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Abstract

Background: Hypothermia is increasingly tested in several neurological conditions, such as neonatal encephalopathy,
stroke, traumatic brain injury, subarachnoid hemorrhage, spinal cord injury, and neurological outcomes of cardiac arrest.
Current studies aim to increase benefits of hypothermia with new add-on therapies including immunomodulatory
agents. Hypothermia has been shown to affect the metabolism of commonly used drugs, including those acting on
neuroimmune pathways.

Objective: This study focuses on the effect of hypothermia on interleukin-1 receptor antagonist pharmacodynamics in a
model of neonatal encephalopathy.

Methods: The effect of hypothermia on (i) the tissue concentration of the interleukin-1 receptor antagonist, (ii) the
interleukin-1 inflammatory cascade, and (iii) the neuroprotective potential of interleukin-1 receptor antagonist has been
assessed on our rat model of neonatal encephalopathy resulting from inflammation induced by bacterial compound plus
hypoxia-ischemia.

Results: Hypothermia reduced the surface of core and penumbra lesions, as well as alleviated the brain weight loss
induced by LPS+HI exposure. Hypothermia compared to normothermia significantly increased (range 50–65%) the
concentration of the interleukin-1 receptor antagonist within the central nervous system. Despite this increase of
intracerebral interleukin-1 receptor antagonist concentration, the intracerebral interleukin-1-induced tumor necrosis
factor-alpha cascade was upregulated. In hypothermic condition, the known neuroprotective effect of interleukin-1
receptor antagonist was neutralized (50 mg/kg/12 h for 72 h) or even reversed (200 mg/kg/12 h for 72 h) as compared
to normothermic condition.

Conclusion: Hypothermia interferes with the pharmacodynamic parameters of the interleukin-1 receptor antagonist,
through a bioaccumulation of the drug within the central nervous system and a paradoxical upregulation of the
interleukin-1 pathway. These effects seem to be at the origin of the loss of efficiency or even toxicity of the interleukin-1
receptor antagonist when combined with hypothermia. Such bioaccumulation could happen similarly with the use of
other drugs combined to hypothermia in a clinical context.
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Introduction
Pure hypoxia-ischemia (HI) and inflammatory-sensitized
HI are the most prevalent clinical scenarios underlying
neonatal encephalopathy (NE) of term newborns, one of
the leading causes of neonatal death or cerebral palsy
[1]. Neuroprotective treatments available against NE of
term newborns consist in symptomatic cares and
hypothermia (HT) [2, 3]. Ongoing researches focus on
new add-on therapies in combination to HT to increase
its neuroprotective effect [2, 4]. However, recent evi-
dence demonstrated that HT can alter the pharmacoki-
netic and pharmacodynamic parameters of drugs and
induces unexpected and sometimes adverse effects [5–8].
Our team and others recently showed that HT fails to
counteract the IL-1 system [9, 10], which plays a key role
in NE [11–14]. Interleukin-1 receptor antagonist (IL-1Ra)
has already demonstrated a protective perinatal efficacy on
several organs, especially the brain, exposed to inflammation
induced by bacterial compounds and/or HI [11, 12, 15, 16].
These results support a potential neuroprotective benefit of
IL-1Ra as a targeted add-on therapy to HT. An initial step in
evaluating the effect of IL-1Ra in combination with HT is to
test the effect of HT on its pharmacodynamics in this physio-
pathological context. Our hypothesis is that HT modifies the
pharmacodynamic parameters of IL-1Ra under perinatal in-
flammatory and/or HI conditions. Our objectives will test
the effect of HT on (i) the tissue concentration of IL-1Ra, in-
cluding the central nervous system; (ii) the inflammatory cas-
cade of the IL-1 system; and (iii) the neuroprotective
potential of IL-1Ra.

