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prevent tau pathology in mouse models of
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Abstract

Background: Fractalkine (CX3CL1) and its receptor (CX3CR1) play an important role in regulating microglial function.
We have previously shown that Cx3cr1 deficiency exacerbated tau pathology and led to cognitive impairment.
However, it is still unclear if the chemokine domain of the ligand CX3CL1 is essential in regulating neuronal tau pathology.

Methods: We used transgenic mice lacking endogenous Cx3cl1 (Cx3cl1
−/−) and expressing only obligatory soluble form

(with only chemokine domain) and lacking the mucin stalk of CX3CL1 (referred to as Cx3cl1
105Δ mice) to assess

tau pathology and behavioral function in both lipopolysaccharide (LPS) and genetic (hTau) mouse models of tauopathy.

Results: First, increased basal tau levels accompanied microglial activation in Cx3cl1
105Δ mice compared to control groups.

Second, increased CD45+ and F4/80+ neuroinflammation and tau phosphorylation were observed in LPS, hTau/Cx3cl1
−/−,

and hTau/Cx3cl1
105Δ mouse models of tau pathology, which correlated with impaired spatial learning. Finally, microglial

cell surface expression of CX3CR1 was reduced in Cx3cl1
105Δ mice, suggesting enhanced fractalkine receptor internalization

(mimicking Cx3cr1 deletion), which likely contributes to the elevated tau pathology.

Conclusions: Collectively, our data suggest that overexpression of only chemokine domain of CX3CL1 does not protect
against tau pathology.
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Background
Fractalkine signaling in the CNS represents a unique
microglial-neuron receptor-ligand pair, where fractalkine
(CX3CL1) is expressed by neurons and its cognate re-
ceptor CX3CR1 is exclusively expressed by the CNS resi-
dent microglia [1]. CX3CL1 is a 373-amino acid protein,
which contains an extracellular chemokine domain
linked to a mucin-like stalk [2, 3]. CX3CL1 is functional
in its membrane-bound form but can also be cleaved

through metalloprotease (ADAM10/ADAM17) activity
to produce a ~ 95-kDa soluble moiety [4, 5]. It has been
proposed that the heavily glycosylated mucin-like stalk
of fractalkine provides rigidity to the chemokine domain
for the adhesive potency of the chemokine domain dur-
ing patrolling/crawling behavior [6]. Several mouse
models have been used to elucidate the role of fractalk-
ine in mediating neurodegenerative and neuroinflamma-
tory processes [7–11].
CX3CL1-CX3CR1 signaling is regulated through direct

neuron-microglia interaction, which acts to tether micro-
glia until pathological activation, via an inflammatory in-
fluence, or through normal physiological activity, which
disrupts this interaction through the cleavage of CX3CL1
[12, 13]. Disruption of CX3CL1-CX3CR1 signaling by
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chemical or genetic manipulation induces dramatic
morphological activation and altered levels of scaven-
ger/inflammatory receptors on the cell surface, alter-
ations in pro-inflammatory chemokine production, and
over-sensitization to pathological insults [14–17].
Previous studies from our group have explored the role

of CX3CL1 signaling in the context of Alzheimer’s disease
(AD) and related dementias. Notably, we found that dis-
rupting the CX3CL1-CX3CR1 signaling axis reduces Aβ
burden with concomitant increases in pro-inflammatory
IL-1 and heightened microglial activation in both APPPS1/
Cx3cr1

−/− and APPPS1/Cx3cl1
−/− transgenic mouse models

of AD [18]. Interestingly, this phenomenon was unaffected
by the presence of soluble CX3CL1 [18]. In a separate
study, converse to the protective anti-amyloid phenotype
observed in APPPS1/Cx3cr1

−/− mice, deletion of Cx3cr1 in
hTau mice resulted in hyperphosphorylation and aggrega-
tion of tau, worsened cognitive function, and increased
microglial inflammation [17]. This effect was regulated via
the same IL-1-p38 MAPK axis [17, 19]. The dichotomy be-
tween the two studies likely stems from the type of patho-
logical insults present, namely Aβ is extracellular whereas
hyperphosphorylated tau exists primarily intraneuronally
[20]. The precise mechanism of how disrupting the
CX3CL1-CX3CR1 signaling affects the microglia either to a
beneficial (in the case of Aβ study) or to a detrimental
degree (in the hTau study) is still unclear. However, it is
possible that the IL-1β promotes phagocytic phenotype of
microglia in clearing Aβ (in case of APPPS1/Cx3cr1

−/− and
APPPS1/Cx3cl1

−/− mice), while causing collateral damage
(for example, over-activation of p38 MAPK) in neurons
and leading to tau hyperphosphorylation [17–19]. Seem-
ingly, contrary work demonstrated that Cx3cl1 overex-
pression through viral transfection models reduces tau
and α-synuclein pathology [10, 21]. The present study
seeks to determine if genetically expressing only the
soluble chemokine domain of CX3CL1 could prevent
tau pathology in both chemical (LPS) and genetic
(hTau) mouse models of tauopathy.

