).

Luminex assay

Cervical spinal cord homogenates from a 0.3 cm long section
of tissue centered at the compression area were prepared
following transcardial perfusion with PBS, as previously
described [7]. Levels of selected cytokines (IL-la and f,
TNF-a, IL-4, IL-10 and IL-6) were measured using a mouse
cytokine array at 24 h after decompression (Eve Technolo-
gies, Calgary, AB, Canada).

Immunohistological analysis of the spinal cord

Animals were transcardially perfused with PBS, followed
by 4% paraformaldehyde (PFA) in PBS. The spinal cords
were dissected out (0.6 cm long section centered at the
compression epicenter), post-fixed, and cryoprotected in
30% sucrose/PBS for 48 h. Coronal sections (30 pum
thick) were prepared and blocked (10% non-fat milk, 1%
BSA, 0.3% triton X-100 in PBS) for 1 h at room
temperature (RT). Incubation with primary antibody was
performed overnight (at 4 °C), followed by 1 h incuba-
tion with 4',6-diamidino-2-phenylindole (DAPIL 1:200)
and the corresponding secondary antibody at RT. The
following primary antibodies were used: NeuN conju-
gated to Alexa-Fluor 555 (1:250; clone A60, Millipore),
Ibal (1:300, Wako, 019-19741), GFAP-conjugated to Cy3
(1:300, Sigma-Aldrich, MAB3402C3), and Olig-2 (1:500;
AB9610, Millipore Sigma). NeuN™ cells were automatic-
ally quantified over a 3240 pm area centered at the

30 min before surgery 2 w after surgery s
é\ov 6‘0&
ﬁ & A
$ 8
& & ®
-12w 0 24h 2w Sw

~

Time with reference after decompression:

II) Characterization of peripheral immune cells

11I) Behavioral assessment: Catwalk

I) Vascular functionality, cytokine expression and histology
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lesion epicenter in gray matter using the cell counter
plug-in from Image], whereas Ibal® cells were manually
counted in the dorsal and ventral horns. The area of the
dorsal and ventral horns evaluated for GFAP immunore-
activity was traced using Image] software in a constant
square region of 89 x 89 pm, as described before [7].
Olig-2 area in the gray matter was automatically quanti-
fied using a customized script and normalized to the
area of DAPI staining, as a reproducible measure of
Olig-2 cells accounting for background signal and
overlapping cells. All images were acquired using ei-
ther a x 10, x 20, or x 40 objective lens with a Nikon
eclipse Ti C2+ inverted confocal microscope with the
NIS element imaging software version 4.20.

In vivo power Doppler imaging

The spinal cord microvasculature was assessed with
power Doppler imaging at 24 h and 2 weeks after surgi-
cal decompression, as previously described [17]. Static
field of views (20 sagittal slices) that encompassed the
entire lesion (130 x 90 px) were cropped from each sagit-
tal stack and batch cropped in Photoshop CS6™. The
resulting cropped images were then thresholded for the
Doppler signal and batch-measured in Image] software
using a customized script. The Doppler area of each sa-
gittal slice was computed by taking the product of the
total area of each image and the percent area of Doppler
signal. The sum, termed the total Doppler area (TDA),
was used to reflect the total functional vascularity of
each sagittal stack.

Statistical analysis

The results were analyzed using Prism 5.0 (GraphPad,
La Jolla, CA, USA) and SPSS version 22 (IBM, Armonck,
NY, USA) software. Histology, Doppler, and Luminex re-
sults comparing two groups were analyzed using a ¢ test.
Flow cytometry and CatWalk results were analyzed
using either a one or two-way analysis of variance
(ANOVA) with Tukey’s post-hoc test. All data are pre-
sented as mean + standard error of the mean (SEM).
Results were considered significant at a p value <0.05.

Results

Methylprednisolone mitigates perilesional spinal cord
inflammation

We designed a randomized, blinded experiment where
animals were divided into two groups that received two
i.v injections of either MP or saline at two different time
points, as shown in Fig. 1. We focused our assessments
during the first 24 h and 2 weeks following decompres-
sion due to the development of IRI and high activation
of the immune system observed in our animal model
around these two time points [6, 7]. Although MP treat-
ment has been shown to reduce inflammation after
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traumatic SCI [11], at 24 h after decompression in DCM
the production of inflammatory cytokines (IL-1a, IL-1,
and TNF-a) was only modestly reduced in the MP group
(n=4), and only reached significance for IL-1a (Fig. 2a)
compared to the saline treated group (n=5). The ex-
pression of cytokines with anti-inflammatory (IL-4 and
IL-10) and pleiotropic functions (IL-6) was not affected
by MP treatment (Fig. 2a). Previous studies have demon-
strated MP’s immunosuppressive effects by showing
reduced macrophage/microglia proliferation following
traumatic SCI [18]. For this reason, we quantified the
number of Ibal” cells in the spinal cord at 2 weeks after
decompression. MP treatment slightly reduced the num-
ber of Ibal® cells in the gray matter compared to the
saline-treated group (n =9 for both groups; paired ¢ test,
p = 0.14); however, this was not significant (Fig. 2b).

