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Mitochondrial dysfunction induces NLRP3 ® e
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Abstract

Background: Nod-like receptor protein 3 (NLRP3) inflammasome is a crucial factor in mediating inflammatory
responses after cerebral ischemia/reperfusion (I/R), but the cellular location of NLRP3 inflammasome in cerebral I/R
has yet come to a conclusion, and there is still no specific evidence to state the relationship between mitochondria
and the NLRP3 inflammasome in cerebral I/R.

Methods: In the present study, we detected the cellular localization of NLRP3 inflammasomes in a transient
middle cerebral artery occlusion (tMCAO) rat model and a transwell co-culture cell system under oxygen-glucose
deprivation/reoxygenation (OGD/R) conditions. Then, we investigated the relationship between mitochondrial
dysfunction and the activation of NLRP3 inflammasomes in different cell types after OGD/R and cerebral I/R
injury.

Results: Our results showed that NLRP3 inflammasomes were first activated in microglia soon after cerebral I/R
injury onset and then were expressed in neurons and microvascular endothelial cells later, but they were mainly
in neurons. Furthermore, mitochondrial dysfunction played an important role in activating NLRP3 inflammasomes

cerebral I/R rats.

the NLRP3 inflammasome pathway.

in microglia after OGD/R, and mitochondrial protector could inhibit the activation of NLRP3 inflammasomes in

Conclusion: Our findings may provide novel insights into the cell type-dependent activation of NLRP3
inflammasomes at different stages of cerebral I/R injury and the role of mitochondrial dysfunction in activating

Keywords: Stroke, NLRP3 inflammasome, Mitochondrial dysfunction, Microglia, Neuron

Background

Neuroinflammation is a crucial and complex pathophysio-
logical process within the whole scheme of cerebral ische-
mia, spanning from early damage to post-ischemic tissue
repair [1]. The exact molecular signaling pathways have
not been fully clarified to date, leading to difficulty in clin-
ical treatment. Recently, a novel inflammatory pathway,
known as inflammasomes, was found in ischemic stroke,
and several studies have highlighted that nod-like receptor
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protein 3 (NLRP3) inflammasomes may be crucial for me-
diating inflammatory responses and for inducing cellular
damage and death after stroke [2—4]. NLRP3 inflamma-
somes are the most well-characterized members of the
nod-like receptor family, which consists of NLRP3,
apoptosis-associated speck-like protein containing a cas-
pase activation recruitment domain (ASC) and precursor
caspase-1 (pro-caspasel), and it plays great roles in ische-
mic stroke by triggering the release of IL-1p and IL-18 via
caspase-1 activation [5, 6]. Subsequently, both IL-1p and
IL-18 participate in the initiation and amplification of the
inflammatory responses [7]. However, the specific cellular
location and signaling pathway of NLRP3 inflammasomes
in ischemic stroke remains unknown.
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In addition, it has been reported that mitochondrial
dysfunction activates NLRP3 inflammasomes in some
inflammatory diseases, such as metabolic syndrome, dia-
betes, atherosclerosis, neurodegeneration, heart disease,
and kidney disease [8]. However, there is still no specific
evidence stating the relationship between mitochondria
and NLRP3 inflammasomes in stroke.

In the present study, we aimed to clarify these ques-
tions, in the hope of revealing more details regarding
neuroinflammation in mediating cerebral ischemia/re-
perfusion (I/R) injury in ischemic stroke.

Methods

Animals and substances

Healthy, male, 280-320 g Sprague-Dawley rats were ob-
tained from the Laboratory Animal Center of Sun Yat-sen
University, Guangzhou, China. The rats were housed in a
temperature- (25 +2 °C) and humidity-controlled room.
The animals were maintained under a 12:12-h light/dark
cycle with free access to food and water.

Diazoxide, considered a highly selective mitochon-
drial ATP-sensitive potassium channel opener, was dis-
solved in sterile 0.1 M NaOH solution before being
used. The concentration of diazoxide used in the cells
was 100 um, which was in accordance with a previous
study reported [9].

Transient middle cerebral artery occlusion (tMCAO) model
and drug treatment

The intraluminal suture MCAO method was used to in-
duce tMCAO, as we previously described, in order to
stimulate I/R injury in rats [10]. In brief, a midline inci-
sion was made in the neck to expose the right external
carotid artery after each rat was anesthetized with 10%
chloral hydrate. Then, a monofilament (Beijing Cinon-
tech Co., Ltd.; China; 2838-A4) was inserted into the in-
ternal carotid artery, past the external carotid artery,
until a mild resistance was felt, indicating that the fila-
ment was properly lodged in the proximal segment of
the anterior cerebral artery and, thus, was blocking the
blood flow to the middle cerebral artery. The monofila-
ment was left in place for 120 min and then was with-
drawn to induce reperfusion. When the rat regained
consciousness, a successful model showed left foreleg
paralysis or a circular motion, and infarct tissue without
cerebral hemorrhage was observed when the brain was
removed. A sham-operation was performed as a control,
which included the same procedures as the tMCAO
mentioned above but without the insertion of the mono-
filament and following reperfusion.

Rats were randomly divided into six groups: the sham-
operation group (sham), the sham + diazoxide group, the
6 h after reperfusion group (I/R 6 h), the I/R 6 h + diaz-
oxide group, the 24 h after reperfusion group (I/R 24 h),
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and the I/R 24 h + diazoxide group. The diazoxide was
treated at 10 mg/kg intraperitoneally after reperfusion im-
mediately as the previous studies [11, 12]. The diazoxide
was dissolved in sterile 0.1 M NaOH solution, and diluted
with saline to the concentration of 0.02 N NaOH solution
before being used. The other animal group received equal
volume of 0.02 N NaOH solution.