Methods
Experimental animals
A mouse line (Cx3cl1

105Δ) exclusively expressing obligate
soluble CX3CL1 featuring only the chemokine domain, with-
out the mucin stalk, was generated by introducing bacterial
artificial chromosome (BAC) transgene encoding truncated
CX3CL1 (B6.Cg-Tg(Cx3cl1*)1Jung/J RRID:IMSR_JAX:027119)
to Cx3cl1

−/− mice (RRID: MGI_2388041) [22]. For the
current study, hTau+/−;Mapt−/− [23] (acquired from the Jack-
son Laboratory) which expressed all six isoforms of the hu-
man MAPT under the control of the endogenous human
MAPT promoter and backcrossed into Cx3cl1

105Δ animals
[22] was subsequently intercrossed to generate both
hTau+/−;Mapt−/−/Cx3cl1

−/− (referred as “hTau/Cx3cl1
−/−”)

and hTau+/−;Mapt−/−/Cx3cl1
−/−/ Cx3cl1

105Δ (referred as
“hTau/Cx3cl1

105Δ”). Mice were housed in both the Cleveland
Clinic Biological Resources Unit and University of New
Mexico Animal Research Facility. Both facilities are fully
accredited by the Association and Accreditation of
Laboratory Animal Care. The Institutional Animal Care
and Use Committee at respective institutions approved all
experimental procedures.

Lipopolysaccharide injections
Three milligrams per kilogram b.w. LPS (Sigma-Aldrich)
was administered intraperitoneally (i.p) to 2-month-old
mice and sacrificed 24 h post-injection. The hemi-brains
were post-fixed in 4% paraformaldehyde (PFA) followed
by cryopreservation in 30% sucrose for immunohisto-
chemistry (IHC) experiments. The remaining half of the
brains were microdissected into the hippocampal and
cortical fractions and snap frozen in liquid nitrogen and
stored at − 80 °C for biochemical analysis.

Western blotting
Microdissected cortical and hippocampal fractions were
homogenized using T-PER reagent (Thermo #78510)
containing phosphatase and protease inhibitor cocktails
(Thermo #78429, #78443; Sigma-Aldrich #p5726) and
briefly sonicated at 20% amplitude for 10 s. Homoge-
nates were centrifuged at 15,000 rpm, and the protein in
the supernatant measured via BCA assay (Thermo
#23225). Total protein (30–60 μg) were resolved by
SDS-PAGE, transferred to the PVDF membranes
(#IPFL10100 Millipore), and probed with phosphory-
lated tau antibodies (AT8 for pS199/pS202/pT205,
AT180 for pT231 at 1:5000; Thermo; and PHF-1;
1:10,000; a generous gift from Dr. Peter Davies), total
tau (Tau5 1:10,000; Thermo), and GAPDH (1:20,000;
Millipore) (loading control). The membranes were incu-
bated with near-IR conjugated (Thermo #A11371,
#A11367) or HRP-conjugated secondary antibodies
(Jackson ImmunoResearch), visualized, and either quan-
titated using LICOR Odyssey imaging systems (for the
data presented in Fig. 2) or developed with enhanced
chemiluminescence reagent and quantified by Alpha
Innotech® software (for the data presented in Fig. 1).

Immunohistochemistry
Sagittal free-floating 30-μm sections were subjected to
standard sodium citrate antigen retrieval for 10 min at
95 °C followed by blocking in normal goat serum con-
taining 0.1% Triton-X. The sections were incubated
overnight with AT8, AT180, or myeloid cell surface
markers (CD45 #MCA1388 1:500; BioRad; F4/80
#MCA497G 1:500 BioRad; Iba1 #019-19741 1:500;
Waco) and respective biotinylated secondary antibodies
(Vector Laboratories Catalog # BA-2000, BA-9400,
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Fig. 1 LPS-induced tau phosphorylation and microglial activation are exacerbated in Cx3cl1
105Δ mice. a–d Two-month-old fractalkine (Cx3cl1

−/−)-deficient
mice and the mice exclusively expressing the chemokine domain (lacking the mucin-like domain, red) (CX3CL1

105Δ) with a Myc tag were injected with LPS
(3 mg/kg b.w; i.p) or vehicle (VEH, Hank’s balanced salt solution or HBSS) and sacrificed 24 h post-injection. e–f Western blotting of the
hippocampi revealed significantly increased total tau (Tau5) (> 1.5-fold) in VEH-treated Cx3cl1