Glial cell recruitment is not altered by
methylprednisolone treatment after decompression

The immunosuppressive effects of MP have been shown
to alter GFAP expression following traumatic SCI [19].
However, at 2 weeks after decompression, MP treatment
(n=9) only slightly reduced astrogliosis in the gray mat-
ter compared to the saline-treated group (n=9), but
these differences were not significant (Fig. 3).

Early functional vascularity is not altered by
methylprednisolone

Vascular compromise and neuroinflammation have been
implicated in the progression of DCM [7, 20, 21]. To
examine this, we measured functional vascularity using
Power Doppler imaging at 24 h (saline n =5; MP n =4)
and 2 weeks (1 =9 for both groups) after decompression.
At both time points, no significant differences between
MP and saline treated groups were observed (Fig. 4a, b).
Interestingly, vascular function (at 2 weeks) showed
increased recovery compared with the 24 h assessment
for both MP and saline groups (Fig. 4a, b).

Reduced number of circulating white blood cells after
decompression

Trauma or surgery can induce a stress response, which
encompasses changes in both the endocrine and im-
mune system [22, 23]. In order to characterize the
changes in the circulating immune cells following sur-
gery, we compared the composition of white blood cells
in decompressed and age-matched naive animals at 2
and 5 weeks after decompression (Fig. 5a). At 2 weeks
after decompression, there were no significant differ-
ences in monocytes, granulocytes, or T cell numbers
(Fig. 5b—d). However, at 5 weeks after decompression,
the number of all cell types was significantly reduced in
decompressed animals (7 =8) compared to age-matched
naive animals (n = 3-8) (Fig. 5b—d).
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Fig. 2 Methylprednisolone treatment diminishes acute cytokine production. a Expression of selected inflammatory and anti-inflammatory cytokines
was measured in the spinal cord at 24 h after decompression using a Luminex assay. Overall, MP treatment significantly decreased the levels of IL-1a
(*p < 0.05). b Immunohistological analysis of the number of Iba1* cells around the C5-C7 region at 2 weeks after decompression. Their number in the
dorsal and ventral horns showed a non-significant reduction after MP treatment. Representative images for each treatment group are shown as well as
a schematic of a spinal cord depicting the area analyzed. The white arrows indicate Ibal+ cells in the spinal cord. Data were analyzed using an

Methylprednisolone does not compromise white blood
cell composition

The immunosuppressive action of steroids, especially MP,
has generated concern regarding the increased risk of in-
fections, particularly when administered in conditions
where the peripheral immune system is already sup-
pressed, such as traumatic SCI [24, 25]. Since we did not
find any signs of peripheral immune suppression following
decompression, we hypothesized that systemic administra-
tion of MP early after decompression would not com-
promise the peripheral immune response. To examine

this, we quantified the number of granulocytes, mono-
cytes, and T cells before (n =33) and after MP treatment
with flow cytometry. At 24 h after decompression, the
number of granulocytes and monocytes was not signifi-
cantly altered by either decompression alone or between
the MP and saline treatments (Fig. 6a, b). Further, the
number of T cells was not altered by MP treatment
compared with the saline-treated group. However, MP
increased the number of T cells compared with levels
before decompression (Fig. 6¢, *p < 0.05). At 2 weeks after
decompression, the number of granulocytes, monocytes
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Fig. 3 Astrogliosis is not significantly affected by MP treatment. GFAP immunoreactivity in the dorsal and ventral horns was analyzed around the C5-C7
region at 2 weeks after decompression. A non-significant reduction in GFAP immunoreactivity was observed after MP treatment. Representative images for
each treatment group and a spine schematic depicting the area analyzed are shown. Data were analyzed using an unpaired Student's t
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and T cells was reduced compared with the 24-h assess-
ment. Granulocytes and monocytes were slightly elevated
in the MP-treated group compared with the saline group,
without reaching significance (Fig. 6a, b). No significant
changes were reported in any of the above white blood cell
populations at 5 weeks after decompression (Fig. 6).