Immunofluorescence (IF)

The brains were removed after cardiac perfusion 6 h and
24 h after reperfusion in different groups and were fixed
with 4% paraformaldehyde at 4 °C overnight. Frozen
sectioning was performed after sucrose gradient dehy-
dration. Then, the 10-pm thick coronal sections were
blocked with 10% goat serum containing 0.5% Triton
X-100 at room temperature for 30 min, followed by in-
cubation with mouse anti-caspase-1 p20 (Santa-Cruz
Biotechnology, sc-398,715, 1:50) antibody and rabbit
anti-Ibal antibody (Wako, 019-19,741, 1:250) or rabbit
anti-NeuN antibody (Cell Signaling Technology, 24307S,
1:50) or rabbit anti-CD31 antibody (Abcam, ab222783,
1:100) (The antibody specificity was proved in
Additional file 1: Figure S1) or rabbit anti-GFAP anti-
body (Abcam, ab33922, 1:250) at 4 °C overnight. The
sections were washed for 3 x 10 min with PBS and then
incubated with a mixture of Alexa Fluor 488-conjugated
goat-anti mouse IgG (Beyotime, A0428, 1:500) and Alexa
Fluor 555-conjugated donkey-anti rabbit IgG (Beyotime,
A0453, 1:500) for 1 h at room temperature, followed by
staining with DAPI for 5 min. After being washed with
PBS three times, the sections were mounted with fluor-
escent mounting medium (Dako, $3023). An equal vol-
ume of PBS was used to replace the primary antibody as
a negative control, and the other procedures remained
unchanged. All images that were focused on the ische-
mic core cortex area [13] (Fig. 1f) were captured using a
fluorescence microscope (Ix71, OLYMPUS) at x 200
magnification and a 100-um scale bar. The percentage of
different cell types in caspase-1 p20-positive cells is
equal to the counts of both cell markers and caspase-1
p20-positive cells/counts of caspase-1 p20-positive cells.
The percentage of caspase-1 p20-positive cells in different
cell type is equal to the counts of both cell markers and
caspase-1 p20-positive cells/counts of different cell type.

Primary microglial cell culture

The method to isolate and cultivate primary microglial
cells from C57BL/6 neonatal mice was according to a pub-
lished protocol [14, 15]. Briefly, primary mixed glial cells
were isolated from postnatal mice born within 24 h and
then cultured in DMEM/F12 medium (Gibco, Invitrogen,
11,330-032) supplemented with 10% heat-inactivated fetal
bovine serum (FBS) (Gibco, Invitrogen, 10,099-141) and
1% penicillin/streptomycin (HyClone, SV30010). On days
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Fig. 1 Cellular localization of cleaved caspase-1 after ischemia/reperfusion (I/R) injury. a-d The expression of caspase-1 p20 in microglia,
astrocytes, neurons, and endothelial cells in sham rats and after cerebral I/R at 6 h and 24 h. e The percentage of different cell types in
caspase-1 p20-positive cells 6 h and 24 h after cerebral I/R. f The ischemic area where the cleaved caspsae-1 was richly expressed. Bar = 100

um. *p < 0.05, **p < 0.01

12-14, microglial cells were harvested by shaking the cul-
tures and collecting the floating cells. After centrifugation,
cells were seeded into plastic tissue culture flasks and in-
cubated at 37 °C for 12—24 h, followed by culture medium
replacement. The purity of microglia was verified by im-
munofluorescence staining with Iba-1 (Wako, 019-
19,741, Japan).

BV2 cells, PC12 cells, and bEnd3 cells were obtained
from American Type Culture Collection (ATCC). BV2
cells were cultured in DMEM/F12 medium (Gibco, Invi-
trogen, 11,330-032), and the other cells were cultured in
DMEM high glucose (HyClone, SH30243.01), supple-
mented with 10% heat-inactivated fetal bovine serum

(Gibco, Invitrogen, 10,099-141) and 1% penicillin/strepto-
mycin (HyClone, SV30010) in a humidified incubator at
37 °C, in the presence of 5% CO, in the air. For differenti-
ation (Additional file 2: Figure S2), 100 ng/ml of nerve
growth factor (NGF) (Sigma-Aldrich, N2513) was added to
the culture medium of PC12 cells for 3 days, which was
used for the following assays.

Transwell co-culture system

The transwell co-culture system was conducted as previ-
ously reported [11]: BV2 cells were cultured on the
upper compartment of a two-chamber transwell system
(0.4-mm pore size of polycarbonate membrane coated
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with poly-L-lysine; Corning, Corning, NY, USA), and
PC12 or bEnd3 cells were grown on the bottom well of
the chamber, cultured in DMEM/F12 medium [16].

siRNA transfection
Primary microglial cells, PC12 cells, bEnd3 cells, BV2
cells alone, and BV2 cells cultured in the upper chamber
were transfected with NLRP3-siRNA (mouse) (forward,
5'-GUACUUAAAUCGUGAAACAATAT-3’; reverse, 3'-
dTdTCAUGAAUUUAGCACUUUGU-5") or NLRP3-siR
NA (rat) (forward, 5'-CAGCCAGAGUGGAAUG ACAd
TdT-3’; reverse, 3'-dTdTGUCGGUCUCACCUUACUG
U-5") or NC-siRNA (RiboBio. CO., LTD, China) with
Lipo3000 (Invitrogen, L3000-015) according to the
manufacturer’s instructions. After 24 h of transfection,
the treated upper chambers were moved to the other
wells with PC12 or bEND3 cells cultured in the bottom
chambers. Similarly, the treated PC12 or bEnd3 cells in
bottom chambers were co-cultured with BV2 cells cul-
tured in upper chambers. Then, the siRNA-transfected
primary microglial cells, PC12 cells, bEnd3 cells, BV2
cells, and transwell co-culture systems received oxygen-
glucose deprivation/reoxygenation (OGD/R) treatment.
The groups in transwell co-culture system, siRNA trans-
fection, and OGD/R treatment were as following: Control
treatment in isolated culture (NC), OGD/R treatment in
isolated culture (OGD/R), OGD/R treatment in isolated cul-
ture with NC-siRNA transfection (OGD/R + NC siRNA),
OGD/R treatment in isolated culture with NLRP3-siRNA
transfection (OGD/R + NLRP3 siRNA), control treatment
in transwell co-culture (transwell NC), OGD/R treatment in
transwell co-culture (transwell OGD/R), OGD/R treatment
in transwell co-culture with NC-siRNA transfection (trans-
well OGD/R + NC siRNA), and OGD/R treatment in trans-
well co-culture with NLRP3-siRNA transfection (transwell
OGD/R + NLRP3 siRNA).