105Δ vs. Cx3cl1
−/− mice (mean + SEM;

**p < 0.01; n = 3; two-way ANOVA followed by Tukey’s post hoc test). Both AT8/Tau5 and AT180/Tau5 ratios were significantly higher in
LPS-treated Cx3cl1

105Δ compared to LPS-treated Cx3cl1
−/− or Non-Tg mice (mean + SEM; *p < 0.05; **p < 0.01; n = 3; two-way ANOVA with

Tukey’s post hoc test). g Immunohistochemistry (IHC) analysis revealing a modest increase in AT8 (pS199/pS202 tau) among experimental
genotypes or between VEH- or LPS-injected mice in the CA3 hippocampal areas. Scale bar, 20 μm. h–k IHC showing elevated Iba1+/F4/
80+ reactive microglia in VEH-treated Cx3cl1

105Δ mice that is enhanced with LPS treatment. Quantification reveals statistically higher form
factor units (higher number means more towards circular contour) for Iba1+ microglia in Non-Tg and Cx3cl1

105Δ mice in LPS-treated
groups (mean + SEM; ***p < 0.0001 vs. **p < 0.01 for Non-Tg with LPS; two-way ANOVA with Tukey’s post hoc test; n = 3–6 mice per
group). Scale bars (h, j) 25 μm
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BA-1000) and developed using 3-3′-diaminobenzidine
with or without the nickel enhancer. Data were quanti-
fied using percentage immunoreactive area or form fac-
tor analysis [24, 25]. First, percent immunoreactive area
for CD45 and F4/80 was processed using ImageJ, where
five random fields per section were manually defined as
region of interest (ROI) in three random sections (focus-
ing only on the ones containing dorsal hippocampal re-
gion) per mouse and in n = 6 mice per genotype and
consistently scored to detect percentage of CD45 and
F4/80 immunoreactive area using ImageJ software.
Briefly, first, the RGB images were converted into 8-bit
gray scale, and then the images were processed to adjust
the threshold, which was kept constant for all images.
Finally, using the analyze tool in ImageJ, the total immu-
noreactive area per field was scored by an automated
routine. After completing the scoring for all sections,
the mean percentage area along with standard error of
mean was plotted. For quantifying the roundness of Iba1
+ microglia, we utilized form factor (FF) algorithm in the
ImagePro Plus® software. FF measures the roundness of
an object; in this case, it was Iba1+ microglia. We [25]
and others [24] have previously described FF-based
quantification of microglial contour as an indirect meas-
ure of its phagocytic/morphological activation state.
Briefly, three images at random were taken in three dif-
ferent frontal cortical sections from each animal with at
least three animals per group. FF measures the contour
irregularity of a cell, i.e., FF is higher (approaches 1.0) in
bushy cells, characterized by larger cell bodies that are
less ramified, while morphologically “resting” microglia
appear smaller cell bodies with abundant branches of
regularly ramified processes, which would have lower FF
values (closer to 0.0). A total of 235 (Non-Tg-Veh), 184
(Non-Tg-LPS), 220 (Cx3cl1

−/−-Veh), 192 (Cx3cl1
−/−-LPS),

234 (Cx3cl1
105Δ-Veh), and 200 (Cx3cl1

105Δ-LPS) microglial
cells were scored for FF analysis.

Behavioral analysis
Morris water maze
Mice underwent a 3-day training using a visible platform,
which was relocated to different quadrants of an opaque,
water-filled maze each of the four trials per day. The first
3 days of visible platform training was to allow animals to
learn the procedures of the task (i.e., swim and get onto the
platform to escape from the pool). Next, the animals re-
ceived 5 days of memory testing in which the platform was
submerged and remained in a constant location with static
spatial cues around the room. Latency to reach a stationary
hidden platform was recorded across four separate trials
per day, for all 5 days. Mice were allotted 60 s to reach the
platform during both training and experimental days. La-
tency to reach the platform, swim speed, within-day learn-
ing, and across-day learning was examined to determine

cognitive differences between experimental genotypes. We
analyzed three key parameters relevant to learning trends:
(a) acquisition index is a measure comparing learning
within each trial day across four trials; (b) savings index is a
measure of memory consolidation from the final trial of
one testing day to the first trial of the following day; and (c)
slope plots the trajectory of learning curve. These indices
were scored for all 5 days as previously described [26].

Y-maze
The Y-maze is used to assess spatial working memory
during a 5-min trial where each mouse is allowed to
freely explore each arm of the Y-maze [27]. Total arm
entries, repeat ratio (defined as the number of times a
mouse enters the same arm twice over a total number of
arm entries), and the spontaneous alternation (defined
as when a mouse consecutively entered three different
arms) were recorded, as previously described [17].