Material and methods
Rat model
Our preclinical model was designed as previously described
[9, 14, 15]. Briefly, pups at postnatal day (P) 5–7 were ob-
tained from Charles River Laboratories (Saint-Constant,

QC). At P12, they received a single intraperitoneal (ip) in-
jection of lipopolysaccharide (LPS, 50 μg/kg diluted in
50 μl of pyrogen-free saline) from Escherichia coli
(Sigma-Aldrich, ON). HI was induced 4 h after LPS ad-
ministration by permanent ligation of the right common
carotid artery followed by 8% O2 exposure at 36 °C for
1.5 h [9, 15, 17]. HT was induced 30 min after hypoxia, as
previously described [9]. Briefly, pups were kept on a hot
plate at 32 °C in order to lower their core body
temperature until 32.5 °C ± 0.5 °C (Fig. 1). HT was main-
tained in a reproducible manner for 4 h. LPS+HI and LPS
+HI+IL-1Ra pups stayed with the dam during the time
their peers underwent HT [9].
Human recombinant (hr) IL-1Ra was used at a concen-

tration of 50 or 200 mg/kg (diluted in 50 μl of
pyrogen-free saline). Both doses are commonly used in
the perinatal preclinical context to protect the organs
against inflammation and/or HI [15, 16]. The first injec-
tion was given ip, 30 min before LPS injection. Five other
injections were given every 12 h thereafter (Fig. 1). The
end of hypoxia referred to as 0 h. Pups were euthanized at
4 h (which correspond to the end of HT), 24 h (P13), or
8 days (P20) post-HI. A total of 181 pups were included in
the study. Pups were randomized in five experimental
groups, namely 35 pups in LPS+HI condition, 32 pups
in LPS+HI+HT condition, 24 pups in LPS+HI+IL-1Ra
(50 mg/kg) condition, 52 pups in LPS+HI+HT+IL-1Ra
(50 mg/kg), and 7 pups in LPS+HI+HT+IL-1Ra
(200 mg/kg). Among all pups subjected to LPS+HI±HT
±IL-1Ra (n = 181), the mortality rate was 17% (death
occurred for all pups during hypoxia, except for 3 pups
who died within 10 h following hypoxia). No significant
difference was observed in the mortality rate between
all experimental groups.
The experimental protocol was approved by the Insti-

tutional Animal Care Committee of the McGill

Fig. 1 Experimental design. The first hrIL-1Ra (50–200 mg/kg) or saline injection was administrated 30 min before the ip injection of LPS
from Escherichia coli (50 μg/kg) in pups at P12. Four hours later, the right common carotid artery was ligated, and hypoxia was induced
(8% O2 for 1.5 h). Rat pups were subjected or not to hrIL-1Ra (50–200 mg/kg q12 h from P12 to P14) and treated or not by HT (32.5 °C
± 0.5 °C for 4 h). Abbreviations: HI, hypoxia-ischemia; HT, hypothermia; hrIL-1Ra, human recombinant of interleukin-1 receptor antagonist;
ip, intraperitoneally; LPS, lipopolysaccharide from Escherichia coli; P, postnatal day
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University (protocol #2015-7691) in accordance with the
Canadian Council on Animal Care guidelines: http://
www.ccac.ca/en_/standards/guidelines.

Cerebrospinal fluid (CSF) collection
CSF was collected by cisternal puncture of anesthetized
rat pups at 4 or 24 h post-HI, as described [18, 19]. The
mean volume of CSF collected was 28 μl (range 10–
45 μl) with 96% of successful collection. CSF samples
were kept frozen at − 80 °C. Immediately after CSF col-
lection, rat pups were euthanized by decapitation, and
their forebrain rapidly removed and frozen by
immersion in methylbutane on dry ice.

Histology
The brains were removed and fixed (paraformaldehyde
4%, glutaraldehyde 0.1%) at room temperature,
paraffin-embedded, and cut in 5-μm slices using a

microtome, as described [9, 15]. Hematoxylin-eosin
(H&E) staining was performed to visualize brain injur-
ies. Coronal sections were scanned, and the surface of
the hemispheres were located at the epicenter of the in-
farct (Bregma from − 2.30 to − 2.50 mm), as previously
described [9, 14, 15]. Core versus penumbra areas of
brain infarcts were defined as previously described [9,
15]. Briefly, core injuries were associated with infarcted
areas bearing cavitary lesions, whereas penumbra injur-
ies were identified as regions surrounding the core
where pycnotic neurons and/or loss of normal neuronal
architecture were observed [9, 15].