Oxygen-glucose deprivation/reoxygenation (OGD/R)
model and drug administration

The OGD/R model was generated by replacing the cul-
ture medium with glucose-free DMEM medium (Gibco,
Invitrogen, 11,966-025), then placing the plate into a
hypoxic incubator (MIC-101, Billups-Rothenberginc)
that contained a gas mixture of 95% N, and 5% CO, for
4 h at 37 °C and then recovering normal gas and
medium at the optimal time. The cell groups that
needed drug treatment were treated with renewed nor-
mal medium with diazoxide after reoxygenation, and the
other groups were treated with PBS as a control.

The groups in transwell co-culture system, drug treat-
ment, and OGD/R treatment were as following: control
treatment in isolated culture with PBS (NC), control
treatment in isolated culture with diazoxide (NC + diaz-
oxide), OGD/R treatment in isolated culture with PBS
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(OGD/R), OGD/R treatment in isolated culture with
diazoxide (OGD/R + diazoxide), control treatment in
transwell co-culture with PBS (transwell NC), OGD/R
treatment in transwell co-culture with PBS (transwell
OGD/R), and OGD/R treatment in transwell co-culture
with diazoxide (transwell OGD/R + diazoxide).

Flow cytometry

The apoptotic rates of the PC12 cells were detected using
flow cytometry with an annexin V-FITC/PI apoptosis de-
tection kit (KeyGEN BioTECH, KGA107) according to the
manufacturer’s instructions. Briefly, isolated single-cell
suspensions were stained with annexin-V and PI at room
temperature in darkness for 15 min. Then, the number of
cells was determined via flow cytometry (LSR II, BD).

Measurement of mitochondrial DNA (mtDNA) copy
number and mtDNA damage

Genomic DNA from the cells was extracted using the
Genomic DNA Miniprep Kit (TIANGEN, DP304-02).
The mtDNA copy number was measured using real-time
quantitative PCR (qPCR) and was normalized to the Hbb
(B-globin) gene. The primer pairs for measuring the
mtDNA copy number were as follows: mtDNA forward,
GCCCATGACCAACATAACTG; reverse, CCTTGACGG
CTATGTTGATG; Hbb (B-globin) forward, AGGCAGAG
GCAGGCAGAT; reverse, GG CGGGAGGTTTGAGA
CA. q-PCR reactions were performed in the LightCycler
480 II PCR System (LightCycler 480 II, Roche), using the
All-in-One qPCR Mix kit (GeneCopoeia, AOPR-0200).

Measurement of the mitochondrial membrane potential
(Apm)

The Aym was assayed using a JC-1 (5, 5°, 6, 6'-tetrach
loro-1, 1°, 3, 3’-tetraethylbenzimidazolcarbocyanine iod-
ide) staining Kit (Beyotime, C2006). Cells were incubated
with 10 pg/ml JC-1 for 30 min at 37 °C, and images were
captured with a fluorescence microscope. The ratio of
JC-1 aggregates (red fluorescence) to monomers (green
fluorescence) was calculated using Image-Pro Plus 6.0
(Media Cybernetics, Inc., USA). Loss of mitochondrial
function by mPTP opening was indicated by a decrease
in the ratio of the red/green fluorescence intensity [17].

RNA extraction and real-time quantitative PCR (qRT-PCR)

The PC12 or bEnd3 cells were prepared for total RNA ex-
traction using TRIzol reagent (Takara, #9109), and cDNA
was synthesized using the PrimeScript RT Reagent Kit
(Takara, #RR037A) according to the manufacturer’s in-
structions. The q-PCR reaction was performed in the
LightCycler 480 II PCR System (LightCycler 48011, Roche,
USA), using the All-in-One qPCR Mix kit (GeneCopoeia,
AQPR-0200). Primers were provided as follows: IL-1p for-
ward, TGCCACCTTTTGACAGTGATG and reverse,
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AAGGTCCACGGGAAAGACAG; IL-18 forward, AGCA
GTCCCAACTAAGCAGTA and reverse CAGCCAGTA
GAGGATGCTGA; and p-actin forward GTGACGTTG
ACATCCGTAAAGA and reverse GCCGGACTCATCGT
ACTCC. The endpoint of qRT-PCR data is the compara-
tive cycle threshold method (Ct). The relative changes in
gene expression were quantified using the Livak method
(also known as 272" method) after determining the Ct
values for the reference and target genes in each sample
set [18]. All reactions were repeated for three times.