Multiplex ELISA assay
Cytokine levels were all normalized to total protein con-
centration following BCA assay. Multiplex assays were
performed according to the manufacturer’s instructions
using reagents provided with the kit (Invitrogen Mouse
20-plex Cytokine Panel, Cat# LMC0006M). Following
sample incubation, plates were washed, incubated with
streptavidin-RPE for 30 min, washed three times, and
followed by a final addition of 125 μl wash solution to
all wells. The plates were read on a Luminex Magpix
unit (Life Technologies), and initial analyses were per-
formed by Xponent software and results exported into
Microsoft Excel for further processing. The sample size
was set to 50 μl, and the minimum count was set to 100
events/bead regions.

Flow cytometry
Mononuclear cells were isolated via a density centrifugation
technique at the interface of a 30/70% Percoll gradient
(Fisher Scientific #17-5445-01), as previously described
[28]. Cells were blocked using Fc blocking reagent (BD Bio-
sciences #553141) for 10 min before a 30-min incubation
with fluorophore-conjugated flow cytometry antibodies
against CD11b (FITC; BD Biosciences #553310), CD45
(APC; BD Biosciences; #559864), and CX3CR1 (PE; BD
Biosciences #565798). Data were acquired using BD Biosci-
ences Fortessa Flow Cytometer and analyzed using FlowJo
single cell analysis software. Fifty thousand events were
minimally collected before data processing. Mean fluores-
cent intensity was utilized in conjunction with total event
counts in order to quantify the number of brain-resident
microglia (CD11b+/CD45low cells) and relative expression
of CX3CR1.
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Statistical analysis
Data are presented as mean ± SEM unless otherwise
noted. Comparisons between two groups were analyzed
using Student’s t test (two-tailed; unpaired) at 95% confi-
dence interval. Multiple group comparison or multiple
comparisons were analyzed using ANOVA or MANOVA
followed by Tukey’s or Dunnett’s post hoc tests. The analysis
was performed using Prism GraphPad or SPSS software.
Significance was determined at *p < 0.05, **p < 0.01, and
***p < 0.001. Individuals who were blinded to the geno-
type/treatment groups performed the data analysis.

Results
Enhanced microglial activation in Cx3cl1

105Δ mice during
LPS-induced endotoxemia
To explore the effect of neuronal Cx3cl1 deficiency and
the overexpression of the shed fractalkine moiety on
LPS-induced tau pathology, we utilized fractalkine-
deficient (endogenous Cx3cl1−/−) and cleaved soluble
fractalkine (Cx3cl1

105Δ)-expressing transgenic mice, which
express only the soluble chemokine domain of CX3CL1
[22]. Previously, this model revealed a differential require-
ment for soluble and membrane-bound CX3CL1 in the
context of dendritic macrophage processes within the gut
epithelium [22]. First, we confirmed the expression of
Cx3cl1

105Δ in the whole brain lysate via detection of a
c-Myc tag present in the C-terminal end of the Cx3cl1

105Δ

BAC construct (Fig. 1a-c) [22]. Interestingly, the mRNA
levels of Cx3cl1 were significantly higher in Cx3cl1

105Δ mice
compared to non-transgenic controls (Additional file 1:
Figure S1A). However, the protein levels of soluble CX3CL1
were comparable to that of non-transgenic mice
(Additional file 1: Figure S1B).
Previous work from our lab has demonstrated that

LPS induces tauopathy as early as 24 h following admin-
istration [17]. We administered LPS (3 mg/kg b.w., sin-
gle dose; i.p) to 2-month non-transgenic C57BL/6J
(Non-Tg), Cx3cl1

−/−, and Cx3cl1
105Δ mice (Fig. 1d).

Based on our previous reports that LPS leads to tau
phosphorylation within 24 h [17, 29], mice were sacri-
ficed 24 h post-injection to determine the alterations in
tau phosphorylation and microglial activation. Western
blotting revealed a significant (> 1.5-fold) increase in the
total tau (Tau5) levels in vehicle-treated Cx3cl1

105Δ mice
compared to Cx3cl1

−/− mice (Fig. 1e, f ). No differences
were detected in the basal level of tau phosphorylation
among LPS-treated Non-Tg, Cx3cl1

−/−, and Cx3cl1
105Δ

groups. Notably, LPS administration elevated phosphor-
ylated tau levels at AT8 (S199/S202/T205) and AT180
(T231) sites in Non-Tg and Cx3cl1

105Δ mice that were
nearly two- to fourfold elevated compared to vehicle-
treated groups, whereas Cx3cl1