ELISA
Protein extracts were prepared from right hemisphere
forebrains as previously described [9, 14, 15]. ELISAs
were performed on these protein extracts using

Fig. 2 hrIL-1Ra titers within tissues of interest from pups exposed to LPS+HI+IL-1Ra±HT. hrIL-1Ra titers measured by ELISA at 24 h post-HI
were increased within the plasma (a), right cerebral hemisphere (b), and CSF (c) in LPS+HI+HT+IL-1Ra (50 mg/kg) as compared to LPS+HI
+IL-1Ra (50 mg/kg) condition. The concentrations of hrIL-1Ra were similar in both conditions at 4 h post-HI, as well as at 24 h post-HI
within the liver (d). The number (n) of rats used was LPS+HI+IL-1Ra (n = 5–8 from 4 litters) and LPS+HI+HT+IL-1Ra (n = 5–8 from 4 litters).
The bars indicate the mean ± SEM. *p ≤ 0.05, **p ≤ 0.01; independent T test. Abbreviations: CSF, cerebrospinal fluid; HI, hypoxia-ischemia;
HT, hypothermia; hrIL-1Ra, human recombinant of interleukin-1 receptor antagonist; LPS, lipopolysaccharide from Escherichia coli
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ELISA Kits (R&D System, MN, USA), as previously
described [9, 14, 15].

Behavioral test
The open field test was used to determine spontaneous
locomotor activity and exploratory behavior of juvenile
rats (P20), as described previously [20]. The following
parameters were assessed in the open field apparatus
using Any-Maze Video Tracking System™ (IL, USA) soft-
ware: total distance traveled during the test period, mo-
bile time, time in the center, and number of square
visited.

Data analysis
Statistical analyses were performed using IBM Statistics
24 (SPSS) and GraphPad software version 6.02. The data
are presented as the mean ± standard error of the mean
(SEM). Normality was assessed across experimental

conditions. Data were analyzed by independent samples
t test or one-way analysis of variances (ANOVA) with
Tukey’s HSD test. Mann-Whitney U test was used when
data were not normally distributed. Male and female
data were combined, because no significant interaction
was observed between sex and treatment. The statistical
significance level was set at p ≤ 0.05.

Results
Effect of HT on hrIL-1Ra titers within the tissues of
interest
At 4 h post-HI, HT did not modify the titer of hrIL-1Ra,
at the dose of 50 mg/kg, within the organ tested, namely
plasma, liver, CSF, and right forebrain hemisphere ex-
posed to LPS+HI (Fig. 2). At 24 h post-HI, HT induced
a significant increase (50 to 65%) of the hrIL-1Ra titers
within the plasma, CSF, and right forebrain hemisphere
exposed to LPS+HI (Fig. 2a–c).

Fig. 3 IL-1β expression within tissues of interest from pups exposed to LPS+HI+IL-1Ra±HT. IL-1β concentration measured by ELISA at 4 h
and 24 h post-HI within the plasma (a), right cerebral hemisphere (b), and liver (c) in LPS+HI+IL-1Ra (50 mg/kg) and LPS+HI+HT+IL-1Ra
(50 mg/kg) conditions. HT increased the expression of IL-1β within the right hemisphere at 4 h post-HI (b). The number (n) of rats used
was LPS+HI+IL-1Ra (n = 5–7 from 4 litters) and LPS+HI+HT+IL-1Ra (n = 4–8 from 4 litters). The bars indicate the mean ± SEM. *p ≤ 0.05;
independent T test. Abbreviations: HI, hypoxia-ischemia; HT, hypothermia; hrIL-1Ra, human recombinant of interleukin-1 receptor
antagonist; IL-1β, interleukin-1β; LPS, lipopolysaccharide from Escherichia coli

Chevin et al. Journal of Neuroinflammation  (2018) 15:214 Page 4 of 9



Effect of HT+hrIL-1Ra (50 mg/kg) on the inflammatory
cascade-induced by LPS+HI exposure
IL-1Ra administration interferes with the autocrine
loop of IL-1β synthesis and shuts down the down-
stream inflammatory cascades including TNF-α pro-
duction [11, 15, 21, 22]. In HT conditions at 4 and 24 h
post-HI, hrIL-1Ra (50 mg/kg) failed to counteract these
pathways (Fig. 3), or conversely induced paradoxical
upregulations of the IL-1β production at 4 h post-HI
(Fig. 3b), and of the TNF-α production at 24 h post-HI
in the LPS+HI-exposed right hemisphere (Fig. 4a).