Immunoprecipitation (IP)

The BV2 cell lysates (500 pg) were immunoprecipitated
with 1 pg of anti-ASC antibody (Cell Signaling Technol-
ogy, 67824S) for 1 h at 4 °C, and then were incubated
with 20 ul of protein A agarose beads (Santa-Cruz,
sc-2003) overnight at 4 °C, and centrifuged at 3000xg
for 5 min. Protein complexes were washed five times
with RIPA buffer, resuspended in x 2 loading buffer, and
heated at 95 °C for 5 min. Then, the protein lysis buffers
were used for western blot analysis with the following
antibodies: rabbit anti-ASC (Cell Signaling Technology,
67824S, 1:1000), rabbit anti-NLRP3 (Cell Signaling
Technology, #8242S, 1:1000), and mouse anti-caspase-1
(Santa-Cruz Biotechnology, sc-398,715, 1:100). Homo-
phytic IgG was used as the negative control. SDS-PAGE
and Western blot were used to analysis IP assay. The
ASC protein was used as a loading control, and the load-
ing quantities of precipitated materials were regulated
according to the gray levels of ASC protein, to ensure
brightness of reference bands were consistent. As the
molecular weight of pro-caspase-1 and ASC were close
to 50 kD or 25 kD, to avoid the influence of IgG light or
heavy chain, the second antibodies used for pro-caspase-
1 and ASC were anti-Mouse IgG Light Chain (Abbkine,
A25012) and anti-Rabbit IgG Heavy Chain (Abbkine,
A25222), respectively.

Western blotting

Western blotting was performed according to conventional
protocols. Briefly, the ischemic cortex or the cells were pre-
pared for protein lysates using total protein lysis buffer
(Beyotime, P0013) or IP protein lysis buffer (Beyotime,
P0027) and were analyzed using SDS-PAGE (12%). The
membranes were incubated with primary antibodies against
NLRP3 (Cell Signaling Technology, #8242S, 1:1000), ASC
(Cell Signaling Technology, 67824S, 1:1000), caspase-1
(Santa-Cruz Biotechnology, sc-398,715, 1:100), IL-1 (San-
ta-Cruz Biotechnology, sc-7887, 1:100), IL-18 (Abcam,
ab71495, 1:125), and GADPH (Cell Signaling Technology,
#2118S, 1:1000) at 4 °C overnight, followed by incubation
with anti-rabbit IgG (MultiSciences (LiankeBio), GAR007,
1:5000), or anti-mouse IgG (MultiSciences (LiankeBio),
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GAMO07, 1:5000) for 1 h at room temperature. The epi-
topes were visualized using an ECL western blot detection
kit (KeyGEN BioTECH, KGP1126).

Elisa

The supernatants were centrifuged and collected for
ELISAs. The levels of the pro-inflammatory cytokines
IL-1p (R&D Systems, MLBOOC) and IL-18 (eBioscience,
BMS618-3) were measured after OGD/R using commer-
cial ELISA kits from eBioscience Systems. The procedures
were performed according to the manufacturer’s instruc-
tions using a microplate reader (Bio-Rad, CA, USA).

Statistical analysis

The Image-Pro Plus 6.0 (Media Cybernetics, Inc., USA)
software was used to analyze the optical density of the
western blot results and to calculate the number of
caspase-1-positive cells or double staining cells and
JC-1-stained cells. Statistical analyses were performed
using the SPSS 19.0 (SPSS Inc.,, USA) software. Data
were presented as the means + SEM with the homogen-
eity of variance. Statistical analyses were performed with
Student’s ¢ test between two groups or one-way ANOVA
for multiple groups, followed by LSD for post hoc com-
parisons. Two-way ANOVA was used to compare the
results among multiple groups according to the im-
munofluorescence in the brain slices. p < 0.05 was con-
sidered statistically significant.

Results

The cellular location where NLRP3 inflammasomes were
activated changed dynamically in the process of
ischemia/reperfusion (I/R) injury

It was observed in the ischemic core area (Fig. 1f) that
cleaved caspase-1 was mainly expressed in microglia 6 h
after the I/R injury (88.36 +1.102%) (Fig. la) and was
rarely expressed in other cell types (Fig. 1b—d). Then,
cleaved caspase-1 was mostly expressed in neurons (63.39
+2.219%) (Fig. 1c) and endothelial cells (39.97 + 2.289%)
(Fig. 1d) at 24 h, while limited expressed in microglia
(12.21 £ 1.068%) (Fig. la) and astrocytes (4.67 +0.985%)
(Fig. 1b) was observed. Therefore, the expression of
cleaved caspase-1 gradually decreased in microglia be-
tween 6 h and 24 h but simultaneously increased in neu-
rons and endothelial cells, particularly in neurons.

As cleaved caspase-1 was expressed in microglia first,
we used primary microglia and BV2 cells to explore the
pathway of caspase-1 activation. The purity of primary
microglia was verified as 95% or higher (Fig. 2c). We
found that the protein level of NLRP3 in BV2 cells in-
creased over time after OGD/R, especially at 24 h, com-
pared with the NC (all p <0.01) (Fig. 2a). When NLRP3
expression was silenced by NLRP3-siRNA transfection
in the primary microglia and BV2 cells, we observed
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that the expression levels of cleaved caspase-1, ASC,
cleaved IL-1PB, and cleaved IL-18 were significantly
downregulated after OGD/R (p <0.05) (Fig. 2b and d),
indicating that the inflammasome pathway that was ac-
tivated in microglia was mediated by NLRP3, and the
activation of NLRP3 inflammasomes in BV2 cells after
OGD/R could reflect the changes in primary microglia.

NLRP3 inflammasomes expressed in PC12 and bEnd3 cells
after OGD/R were induced by co-cultured BV2 cells

PC12 and bEnd3 cells were used as alternative neurons
and vascular endothelial cells, respectively. A transwell
co-culture system, with BV2 cells in the upper chamber
and PC12 or bEnd3 cells in the lower chamber, was used
to explore the expression of NLRP3 inflammasomes in
PC12 and bEnd3 cells. The results showed that the ex-
pression of NLRP3 was roughly upregulated in BV2 cells
2 h after OGD/R compared with the NC group in the
transwell co-culture system of BV2 and PC12 cells (p <
0.01); this expression gradually decreased over time (all
p<0.01). In addition, the same trend was observed in
ASC and cleaved caspase-1 in the BV2 cells co-cultured
with PC12 cells (all p < 0.05) (Fig. 3a and b). In contrast,
we found that the expression levels of NLRP3, ASC, and
cleaved caspase-1 all increased over time in PC12 cells
after OGD/R in the transwell co-culture system (all p <
0.01) (Fig. 3a, c). However, the activation of NLRP3
inflammasomes was not observed in PC12 cells cultured
alone after OGD/R (Fig. 3a, d). Similarly, the expression
levels of NLRP3, ASC, and cleaved caspase-1 were sig-
nificantly upregulated in bEnd3 cells co-cultured with
BV2 cells 24 h after OGD/R, compared with the trans-
well NC group, OGD/R group, and NC group (all p<
0.01). The above results indicated that NLRP3 inflamma-
some activation in PC12 and bEnd3 cells in the transwell
co-culture system after OGD/R was induced by some
stimulating factor released from BV2 cells.