−/− mice revealed only a
modest increase in AT8+ tau in LPS-injected groups
(Fig. 1e, f ). However, the LPS-induced AT8 positivity

was more robust in 6-month-old Cx3cl1
−/− mice (data

not shown).
Immunohistochemical analysis revealed a moderate in-

crease in AT8 immunoreactivity in the hippocampus
(CA3) of Cx3cl1

105Δ mice compared with other geno-
types (Fig. 1g). Furthermore, Iba1+ microglial immuno-
staining with subsequent form factor quantitative
analysis revealed an increase in microglial activation
with LPS in all three genotypes tested (Fig. 1h, i). React-
ive microglia displayed thick, less ramified processes in
Non-Tg, Cx3cl1

−/−, and Cx3cl1
105Δ mice treated with

LPS compared with their respective vehicle-injected con-
trols (Fig. 1h). While the expression of a major macro-
phage marker—F4/80—appeared elevated with LPS
treatment in the IHC images, the differences were not
statistically significant due to large variability. We also
did not detect any differences among experimental geno-
types in either vehicle or LPS-injected groups (Fig. 1j-k).

Overexpression of only chemokine domain of CX3CL1
fails to mitigate microglial activation and tau pathology
induced by Cx3cl1 deficiency in hTau mice
To determine the effect of Cx3cl1 deficiency and specific
effects of Cx3cl1

105Δ expression in hTau mice, the brains
of 6-month-old hTau, hTau/Cx3cl1

−/−, and hTau/
Cx3cl1

105Δ mice were analyzed. Significant increases in
AT8 site tau phosphorylation, but not AT180, PHF-1
sites, or total tau (Tau5) were detected in the hippocam-
pus of hTau/Cx3cl1

−/− and hTau/Cx3cl1
105Δ mice com-

pared to hTau mice (Fig. 2a, b). Immunohistochemical
analysis revealed increased AT8 immunoreactivity in
hTau/Cx3cl1

−/− and hTau/Cx3cl1
105Δ mice compared to

hTau mice in the CA3 region of the hippocampus, where
the AT8+ tau pathology was robust (Fig. 2c). Significant
increases in Iba1, CD45, and F4/80 immunoreactivities
were detected in hTau/Cx3cl1

−/− and hTau/Cx3cl1
105Δ

mice compared to hTau mice (Fig. 2d, e). Multiplex
ELISA analysis of hippocampal lysates revealed a signifi-
cant increase in inflammatory IL-1α in hTau/Cx3cl1

−/−

mice and a modest increase (p = 0.07) for hTau/
Cx3cl1

105Δ mice compared to hTau mice (Fig. 2f ). Not-
ably, IL-1β levels were significantly elevated in both
hTau/Cx3cl1

−/− and hTau/Cx3cl1
105Δ mice compared to

hTau mice (Fig. 2f ), which is consistent with our previ-
ous studies linking increased IL-1β production to the
microglial p38 MAPK signaling pathway [17–19].

Microglial cell surface level of CX3CR1 is significantly
reduced in Cx3cl1

105Δ mice, mimicking a Cx3cr1 deficiency
phenotype
Flow cytometric analysis was performed to further ex-
plore the possible role of CX3CL1

105Δ in the regulation
of microglial activation in the Cx3cl1

105Δ mice. Isolated
brain myeloid cells were stained with antibodies against
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CD45 and CD11b to differentiate brain-resident micro-
glia (CD11b+CD45low) and peripherally derived myeloid
cell (CD11b+CD45hi) population. There were no signifi-
cant differences in total microglia or peripherally de-
rived myeloid cells within the brains of Non-Tg,
Cx3cl1

−/−, or Cx3cl1
105Δ mice (Fig. 3a, c). However,

microglia from the Cx3cl1
105Δ mice displayed signifi-

cantly lower cell surface expression for CX3CR1 com-
pared to both Non-Tg and Cx3cl1

−/− mice (Fig. 3b, d).
This is despite showing elevated levels of Cx3cr1 mRNA
in the brain (Additional file 1: Figure S1C). Further-
more, the complete lack of fractalkine (in Cx3cl1

−/−

mice) was not sufficient to promote the downregulation

of microglial CX3CR1 levels (unlike in Cx3cl1
105Δ mice)

(Fig. 3b, d), further supporting previously published re-
ports of receptor downregulation in this model [18].