Dose-dependent neurotoxic effect of hrIL-1Ra added to
HT
HT alone exerted a neuroprotective effect on the extent of
LPS+HI-induced core (Fig. 5a) and penumbral injuries
(Fig. 5b–d). HT also protected against the loss of brain
weight observed in such condition (Fig. 5e). hrIL-1Ra at
the dose of 50 mg/kg did not provide any neuroprotective
added value when combined to HT (Fig. 5a–d). hrIL-1Ra
at the dose of 200 mg/kg increased LPS+HI-induced pen-
umbral—but not core—injuries (Fig. 5b). Open field ex-
periments in juvenile rats (P20) did not show any
difference between LPS+HI+HT versus LPS+HI+HT
+hrIL-1Ra (50 mg/kg) conditions (Fig. 6a–d).

Discussion
Our results showed that HT altered the pharmacodynamic
parameters of hrIL-1Ra in our model of NE-induced by
inflammation plus HI. HT increased the concentration of
hrIL-1Ra (at 24 h post-HI) within the LPS+HI-exposed
plasma, CSF, and forebrain. Paradoxically, this effect was

not associated with an IL-1Ra-induced anti-inflammatory
effect on the IL-1 system. We also observed a lack of ef-
fectiveness of the combination of hrIL-1Ra with HT, as
compared to sole hrIL-1Ra in the same model of LPS
+HI-induced NE [14, 15].
According to the pharmacokinetic study performed in

a rat model of arthritis [23], and also taking into account
the short half-life (4–6 h) of IL-1Ra, it is unlikely that an
accumulation of IL-1Ra would be due in our experimen-
tal design to the repeated administration of IL-1Ra every
12 h. We hypothesize that the blood brain barrier (BBB)
dysfunction induced by LPS+HI exposures might in-
crease over time, with a more important BBB leak at
24 h (allowing the IL-1Ra to diffuse within the brain) as
compared to 4 h post-HI. Few studies dealt with the
impact of HT on the pharmacokinetic and pharmaco-
dynamic of drugs used in the human neonatal con-
text. However, it was shown that several drugs—e.g.,
isoflurane, morphine, ligands of β1 and β2 adrenore-
ceptors—had reduced metabolism and clearance on
HT as compared to non-HT condition [5, 6]. Affinity
between ligands and their cognate receptors as well as al-
terations of downstream signaling are also reported on
HT [5, 6, 8]. Our results suggest that the bioaccumulation
of hrIL-1Ra within the brain and CSF in LPS+HI+HTcon-
dition might result from a decreased clearance of
hrIL-1Ra and/or from a decreased affinity of hrIL-1Ra for
the IL-1R, and also possibly from the blockade of the
IL-1R signaling pathway. hrIL-1Ra is rapidly eliminated
(half-life of 4–6 h) mainly by the kidney through glomeru-
lar filtration (GFR) [24]. It is known in human studies that
the GFR is decreased under hypothermic condition [5, 6].