Then, we transfected NLRP3-siRNA to block the pro-
duction of NLRP3 in BV2 cells, followed by co-cultures
with PC12 or bEnd3 cells and OGD/R treatment. It was
observed that the expression levels of NLRP3, ASC,
and cleaved caspase-1 in PC12 cells were significantly
downregulated in the transwell OGD/R + NLRP3-siRNA
group compared to the transwell OGD/R group and trans-
well OGD/R + NC-siRNA group (Fig. 4a and b) (all p<
0.01). Furthermore, the results from the qRT-PCR and
ELISAs also revealed that the upregulation of IL-13 and
IL-18 in the PC12 cells, and supernatants induced by
OGD/R were both rescued by NLRP3-silencing in the
BV2 cells (Fig. 4d) (all p <0.05). The same trend was also
observed in bEnd3 cells (Fig. 4a, ¢, e). These results indi-
cated that the stimuli released from BV2 cells were origi-
nated from the activated NLRP3 inflammasome signaling
pathway in BV2 cells.
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To clarify the source of NLRP3 expressed in PC12 or
bEnd3 cells, we transfected NLRP3-siRNA to block the
production of NLRP3 in PC12 or bEnd3 cells, followed by
co-cultures with BV2 cells and OGD/R treatment. The re-
sults show that the expression of NLRP3, ASC, and
cleaved caspase-1 in PC12 (Fig. 5a and b) or bEnd3 cells
(Fig. 54, ¢) in the transwell OGD/R + NLRP3-siRNA group
decreased significantly compared to the transwell OGD/R
+NC-siRNA group, but were still higher than that in
OGD/R + NLRP3-siRNA group (all p < 0.05). Such results
reinforced the finding that the activation of NLRP3
inflammasomes in PC12 or bEnd3 cells was induced by
BV2 cells, and revealed that the main source of NLRP3
inflammasomes expressed in PC12 or bEnd3 cells was
from their own productions.

NLRP3 inflammasomes in BV2 cells after OGD/R were
associated with BV2 cell-mediated PC12 cell damage

The results from the flow cytometry (Fig. 6a) showed that
BV2 cells could significantly increase the apoptotic rate of
PC12 cells after OGD/R (24.19 + 1.948%), compared with
the NC group (4.44 + 0.348%). The apoptosis of PC12 cells
in transwell co-cultures after OGD/R could be attenuated
via NLRP3 knockdown in BV2 cells (13.43 + 1.594%), indi-
cating that the damage to PC12 cells was induced by the
NLRP3 inflammasomes in BV2 cells after OGD/R (all p <
0.01) (Fig. 6b). Such results were not shown in isolated
cultured PC12 cells after OGD/R.

Mitochondrial dysfunction could activate NLRP3
inflammasomes in primary microglia and BV2 cells after
OGD/R

We found that the ratio of JC-1 aggregates to monomers
and the mtDNA copy numbers significantly decreased in
BV2 cells 24 h after OGD/R compared to the NC group
(all p<0.01) (Fig. 7a), which indicated damage to the mito-
chondria, including mitochondrial depolarization and
mtDNA damage. In addition, this damage to the mitochon-
dria was able to be rescued by the mitochondrial protector
diazoxide (all p < 0.01) (Fig. 7a).

Next, we aimed to clarify the relationship between
mitochondrial dysfunction and NLRP3 inflammasomes.
For detecting the formation of NLRP3 inflammasome,
which consists of NLRP3, ASC, and pro-caspasel, IP
assay was performed, which was the direct evidence for
protein interaction. The IP results revealed that the
same amount of ASC in BV2 cells in OGD/R 24-h
group could bind more NLRP3 and pro-caspasel com-
pared to the NC, indicating that the formation of the
NLRP3 inflammasomes was obviously increased in BV2
cells after OGD/R, which could be inhibited by diazox-
ide (all p <0.01) (Fig. 7b). In addition, diazoxide could
also suppress the upregulation of NLRP3, ASC, and cleaved
caspase-linduced by OGD/R in primary microglia and BV2
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Fig. 3 NLRP3 inflammasome pathway expressed in PC12 and bEnd3 cells in the transwell co-culture system after OGD/R was induced by BV2
cells. a The expression levels of NLRP3, ASC, pro-caspase-1, and cleaved caspase-1 in BV2, PC12, and bEnd3 cells in different groups, as measured
in BV2 cells in the transwell co-culture with PC12 cells at different time
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co-culture with BV2 cells at different time points after reoxygenation, as measured by western blot. d The changes of NLRP3, ASC, and cleaved
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in PC12 cells in the transwell

cells (Fig. 7c and d) (all p <0.01). We also found that the
upregulation of IL-1p and IL-18 24 h after OGD/R was
suppressed by diazoxide in primary microglia and BV2 cells
(all p<0.01) (Fig. 7c and d). These results suggested that
mitochondrial dysfunction was essential for the NLRP3
inflammasome formation and activation in primary micro-
glia and BV2 cells after OGD/R. Also, the pathway in BV2
cells was same with primary microglia.