Cx3cl1 deficiency leads to cognitive impairments in aged
hTau mice
Behavioral and cognitive dysfunctions are key clinical
deficits in AD and tauopathies. To explore the effect of
Cx3cl1 deficiency in hTau mice, we generated and aged
additional cohorts of hTau, hTau/Cx3cl1

−/−, and hTau/
Cx3cl1

105Δ mice to 12 months of age and subjected each
group to a Morris water maze behavioral analysis. No
statistically significant differences were detected among

Fig. 2 Increased tau pathology, IL-1α/IL-1β, and microglial activation in 6-month-old hTau/Cx3cl1
−/− and hTau/Cx3cl1

105Δ mice. a, b Western
blotting revealed increases in AT8+ tau in the hippocampus of hTau/Cx3cl1

−/− and hTau/Cx3cl1
105Δ mice compared to hTau controls. c AT8 IHC

revealed increased reactivity in the CA3 regions of hTau/Cx3cl1
−/− and hTau/Cx3cl1

105Δ groups compared to hTau controls. Scale bar, 30 μm. d
Significant increases in both CD45 and F4/80 immunoreactivities were detected and quantified (e) in the cortex of hTau/Cx3cl1

−/− and hTau/
Cx3cl1

105Δ mice compared to controls. f A significant increase in IL-1α and IL-1β was observed in both hTau/Cx3cl1
−/− and hTau/Cx3cl1

105Δ mice
via ELISA. n = 6 mice per group except for ELISA (n = 10). Three independent experiments were performed for each analysis. Error bars represent
SEM. One-way ANOVA followed by Tukey’s post hoc test: *p < 0.05, **p < 0.01, ***p < 0.001
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experimental genotypes with regard to swimming
speed or latency to reach the platform during visible
or memory trials, respectively (Fig. 4a, b). hTau mice
performed significantly better across all five testing
days as measured by their respective learning slopes
across days 1–5 compared to hTau/Cx3cl1

−/− or hTau/
Cx3cl1

105Δ mice (Fig. 4c). Detailed analysis of the ac-
quisition index, which is a measure comparing learn-
ing within each individual trial day across four trials,
and the savings index, a measure of memory consoli-
dation from the final trial of one testing day to the
first trial of the following day, was performed across
all 5 days to explore learning trends as previously de-
scribed [26]. Of interest, hTau mice performed worse
day-to-day as measured by savings index, which mea-
sures the average memory consolidation from trial 4
on one testing day to trial 1 on the following day,

across all 5 days (Fig. 4d). Overall, hTau mice per-
formed better within each respective testing day
compared to hTau/Cx3cl1

−/− or hTau/Cx3cl1
105Δ mice

with regard to new memory formation (acquisition
index; Fig. 4e). These data suggest that hTau mice
have deficiencies transferring information but at-
tempt to compensate by learning well within each
respective testing day, thereby overcoming these im-
pairments and performing better overall than either
hTau/Cx3cl1

−/− or hTau/Cx3cl1
105Δ mice. Further, the

memory impairments induced by Cx3cl1 deficiency
were unable to be overcome by the overexpression
of only chemokine domain of CX3CL1. We also per-
formed the Y-maze test to assess the working mem-
ory and did not find any significant differences in
spontaneous alternation ratio between these groups
(data not shown).

Fig. 3 Expression of the microglial CX3CR1 is decreased in Cx3cl1
105Δ mice. a, c Flow cytometry on isolated brain mononuclear cells revealed no

alteration in the total number of resident microglia in Non-Tg, Cx3cl1
−/−, or Cx3cl1

105Δ mice (Cd11b+/CD45low). b, d Overall decreased CX3CR1
expression in the CD11b+CD45low (microglial population) in Cx3cl1

105Δ mice compared to Non-Tg and Cx3cl1
−/− mice (mean + SEM; one-way

ANOVA followed by Tukey’s post hoc test: *p < 0.05, **p < 0.01; n = 3 mice per group). e Working model of microglial-neuronal fractalkine signaling
axis. Note that the neuronal-derived CX3CL1 either as full length (in case of Non-Tg mice), as complete knockout (in Cx3cl1

−/− mice), or as the only
soluble form with chemokine domain (Cx3cl1

105Δ mice) differentially regulates the expression of microglial CX3CR1 (which is a seven transmembrane G
protein-coupled receptor) on the cell surface. This in turn may lead to over-activation of microglia in (Cx3cl1

105Δ mice) and enhanced neuroinflammation
and exacerbation of tau pathology in chemical (LPS) or genetic (hTau) model of tauopathy
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Discussion
CX3CL1-CX3CR1 represents a unique signaling axis be-
tween the microglia and neurons, which is profoundly
involved in the suppression of innate inflammatory re-
sponses. Alterations in fractalkine signaling by chemical
or genetic manipulations have dichotomous conse-
quences within the context of canonical AD pathological
outcomes. Notably, the absence of fractalkine signaling
ameliorates Aβ plaque burden in APPPS1 transgenic
mice [30], but exacerbates intraneuronal tau pathology
in hTau mouse model of pure tauopathy [17], even
though both events likely occur via dysregulation of
IL-1β-p38 MAPK signaling pathway [19]. Here, we dem-
onstrate that the expression of the chemokine domain of
CX3CL1 does not suppress inflammation-induced tau
pathology or mitigate microglial responses.
Earlier studies suggested that Cx3cr1 deficiency in-

creased tau phosphorylation in both LPS and hTau models
of tau pathology [17]. This suggests that the presence of
CX3CR1 may downregulate microglial pro-inflammatory

signaling and mitigate inflammation-induced tau hyper-
phosphorylation. For reasons currently unknown, unlike
Cx3cr1