Methylprednisolone treatment leads to improvements in
early locomotor outcomes after surgical decompression
Gait impairment is one of the first symptoms to present
in patients with DCM [26]. We assessed changes in

select forepaw and hindlimb gait parameters using the
CatWalk system in DCM animals (#=33) at 2 and
5 weeks after surgical decompression. One week before
surgical decompression (pre-decompression baseline),
no significant differences were observed in stance phase,
swing speed, and stride length between DCM animals
(data not shown). At 2 weeks after surgical decompres-
sion, we observed that animals treated with MP had a
walking pattern similar to non-injured animals in contrast
with the saline group that showed persistent deficits
(Fig. 7a). Interestingly, MP treatment sped the temporal
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Fig. 4 Methylprednisolone treatment does not affect functional vascularity. a, b Functional vascularity was measured using power Doppler at
24 h (a) and 2 weeks (b) after decompression. No significant changes were observed at any analyzed time points between the treatment groups.
Data were analyzed using an unpaired Student's t test and are presented as mean + SEM
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recovery of stride length as compared with the
saline-treated group (Fig. 7b, *p <0.05), but it did not
affect stance phase (Fig. 7c) and swing speed (Fig. 7d).
Nevertheless, the improvement in stride length did not
persist at 5 weeks after decompression, where gait parame-
ters reached similar values to the naive non-injured animals
(n=4) (Fig. 7b—d). These results suggest that the first dose
of MP might have an early neuroprotective effect that
enhances recovery of some locomotor parameters after de-
compression, without long-term effects. Of note, there was
a reduction in the incidence of postoperative locomotor
complications following decompression after MP treatment
(Table 1). Specifically, at 24 h after surgery, 16.7% (3 out of
18) of the animals receiving the control treatment pre-
sented with motor complications (reduced ankle movement
and plantar stepping and upper or lower extremity stiff-
ness), whereas only 5.5% (1 out of 18) of animals treated
with MP showed similar complications (p = 0.3).

Methylprednisolone treatment induces neuronal cell
preservation

Chronic compression of the cervical spinal cord leads to a
reduction in blood flow to the cord and thereby results in
the loss of spinal cord motor neurons [6, 7, 27]. In order
to assess neuronal preservation, we used the neuronal
markers NeuN and Olig-2 to quantify the number of posi-
tive cells around the C5-C7 region using immunohisto-
chemistry. Our results show MP significantly preserved
the number of NeuN™ cells in the spinal cord compared

with the saline-treated group at 2 weeks following decom-
pression (n=9 for both groups) (Fig. 8a). Furthermore,
oligodendrocytes are known to undergo apoptosis during
the progression of DCM [3], but are protected after MP
treatment [28]. However, peri-operative treatment with
MP did not alter the expression of oligodendrocytes
compared with the saline-treated group at 2 weeks after
decompression (Fig. 8b).

Discussion

In this study, we showed that perioperative MP treat-
ment following decompressive surgery for DCM acceler-
ates locomotor recovery through enhanced neuronal
preservation and reductions in inflammation, without
compromising the composition of peripheral immune
cells populations. Traumatic SCI has been shown to
elicit systemic and parenchymal activation of the im-
mune response that can contribute to organ dysfunction
and post-injury complications [29] [25]. However, it is
not known whether DCM, the most common form of
non-traumatic SCI, has similar immune system activation.
Therefore, we addressed the effectiveness of a combinator-
ial treatment paradigm to target delayed DCM decom-
pression surgery. Previously, our lab has shown successful
repurposing of the sodium-glutamate blocker Riluzole, an
FDA-approved drug for the treatment of amyotrophic lat-
eral sclerosis, in mitigating ischemia-reperfusion injury in
an experimental animal model of DCM [6]. This work
was the foundation for the CSM-PROTECT clinical trial
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aimed at evaluating the efficacy of Riluzole in combination  study (for the first time) assessed the potential combina-
with decompression [30]. However, considering significant  torial use of the anti-inflammatory drug MP. Overall, MP
inflammation associated with delayed decompression, this  treatment sped locomotor recovery and enhanced
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are presented as mean + SEM

neuronal preservation, without compromising peripheral
white blood cell composition.

Major surgical procedures can lead to alterations to
the hemodynamic, endocrine, and immune functions of
the body. Specifically, this leads to an initial activation of
the peripheral immune system along with enhanced
blood flow to muscle, liver, and ischemic organs [22].
These changes are followed by a phase of depressed im-
mune function and recovery [31]. It is important to

Table 1 Motor complications after decompression
Day 1

3 animals (16.7%)
1 animal (5.5%)

Groups No complications
15 animals (83.3%)

17 animals (94.5%)