The mitochondrial protector could rescue the NLRP3
inflammasome pathway expressed in PC12 and bEnd3
cells in transwell co-cultures after OGD/R

The WB results revealed that the protein levels of NLRP3,
ASC, and cleaved caspase-1 significantly decreased in PC12
(Fig. 8a and b) and bEnd3 cells (Fig. 8a, c) in the transwell
OGD/R 24 h + diazoxide group, compared with the trans-
well OGD/R 24-h group (all p<0.05). In addition, the



Gong et al. Journal of Neuroinflammation (2018) 15:242 Page 9 of 17

2.0
a b .é . W8 transwell NC
transwell co-culture g . =T @ transwel OGDR 24h
5 ' = 8 transwell OGD/R 241+NC SIRNA
PC12 bEnd3 o . transviell OGDIR 24h+sIRNA
219 o
NLRP3 ‘-—._,——_| |—-——| 5 - *
e
- c 0.5
‘ . £
:% ==== [l
a 004

! !_,-  20-
2 o @B transwell NC
gadph ‘_ -— —| }- -— —-| 8,5l 9 transwell OGD/R 24h
g B transwell OGD/R 24h+NC siRNA
o +sil
OGD/R 24h - + + + - + + + ° transwell OGD/R 24h+siRNA
2 104 ., . R -I-
. £ = e
NCsiRNA = - + - - - + - 3 i
. < 0.5 T
NLRP3 siRNA = - - + - - - + ]
o
o 0.0
*%
8 5 —
£ s ** H 20 - — : 4 *k P
[ £ 4 K Z
56 ey LS £os
= = = =
23 S 53 5%
-« < T P < - « T
z 4 z < Z 210 Z a2 T
e 222 22 22
0 = ]
= -
£E2 £2, T fEZos 22
3 2 e z
) —_—
= o £ o Y EI
© > \ \ ¢ v \J © o > v
N q-"b & & N q:”b‘ S & N q.'bh & &
2 X % 2 « ) % %) © N & O
é & P © j $ A 3 & &
& & o S P & o & ¥ & o 3 P
¢ $ & X & ¢ & A o « S B3 &
& &S & &S & S
& & N o S > & 9 R
& S & s &
& < & ¢ N ¢
& § &
150 200 100 *k *k 250,
g o dad e ok o % e *k wox
] 2 = 80 = 200
% 100 5 150 s s
< c S 60 § 150, -
kS 8 _— & s
2 - @ 100: @ 2
2 o 9 40 . 2 100
g% g g g
° g % S 2 S 5
= < <
T oo " o oo RS
4 > \g g 5 v g \ \J B & &
q‘q}\ O\Q} of *"’\QS\ ~t‘°\\ O\Q:L (,ég.\; xé’g.e 4\0\\ O\Q-W § xg\q-‘\ «t‘a\\ O\Q:‘v (,"\Q. x';g.
4 N & o & S o & &' & & &
3 o & » & S & o < S R o & S R 3
« N 4 N & N o N N &
E & & S5 S &S & &L
& S & o Q &£ d & 9 O
s o & < & < S & \o" &
& & S & N 8 D\ &
&:g & e“; & Q-x’ & @*“’é @

Fig. 4 The stimuli released from co-cultured BV2 cells originated from NLRP3 inflammasome signaling pathway in BV2 cells. a The expression
levels of NLRP3, ASC, pro-caspase-1, and cleaved caspase-1 in PC12 and bEnd3 cells in the transwell co-cultures in different groups, as measured
by western blot. OGD/R treatment of transwell co-culture system was conducted at 24 h after siRNA transfection in BV2 cells. b The changes of
NLRP3, ASC, and cleaved caspase-1 in PC12 cells among the different groups, as measured by western blot. ¢ The changes of NLRP3, ASC, and
cleaved caspase-1 in bEnd3 cells among the different groups, as measured by western blot. d The expression levels of IL-13 and IL-18 in PC12
cells among the different groups, as measured by RT-PCR and ELISA. e The expression levels of IL-13 and IL-18 in bEnd3 cells among the different

groups, as measured by RT-PCR and ELISA. *p <0.05, **p < 0.01. OGD/R: oxygen-glucose deprivation/reoxygenation. The OGD continued for 4 h,
followed by reoxygenation

results from the qRT-PCR and ELISA analyses also showed  alleviate the NLRP3 inflammasome response in BV2, PC12,
that the expression levels of IL-1p and IL-18 in PC12  and bEnd3 cells after OGD/R.

(Fig. 8d) and bEnd3 cells (Fig. 8e) were all significantly

downregulated in the transwell OGD/R 24 h + diazoxide = The mitochondrial protector could inhibit the activation
group compared with the transwell OGD/R 24-h group (all ~ of NLRP3 inflammasome in cerebral I/R injury

p<0.01). The other control groups showed no obvious The results of IF showed that the expression of cleaved
changes compared with the NC groups. Such results indi-  caspase-1 was significantly decreased in microglia (12.72 +
cated that the mitochondrial protector could effectively  1.806% VS 69.9 + 1.957%, Fig. 9a), neurons (11.87 + 1.933%
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VS 70.76 + 1.737%, Fig. 9b), and endothelial cells (9.12 +
1.278% VS 57.76 +2.455%, Fig. 9¢c) in I/R + diazoxide
groups at 6 h or 24 h after the cerebral I/R injury, com-
pared with the I/R group (all p < 0.01).