−/− mice, the Cx3cl1
−/− mice demonstrate only a

modest increase in AT8+ tau following LPS administra-
tion. Tau phosphorylation in hTau/Cx3cl1

−/− mice seems
to mimic hTau/Cx3cr1

−/− mice as previously reported [17].
Furthermore, the expression of chemokine domain of
fractalkine has virtually no beneficial effects on either
LPS-mediated microglial morphological alterations or
AT8/AT180 site tau phosphorylation. This observation
suggests that in the absence of membrane-bound form,
chemokine domain of the fractalkine may, in fact, disrupt
normal microglia-neuron signaling, leading to downregu-
lation and/or internalization of fractalkine receptor on the
microglial cell surface. Our flow cytometry analysis reveals
decreased microglial CX3CR1 levels in the Cx3cl1

105Δ

mice compared with Non-Tg or Cx3cl1
−/− and supports

this hypothesis. Interestingly, a previous study observed
prolonged downregulation of cell surface CX3CR1 on aged
microglia in response to LPS [31]. This reduced CX3CR1

Fig. 4 Impaired learning in hTau/Cx3cl1
−/− and hTau/Cx3cl1

105Δ mice. Morris water maze was performed on 12-month-old mice. Mice were
subjected to a 3-day visible training paradigm (a), followed by a 5-day hidden trial period (memory testing). b Where latency to reach the platform
was recorded (seconds, sec). c Analysis of the linear regression slope adjusted for each genotype revealed that hTau mice learned the task better
than hTau/Cx3cl1

−/− or hTau/Cx3cl1
105Δ mice over the 5-day hidden trial period. d hTau mice had a much lower savings index than hTau/Cx3cl1

−/−

or hTau/Cx3cl1
105Δ mice during the 5-day hidden trial period. e hTau mice show higher acquisition index than hTau/Cx3cl1

−/− or hTau/Cx3cl1
105Δ

mice during the 5-day testing period. Mean + SEM; one-way ANOVA followed by Tukey’s post hoc test: *p < 0.05, **p < 0.01, ***p < 0.001; n = 10
mice per group
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on the CD11b+ microglia corresponded with delayed re-
covery from sickness behavior, elevated IL-1β induction,
and reduced TGFβ [31]. Reduced Cx3cr1 expression (both
mRNA and protein) in monocytes was also reported fol-
lowing septic shock [32]. This loss of monocyte-specific
CX3CR1, which causes sepsis-induced lethality in humans,
compromised this cell’s ability to respond to a fractalkine
challenge [32]. While these and our current results sug-
gested pro-inflammatory and pathological effects of re-
duced CX3CR1 expression on the microglial cell surface,
the exact intra-microglial alterations in Cx3cl1

105Δ mice
will need to be further explored using isolated microglia
and high-throughput single-cell RNA sequencing. Surpris-
ingly, the Cx3cl1

105Δ mice also had an increased baseline
expression of total tau. Finally, there may be the remote
possibility of ligand-independent CX3CR1 negatively influ-
encing TLR4 signaling in immune cells (in Cx3cl1

−/− mice)
and reducing pro-inflammatory cytokine secretion. In-
deed, such un-liganded receptor function was recently re-
ported for progesterone receptor B (without progesterone,
acting alone) in the regulation of the function of estrogen
receptor-α affecting the proliferation and survival of
breast cancer cells following estradiol stimulation [33]. Al-
ternatively, the chemokine domain of CX3CL1 has also
been shown to induce intracellular signaling independent
of CX3CR1 via binding to αvβ3 integrins [34].
Similar to our previously reported exacerbation of tau

pathology in hTau/Cx3cr1
−/− mice [17], neuronal frac-

talkine deletion seems to worsen tau pathology in hTau
mice, although differences in tau phosphorylation were
only detected at the AT8 (S202) site. Fractalkine deletion
elevates the pro-inflammatory response from microglia
in hTau/Cx3cl1