Decompression + saline

Decompression + MP

understand the duration of these phases following surgi-
cal decompression in order to determine the optimal
time window and route (e.g., systemic or local) of ad-
ministration for potential peri- and/or postoperative
treatments that will enhance the effectiveness of decom-
pression. In our DCM mouse model, excessive activation
of the inflammatory response in the spinal cord has been
associated with long-lasting symptoms and poor func-
tional outcomes after decompression [7]. Interestingly,
at 5 weeks after decompression in the present study, the
number of white blood cells from the adaptive and innate
immune system was significantly decreased. Although the
systemic changes associated with decompression are dif-
ferent compared with other central nervous system (CNS)
injury models, such as SCI, stroke, or multiple sclerosis
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Fig. 8 Methylprednisolone treatment promotes neuronal preservation in DCM. Immunohistochemical analysis of the decompressed spinal cord
around the C5-C7 region. a Number of NeuN™ cells and representative images of the two treatment groups. NeuN™ cells were significantly
increased compared with the saline-treated group at 2 weeks after decompression. b The percentage of Olig2*/DAPI" area was not significantly
different between the two treatment groups. Data were analyzed using an unpaired Student's t test and are presented as mean + SEM. Scale bars
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(MS) [32-36]; a decreased number of T cell subsets has
been reported as part of the normal response after major
surgeries in patients [37]. In the context of traumatic SCI,
mixed results associated with MP usage have led to
significant controversy. When administered within the
first 8 h after traumatic SCI, MP has been reported to im-
prove neurological outcomes and short term motor scores
[9, 38, 39]. However, aggregate evidence from different
studies suggests a lack of effect in long-term motor recov-
ery [39]. Despite evidence suggesting that steroids com-
promise the composition of the peripheral immune system
in non-injured as well as injured conditions [24, 40-42],
which raises concerns of possible negative side effects, the
current guidelines for the management of acute SCI recom-
mends MP treatment within the first 8 h of injury [8].

We have previously shown that there is an increased
inflammatory response following delayed decompression
for DCM, which can reduce the beneficial effects of sur-
gical decompression [6, 7]. In the present study, MP ad-
ministration resulted in, overall, small effects on the
production of inflammatory cytokines, recruitment of
Ibal™ cells and astrogliosis within the spinal cord. Albeit
modest, these changes could lead to a more permissive
environment that will allow neuronal preservation and
an improved rate of functional recovery. This was
reflected by an increased number of neurons in the
MP-treated group, as compared to saline-treated ani-
mals. Similarly, in experimental models of traumatic SCI
and ischemic optic neuropathy, MP treatment has been

shown to preserve the number of neurons from apop-
tosis [43] and to reduce inflammation early after injury
[11, 44]. Such regimens have been shown to accelerate
the recovery of blood barrier integrity, reduce tissue
damage, and attenuate recruitment of macrophages into
the injured tissue [11, 44, 45]. MP may also be directly
acting over neurons and their networks, potentially at-
tenuating axonal excitability loss through the 5-HT;,
receptor [46]. These receptors are key players of the
locomotor network in vertebrates responsible for a regu-
lar locomotor pattern, whose function that can be inhib-
ited by the production of nitric oxide [47]. Similarly,
patients receiving corticosteroids for lumbar decompression
or cervical radiculopathy have been shown to experience a
shorter duration of postoperative hospitalization and pain
[12] [13]. In our model, MP effects on the inflammatory re-
sponse were modest and did not translate to long-term gait
improvement. This could be partially explained by the short
half life of MP [48] or the frequency of MP delivery. Future
studies will need to address whether a repeated low-dose
MP injection protocol will be able to induce long-term gait
improvements and assess the effects of such a protocol on
the peripheral immune response.

Our study has certain limitations that should be ac-
knowledged. Firstly, although mouse models are com-
monly used in research, the composition of peripheral
white blood cells between humans and mice is different.
Human white blood cells are enriched in granulocytes
and monocytes, whereas mouse white blood cells are
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rich in B and T cells [49]. Therefore, the inflammatory
response following surgical decompression for DCM
may differ between mice and humans. Secondly, DCM
patients may have other co-morbidities, including car-
diovascular disease and diabetes, which are not present
in our animal model. Thus, the potential clinical transla-
tion of this work to DCM patients will need to control
for other potential side effects of steroids.

Importantly, the incidence of motor complications was
reduced after decompression with MP treatment. Given
that 1 out of 3 (34.9%) [50] patients undergoing decom-
pression for DCM can develop postoperative complica-
tions, which are not only neurological in nature, the use of
complementary treatments for decompression, such as
MDP, that can reduce this incidence rate are encouraged.

Conclusions

In conclusion, the current study provides a deeper under-
standing of the peripheral immunological response follow-
ing delayed decompression, and a detailed assessment of
the role of MP in locomotor recovery following delayed
surgical decompression. Larger studies, including pro-
spective controlled trials in DCM patients, will be needed
to better understand MP effects on the incidence of com-
plications and enhancement of locomotor recovery, as
well as the potential use of other anti-inflammatory drugs.
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