The WB results revealed that the protein levels of
NLRP3, ASC, cleaved caspase-1, cleaved IL-1f, and
cleaved IL-18 significantly increased in I/R 24-h group,
compared with the sham group (all p <0.01) (Fig. 9d),

and diazoxide could significantly inhibit the expression
of NLRP3, ASC, cleaved caspase-1, cleaved IL-1j, and
cleaved IL-18 (all p<0.01) (Fig. 9d). These results
showed that the mitochondrial protector could inhibit
the activation of NLRP3 inflammasome in cerebral I/R
injury, indicating that mitochondrial dysfunction played
a great role in activating NLRP3 inflammasome in cere-
bral I/R injury.
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Discussion
Recently, NLRP3 inflammasomes have been found in some
organs after I/R injury, such as the brain, heart, kidneys,
and testes [19]. As has been reported, damage-associated
molecular pattern (DAMP) is the critical initial stimulus to
activate NLRP3 [20]. The oligomerization of NLRP3 re-
cruits, ASC and ASC, could activate pro-caspase-1 to cleave
into active fragments [21], and then cleaved caspase-1 in-
duces the formation of mature pro-inflammatory cytokines,
namely, I[L-1P and IL-18 [22, 23]. These cytokines then ini-
tiate or amplify diverse downstream signaling pathways to
drive pro-inflammatory processes [24], leading to cellular
damage, such as autophagy and pyroptosis [22], which
could release DAMPs to induce more inflammation [25].

In the mouse brain, it has been observed that NLRP3,
ASC, and caspase-1 are expressed in microglia after LPS

stimulation, which was not detected in astrocytes, indi-
cating that microglia might be the main site involved in
the formation of functional NLRP3 inflammasomes [4].
Moreover, Fann et al. and Wang et al. discovered that
the levels of NLRP3 inflammasome proteins and of
IL-1f and IL-18 were upregulated in primary cortical
neurons under OGD/R conditions [5, 26]. In contrast, in
a mouse model of middle cerebral artery occlusion
(MCAO), Yang et al. demonstrated that NLRP3 was
expressed in microglia and vascular endothelial cells but
not in neurons [6]. Thus, the specific expression and dis-
tribution of NLRP3 inflammasomes in cerebral I/R in-
jury have not led to a conclusion. In addition, the
different models of ischemia, the durations of the ische-
mic insults, and the different interventions have been of-
fered as possible explanations.
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Fig. 7 Mitochondrial dysfunction could activate NLRP3 inflammasomes in BV2 cells after OGD/R. a Measurements of the Aym and mtDNA
copy numbers in BV2 cells among the different groups. The BV2 cells in OGD/R or OGD/R + diazoxide groups were measured at 24 h after
reoxygenation. b The expression levels of NLRP3 and pro-caspase-1 physically associated with ASC in BV2 cells among the different groups, as
measured by IP. Anti-ASC antibody was used to immunoprecipitate NLRP3 inflammasome. 1B assay for ASC was used as a loading control. ¢ The
expression levels of NLRP3, ASC, cleaved caspase-1, IL-1(3, and IL-18 in BV2 cells among the different groups, as measured by western blot and
ELISA. d The expression of NLRP3, ASC, pro-caspase-1, cleaved caspase-1, pro-IL13, cleaved IL13, pro-IL18, and cleaved IL18 in primary microglial
cells among the different groups. The 100 pm diazoxide was applied to the cells when got reoxygenation. Bar = 100 pm. *p < 0.05, **p < 0.01.
OGD/R: oxygen-glucose deprivation/reoxygenation. The OGD continued for 4 h, followed by reoxygenation

In this study, we chose rats as the animal model because
the genes of rats are relatively close to those of humans. In
addition, it was the first time the cellular localization of the
NLRP3 inflammasome pathway after I/R injury was ob-
served dynamically. The cells used in vitro were primary
microglia, BV2 microglia, PC12 neurons, and bEnd3 cere-
bral microvascular endothelial cells. We found that the
cleaved caspase-1 in tMCAOQ rats was mainly expressed in
ischemic core area within 24 h, which was the observed
and counted area. Our results showed that activated inflam-
masomes were first formed in microglia after cerebral I/R
injury, but not in astrocytes, and then they were mostly
expressed in neurons and vascular endothelial cells at 24 h,
particularly in neurons, mainly through the NLRP3 mole-
cules. The results of this in vitro study revealed that the
NLRP3 inflammasome pathway expressed in PC12 and
bEnd3 cells in transwell co-culture systems after OGD/R
was induced by BV2 cells, as the levels of NLRP3 inflam-
masomes were not changed in PC12 and bEnd3 cells only
under OGD/R condition. Then, we used NLRP3-siRNA to
knockdown the target gene in BV2 cells, which were cul-
tured in a transwell co-culture system, thereby inducing a
rough decrease in the level of NLRP3 inflammasomes and
downstream inflammatory factors, such as caspase-1, IL-
1B, and IL-18 in PC12 and bEnd3 cells in a transwell
co-culture system after OGD/R. When we inhibited the ex-
pression of NLRP3 in PC12 or bEnd3 cells which were cul-
tured in transwell co-culture system, the increase of NLRP3
inflammasomes in PC12 and bEnd3 cells in transwell
co-culture system after OGD/R could be inhibited partly.
These findings provided positive proof supporting that the
NLRP3 inflammasomes that were expressed in PC12 and
bEnd3 cells in transwell co-culture systems after OGD/R
were activated by some stimulating factor originated from
NLRP3 inflammasome signaling pathway in BV2 cells, and
the main source of NLRP3 inflammasomes expressed in
PC12 or bEnd3 cells was from their own productions. Fur-
thermore, the apoptosis of PC12 cells was clearly activated
when these cells were cultured with BV2 cells after OGD/
R, which could be inhibited by NLRP3 knockdown in BV2
cells. A previous study revealed that NLRP3 inflamma-
somes induced caspase-1-dependent pyroptosis, which is
an important event that may be an essential pathway in-
volved in mitochondria-associated apoptosis in ketamine-