−/− and hTau/Cx3cl1
105Δ mice compared

to hTau mice. Further, cognitive abnormalities are evi-
dent in aged hTau/Cx3cl1

−/− or hTau/Cx3cl1
105Δ mice re-

gardless of increased production of the soluble chemokine
domain of fractalkine in the latter group. Given that hTau
mice display impaired performance in the Morris water
maze at 12 months of age [35], it is plausible that
Cx3cl1

105Δ overexpression fails to prevent cognitive im-
pairment in hTau mice.
Our results contrast with a previous report where

AAV-transduced overexpression of soluble fractalkine
rescued several pathological phenomena including the
hyperphosphorylation of tau at multiple epitopes and
microglial phenotypes in a mouse model of tauopathy,
rTg4510 [10]. The discrepancies between our study and
Nash et al. could be due to a number of factors includ-
ing the following: (1) Inducible AAV approach vs. our
germline genetic system—their animal model had intact
membrane-bound CX3CL1, while the Cx3cl1

105Δ mice
did not. (2) Differences in the structure of the soluble
fractalkine moiety—in the AAV study, the mucin stalk of
fractalkine was included, whereas, in our germline

Cx3cl1
105Δ mice, only the soluble chemokine domain,

without the mucin stalk, was present. A previous 3D
structural analysis of different domains of CX3CL1 has
suggested that mucin stalk of CX3CL1 is important for
the presentation of the chemokine domain to the outer
cell membrane and increases adhesive interaction be-
tween CX3CL1 and CX3CR1 [6]. Therefore, lack of the
mucin stalk in CX3CL

105Δ may not be sufficient to re-
strict LPS-induced or hTau-mediated microglial activa-
tion [36]. (3) Presence of endogenous CX3CL1 in
rTg4510 mice vs. the lack of it in Cx3cl1

105Δ mice—be-
cause of this, the levels of soluble CX3CL1

105Δ levels in
Cx3cl1

105Δ mice (which is comparable to that of Non-Tg
(see Additional file 1: Figure S1B)) may be insufficient
compared to significantly higher levels of soluble
CX3CL1 levels in the AAV study. (4) rTg4510 vs. hTau
are two different types of tauopathy mouse models. In
rTg4510 only, 4R-Tau with a P301L mutation is
expressed and pathological tau is present at 13-fold
higher than endogenous levels (AAV study), vs. only an
approximate two- to threefold higher expression of all
six isoforms, including both 3R and 4R tau, in hTau mice
(current study). Based on the data from these two stud-
ies, we hypothesize that when there is a robust tau path-
ology (like in rTg4510 mice), the effect of soluble
CX3CL1 (containing the mucin stalk) may be beneficial
and the benefits are discernable. We also speculate that
this beneficial effect could be due, in part, to the contri-
butions from the membrane-bound form of endogenous
CX3CL1, present in the rTg4510 mice, and the rigidity of
the soluble form containing the mucin stalk facilitating
the “anti”-inflammation. In contrast, hTau mice do not
display as robust tau pathology as rTg4510 mice. Due to
the complete lack of membrane-bound CX3CL1 in our
hTau/Cx3cl1

105Δ mice, CX3CL
105Δ may not be as effi-

cient and therefore leads to the downregulation of
CX3CR1 and exacerbation of neuroinflammation/tau
pathology. Together, these interpretations suggest that
both membrane-bound CX3CL1 and the soluble form of
fractalkine may make a concerted effort together to me-
diate both neuroinflammation and tau pathology.

Conclusions
Taken together, our data suggest that neuronal expression
of only the chemokine domain of fractalkine fails to sup-
press tau-related pathological outcomes and microglial ac-
tivation. Our data also suggest that fractalkine acts to
tether microglia to neurons and, once this interaction is
disrupted, microglia alter their functional phenotype. This
signaling benefit is quickly negated under chronic patho-
logical duress and offers little protection from cognitive
deficits in advanced stages of the disease. In conclusion,
the data presented here suggest that obligatory expression
of the chemokine domain of CX3CL1 downregulates
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CX3CR1 levels on the microglial cell surface and conse-
quently exacerbates tau pathology. These results could in-
dicate the usefulness of potential therapeutics targeting
ADAM10 or ADAM17, which cleave CX3CL1, to prevent
the formation of excessive soluble CX3CL1 as a means to
modify disease outcome for tauopathies.

Additional file

Additional file 1: Figure S1. Altered expression of Cx3cl1 and Cx3cr1
and protein levels of CX3CL1 in non-transgenic, Cx3cl1

105Δ and. Cx3cl1
−/−

mice. Quantitative real-time PCR analysis showing the expression of Cx3cl1
and Cx3cr1 mRNAs (A and C), as well as ELISA analysis for soluble CX3CL1
levels in non-transgenic (Non-Tg), Cx3cl1

−/− and Cx3cl1
105Δ mice (B).

(PDF 371 kb)
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