Fig. 4 TNF-α titers within tissues of interest from pups exposed to LPS+HI+IL-1Ra±HT. TNF-α concentrations measured by ELISA were
increased at 24 h post-HI within the right cerebral hemisphere (a) and the liver (b) in LPS+HI+HT+IL-1Ra (50 mg/kg) as compared to LPS
+HI+IL-1Ra (50 mg/kg) conditions. The TNF-α titers were similar in both conditions at 4 h post-HI. The number (n) of rats used was LPS+HI
+IL-1Ra (n = 5–8 from 4 litters) and LPS+HI+HT+IL-1Ra (n = 6–8 from 4 litters). The bars indicate the mean ± SEM. *p ≤ 0.05; independent T
test. Abbreviations: HI, hypoxia-ischemia; HT, hypothermia; hrIL-1Ra, human recombinant of interleukin-1 receptor antagonist; LPS, lipopolysaccharide
from Escherichia coli; TNF-α, tumor necrosis-α
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Fig. 5 (See legend on next page.)
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(See figure on previous page.)
Fig. 5 Comparison of the extent of brain injuries between LPS+HI±HT±IL-1Ra conditions. Comparisons of the extent of core and penumbra injuries
(within the neocortex, hippocampus, and caudate-putamen) between pups exposed to LPS+HI±HT±IL-1Ra (50–200 mg/kg) by H&E staining of the
right forebrains at P20. HT reduced the surface of core and penumbra lesions (a–d), as well as alleviated the brain weight loss observed after LPS+HI
exposure (e). The surface of core and penumbral lesions were similar in LPS+HI+HT+IL-1Ra (50 mg/kg) as compared to LPS+HI+HT condition (a–d).
HT+hrIL-1Ra (200 mg/kg) increased the extent of penumbra injury as compared to the LPS+HI condition (b), as well as core and penumbral injuries
as compared to LPS+HI+HT and LPS+HI+HT+IL-1Ra (50 mg/kg) (a–d). The number (n) of rats used was LPS+HI (n = 14–16 from 9 litters), LPS+HI+HT
(n = 13–15 from 9 litters), LPS+HI+HT+IL-1Ra 50 mg/kg (n = 17–19 from 9 litters), and LPS+HI+HT+IL-1Ra 200 mg/kg (n = 6–7 from 3 litters). The bars
indicate the mean ± SEM. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001; one-way ANOVA. Abbreviations: HI, hypoxia-ischemia; HT, hypothermia;
hrIL-1Ra, human recombinant of interleukin-1 receptor antagonist; LPS, lipopolysaccharide from Escherichia coli

Fig. 6 Open field experiment at P20 in pups exposed to LPS+HI+HT±IL-1Ra (50 mg/kg). No difference was observed between the two
conditions for the different open field parameters tested: the distance traveled (a), the mobile time (b), the time in the center (c), and the
visited squares in the apparatus (d). The number (n) of rats used was LPS+HI+HT (n = 8–9 from 6 litters) and LPS+HI+HT+IL-1Ra 50 mg/kg
(n = 6–7 from 5 litters). Independent T test. Abbreviations: HI, hypoxia-ischemia; HT, hypothermia; hrIL-1Ra, human recombinant of interleukin-1
receptor antagonist; LPS, lipopolysaccharide from Escherichia coli
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Besides, acute kidney injury can be associated to HI en-
cephalopathy in the term neonate [25, 26]. Hence, HI
could potentially affect the renal filtration, especially in
the HTcondition, and decrease the clearance of IL-1Ra.
The increased hrIL-1Ra bioaccumulation in HT

condition might explain the switch from protective [14,
15] to toxic effects of our highest dose of hrIL-1Ra
(200 mg/kg/12 h for 72 h). hrIL-1Ra (200 mg/kg/12 h
for 72 h) might reach in HT condition a toxic concentra-
tion within the brain inducing non-specific ligand-receptors
interactions deleterious for neural cells.
This study has some limitations. The concentration of

hrIL-1Ra was assessed only at 4 and 24 h post-HI. In
future experiments, blood samples could be taken at
additional time-points to study in more detail the
pharmacology of this drug. However, to our knowledge,
this is the first study focusing on the pharmacology of
IL-1Ra in neonatal rats.

Conclusion
Our study addresses for the first time the impact of HT
on hrIL-1Ra pharmacodynamics. HT might decrease the
clearance of hIL-1Ra, inducing its bioaccumulation and
loss of efficiency within the brain [11, 14, 15, 22, 27]. Ac-
cording to this hypothesis, current and future studies
aiming to develop HT therapies—as already performed
in neurological conditions, such as neonatal encephalop-
athy, stroke, traumatic brain injury, subarachnoid
hemorrhage, spinal cord injury, and neurological out-
comes of cardiac arrest [28–30]—should take into ac-
count the pharmacokinetic and pharmacodynamic
impact of HT and the inherent modification of the safety
profile of drugs.
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