induced hippocampal neurotoxicity [27]. These previous re-
sults were in accordance with our results. Taken together, it
is reasonable to draw the conclusion that microglia are the
main source of activated NLRP3 inflammasomes during
the early stage after cerebral I/R injury, which could drive
pro-inflammatory processes, leading to the cells death and
disruption, which could release some stimuli (e.g, DAMPs
and IL-1P) to trigger the activation of inflammasomes in
surrounding cells [28, 29]. Thus, the NLRP3 inflamma-
somes are activated in neurons and microvascular endothe-
lial cells over time and mainly gather in neurons during the
late stage, which may induce neuronal death and blood-
brain barrier (BBB) integrity dysfunction. Interestingly, we
found that the expression of NLRP3 inflammasome in BV2
cells in co-culture system was gradually decreased over
time, which was inconsistent with the results of isolated
cultured BV2 cells. We thought the different cellular
models were the main reason. In co-culture model, the re-
leased DAMP could be spread to the bottom chambers,
which may result in the attenuation of activation of NLRP3
inflammasome in BV2 cells, compared to isolated culture
model. Besides, the PC12 cells in co-culture model, ex-
pressing NLRP3 inflammasome later, may release some
negative feedback regulator, which may inhibit the expres-
sion of NLRP3 inflammasome in BV2 cells. Of course, the
specific reason still needs further studies.

As we know, microglia and astrocytes are the main
cells inducing immunoreaction to cerebral I/R injury. In
our results, the quantity of microglia and astrocytes in
ischemic core area showed a severe decrease, especially
at 24 h after cerebral I/R injury, but the microglia were
activated significantly. Some studies have revealed that a
specific loss of GFAP immunolabeling in protoplasmic
astrocytes occurred in the area with total depletion of
regional CBF (rCBF) levels, associated with advanced
disintegration of cytoplasmic elements and loss of ATP
in the ischemic core, whereas “classical” astrogliosis was
observed in areas with remaining rCBF [30, 31], which
was in accordance with our results. Also, the findings in
the ischemic core, the round Ibal-positive cells appeared
from 24 h and reached a peak at 4 to 7 days [32], could
support our results, and degeneration of microglia in the
ischemic core after prolonged MCAO was also reported
by other studies [33, 34].
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A series of studies have demonstrated that NLRP3
inflammasomes are activated by three mechanisms: the
potassium efflux [35], the release of mitochondrial react-
ive oxygen species (mtROS) [36], and lysosomal damage

[37]. However, it has been suggested that these three
models could be integrated and associated with the pro-
duction of oxidized mitochondrial DNA (mtDNA) [38,
39]. Zhou et al. reported that ROS that were generated
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Fig. 8 Mitochondrial protector could rescue the NLRP3 inflammasome pathway expressed in PC12 and bEnd3 cells in the transwell co-cultures
after OGD/R. a The expression levels of NLRP3, ASC, pro-caspase-1, and cleaved caspase-1 in PC12 and bEnd3 cells among the different groups,
as measured by western blot. b The changes of NLRP3, ASC, and cleaved caspase-1 in PC12 cells among the different groups, as measured by

western blot. ¢ The changes of NLRP3, ASC, and cleaved caspase-1 in bEnd3 cells among the different groups, as measured by western blot. d

The expression levels of IL-13 and IL-18 in PC12 cells among the different groups, as measured by RT-PCR and ELISA. e The expression levels of

by reoxygenation

IL-18 and IL-18 in bEnd3 cells among the different groups, as measured by RT-PCR and ELISA. The 100 um diazoxide was applied to the cells
when got reoxygenation. *p < 0.05, **p < 0.01. OGD/R: oxygen-glucose deprivation/reoxygenation. The OGD continued for 4 h, followed

following mitochondrial dysfunction, which manifested
as a decrease in the mitochondrial membrane potential
(Aym), induced by the opening of the mitochondrial
permeability transition pore (mPTP), could promote
NLRP3 inflammasome activation [40]. In addition to the

mtROS, mtDNA released into the cytoplasm from the
damaged mitochondria has also been proposed to act as a
mitochondrial danger signal, promoting the activation of
NLRP3 inflammasomes [38, 41]. Similarly, we found that
the function of mitochondria in BV2 cells after OGD/R
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was damaged and included mitochondrial depolarization
and mtRNA damage. In addition, diazoxide was shown to
be able to protect the function of mitochondria by pre-
venting mitochondrial depolarization and mtRNA dam-
age, which aligned with previous studies that discovered
that diazoxide could prevent the opening of the mPTP
and mitochondrial depolarization in cardiac hypertrophy
and in an oxidatively stressed ischemic environment [42,
43]. Thus, we used diazoxide to determine the relationship
between mitochondrial dysfunction and NLRP3 inflam-
masomes in primary microglia and BV2 cells. The results
indicated that mitochondrial dysfunction played a sub-
stantial role in the activation of the NLRP3 inflammasome
pathway in primary microglia and BV2 cells after OGD/R,
and that diazoxide could effectively alleviate the NLRP3
inflammasome response in primary microglia and BV2
cells, transwell co-cultured PC12, and bEnd3 cells after
OGD/R. Then we detected the activation of NLRP3
inflammsome pathway in rats during cerebral I/R injury,
and found that the diazoxide could inhibit the activation
of NLRP3 inflammasome, which indicated that mitochon-
drial dysfunction played a great role in activating NLRP3
inflammasome in cerebral I/R injury.

Conclusion

Our study was the first to find the dynamic change in
the cellular localization of the NLRP3 inflammasome
pathway after cerebral I/R injury, showing that microglia
are the main source of activated NLRP3 inflammasomes
during the early stage after cerebral I/R injury, and then
the NLRP3 inflammasomes were activated in neurons
and microvascular endothelial cells over time and mainly
gathered in neurons during the late stage. Furthermore,
mitochondrial dysfunction was essential for the activa-
tion of NLRP3 inflammasomes in microglia, and a mito-
chondrial protector could effectively alleviate the NLRP3
inflammasome response in microglia, neurons, and
microvascular endothelial cells after OGD/R and cere-
bral I/R injury.
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